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Abstract  

Huntington’s disease (HD) causes progressive cognitive & motor impairment along with 
behavioral & psychiatric disorders. Our purposes are to determine association among 
cognitive tests and to predict overall performance of patients using key signals extracted 
from cognitive tests. To address the objective, MFPCA is applied to assess association of 
five major cognitive tests: symbol digit modalities test (SDMT), three STROOP tests 
(color, word & interference) and frontal system behavior scale. Then PC scores of 
MFPCA are used to predict change in overall performance monitored through scoring 
total function capacity (TFC). Education year & baseline age are added to adjust 
prediction model. Our results show MPFCA integrates information from all of subjects 
and cognitive tests to capture two main modes of variation at subject & test levels. The 
1st two PC scores at both levels are used as predictors for they are able to shrink high 
dimensional data while retaining most original cognitive information. Furthermore, 
MPFCA-based prediction model is a better methodology than benchmark analysis, and 
our finding shows both adjusted PC scores related to SDMT & STROOP color tests and 
adjusted subject-specific PC scores have significant impact on TFC change.  

Key Words: functional data analysis, MFPCA, Huntington’s disease, cognitive 
evaluation, overall performance prediction 

1. Introduction 

Huntington’s disease causes progressive cognitive and motor impairment along with 
behavioral and psychiatric disorders, which finally leads to dementia [1]. To develop into 
clinically diagnosed HD, gene mutation carriers may progress over many years; patients 
are monitored through a standard collection of clinical assessments called the unified HD 
rating scale (UHDRS), which test particular cognitive, motor, and behavior functions 
[1&2]. 

Among various UHDRS tests, cognitive evaluation is important to predict overall 
performance of HD patients. However, it is challenging to explain variation among 
various cognitive-related tests for different patients. Therefore, two major purposes of our 
study are to determine and quantify association among different cognitive tests as well as 
to predict change in overall performance using key signals extracted from the cognitive 
tests. 
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To address the first objective, a multilevel functional principal component analysis 
(MFPCA) is applied to assess the association of five major cognitive related UHDRS 
tests: the symbol digit modalities test (SDMT), three STROOP tests (color, word and 
interference), and frontal systems behavior scale (FrSBe) at both subject-level and 
subject/test level. 

The second objective is addressed by using  subject-level and subject/test level 
information derived from the above MFPCA to predict change in overall performance of 
HD patients, which is monitored through scoring total function capacity (TFC) test of 
UHDRS, using a multiple linear regression (MLR) model. In addition to MFPCA-based 
predictors, year of education and age at baseline are added to adjust our MLR prediction 
models. A traditional benchmark analysis is used as reference to the novel MFPCA-based 
model. The details of data structure and MFPCA methodology are introduced in the 
following section.  

2. Methods 
2.1 Data Structure   

R software was used to complete data processing and modeling through the entire study.  
Our raw data is collected by PREDICT-HD [3]. Among 941 mutation carriers at risk, 126 
subjects clinically diagnosed as HD during the entire study from 2002 to 2011. Patients 
who completed at least 5 annual visits are included in our final analysis, and the 
observations of their first 5 visits were remained to create a balanced data set. The final 
cognitive data contains 57 HD patients with M*N*J total observations, where M = 57 
subjects, N = 5 visits per subject, J = 5 standardized tests per visit. The data structure has 
three features. First, the basic observation unit is a function in that each test is observed 
for each subject over time, and thus M*J subject/test-specific curves are observed over a 
grid of time points. Second, the sampling design is sparse and irregular. Specifically, the 
number of time points is five for each subject, and the collection of time points is a subset 
of the 11 possible values of our time variable, year to diagnosis, t ∈ {−6, 4}. Minus and 
positive signs indicate before and after HD diagnosis. Finally, data is hierarchical with 
multiple levels (level 1 for subject, level 2 for test). 

2.2  MFPCA 

The MFPCA model is chosen to address our multilevel sparse functional data [4&5]. Let 
Xij(t) denote the observed function measured over a time variable t for the jth test within 
the ith subject. Briefly, MFPCA combines functional PCA with functional ANOVA at 
multiple levels. The unique feature is to introduce level1 Zi(t) and level2 Wij(t) functions 
as nested random effects into functional ANOVA (1.1). Then the core step is to conduct 
functional PCA to decompose Zi(t) and Wij(t) using the KL expansion to get a two-level 
MFPCA model (1.2): 

    (1.1)   𝑋𝑖𝑗(𝑡) =  𝜇(𝑡) + 𝜂𝑗(𝑡) +  𝒁𝒊(𝒕) + 𝑾𝒊𝒋(𝒕) + 𝜖𝑖𝑗(𝑡) 

                       (1.2) 𝑋𝑖𝑗(𝑡) =  𝜇(𝑡) + 𝜂𝑗(𝑡) + ∑ 𝝃𝒊𝒌 𝜙𝑘
(1)(𝑡)𝑘 + ∑ 𝝃𝒊𝒋𝒍𝑙  𝜙𝑙

(2)(𝑡) + 𝜖𝑖𝑗(𝑡)              

Where i = 1,…,M; j = 1,…, J;  𝑡 ∈ {𝑡𝑖𝑗𝑠 = 𝑡𝑖𝑠:  𝑠 = 1, … , 𝑁} is from the set of 11 integer 
grid points {-6, 4} over which functions are estimated. Fixed functions μ(t) and ηj(t) 
denote the overall mean and its test-specific shifts, respectively. εij(t) is a random 
measurement error with (0, σ2).  Fixed eigenfunctions  𝜙𝑘

(1)(𝑡),  𝜙𝑙
(2)(𝑡) are an 
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orthonormal basis of 𝐿2[0,1] for level 1 and level 2 respectively, and their eigenvalues 
𝜆𝑘

(1) & 𝜆𝑙
(2)

 are variances of respective PC scores 𝝃𝒊𝒌 & 𝝃𝒊𝒋𝒍. 

The sparse MFPCA algorithm is used to estimate μ(t), ηj(t), 𝜙𝑘
(1)&  𝜙𝑙

(2), 𝜆𝑘
(1)

& 𝜆𝑙
(2) 

and 𝜎2 [4&5]. Briefly, discrete observations are converted into smooth functions of time 
using penalized spline smoothing, and eigenvalues and eigenfunctions of PCs are 
estimated using eigenanalysis. The MFPCA model can be rewritten as a linear mixed 
model conditional on these quantities:  
 

(1.3)   𝑋𝑖𝑗(𝑡𝑖𝑗𝑠) =  𝜇(𝑡𝑖𝑠) + 𝜂𝑗(𝑡𝑖𝑠) + ∑ 𝝃𝒊𝒌

𝑁1

𝑘=1

𝜙𝑘
(1)(𝑡𝑖𝑠) + ∑ 𝝃𝒊𝒋𝒍

𝑁2

𝑙=1

𝜙𝑙
(2)(𝑡𝑖𝑠) + 𝜖𝑖𝑗(𝑡𝑖𝑠) 

         
With 𝝃𝒊𝒌~(0, 𝜆𝑘

(1)
 ), 𝝃𝒊𝒋𝒍~(0, 𝜆𝑙

(2)
 )  𝑎𝑛𝑑 𝜖𝑖𝑗(𝑡𝑖𝑠)~(0, 𝜎2) 

The PC scores 𝝃𝒊𝒌 & 𝝃𝒊𝒋𝒍 are estimated by the best linear unbiased predictions (BLUPs), 
and thus the linear functions Zi(t) and Wij(t) can be estimated using BLUPs as well.  

3. Results & Discussion 

A first look at the data reveals large within and between-subject heterogeneity, for 
measures differ in subjects and tests quite dramatically over time as exhibited in spaghetti 
plots Figure1. The sparse multilevel functional feature of these cognitive measures can 
also be observed in the plot. As described in method, a sparse MFPCA was applied in 
order to reveal the dominant mode of variation for this high dimensional functional data. 
 
Figure1. Spaghetti plot of various UHDRS tests of 57 HD patients.  Scores of five 
cognition-related tests are standardized due to different scales. Outcome of interest, TFC, 
remains its original scale as for prediction. Colorful lines correspond to the first five 
patients in the standardized HD data.  
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3.1 MFPCA  on cognitive evaluation 

After modeling, we first examine the fixed part of our MFPCA. From Figure2, the 
estimated mean functions display a linear trend, suggesting that cognition deteriorates 
over time. Test-specific mean functions  �̂�(𝑡) + �̂�𝑗(𝑡)  show that FrSBe shifts quite 
differently from the overall mean, consistent with the fact that higher FrSBe score 
represents worse behavior, while lower scores of other tests indicate decline in cognition.     

Figure2. Plot the estimated overall mean function �̂�(𝑡) (black line) and test-specific mean 
functions �̂�(𝑡) + �̂�𝑗(𝑡),  𝑗 = 1,  … ,  5 (colored lines) 

 

 

Then the variation explained by random level 1 and level 2 basis functions is exhibited in 
Table1.  First, total functional variability is attributed to subject level 1 and subject/test 
level 2 around 52% and 48% respectively, and almost 100% of variation can be explained 
by their first four PCs. More specifically, most of the information in the subject level is 
contained in two uncorrelated dimensions, for its 1st two PCs characterize about 93% of 
variation at this level, splitting into 55% and 38 % in the direction of the respective 1st 
and 2nd eigenfunctions. Similarly, information contained in subject/test level 2 varies in 
two uncorrelated directions, for its 1st two PCs capture in total 91% of variation at this 
level with about 62% by the 1st PC and 29% by the 2nd PC.  

Together, these results indicate the presence of clear differences across subjects as well as 
across tests within subjects, and illustrate that a few patterns suffice to describe most of 
these differences. Furthermore, numbers of PCs kept for level 1 & 2 are N1= N2 =2, as 

𝑁1 = min {𝑘: 𝜌𝑘
(1) ≥  0.9, λ𝑘

(1) <
1

10
= 0.1}  & 𝑁2 = min{𝑘: 𝜌𝑘

(2) ≥  0.9, λ𝑘
(2) < 0.1}. 
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Therefore, PC score vectors,  𝜉𝑖  = (𝜉𝑖1,𝜉𝑖2) at subject level 1 and 𝜉𝑖𝑗  = (𝜉𝑖𝑗1,𝜉𝑖𝑗2)  at 
subject/test level 2, are key signals extracted from cognitive variables to predict TFC 
change in HD patients. 

Table1. Variance explained by PCs of our sparse MFPCA model.  

Model Level 1 ( subject )  Level 2 ( test ) 

PCs 1 2 3 4  1 2 3 4 
Eigenvalues(λ) 4.90 3.41 0.64 0.02  5.05 2.39 0.59 0.09 

per var % 54.61 38.02 7.09 0.21  61.97 29.29 7.29 1.08 

cum per var % (ρk) 
 

54.61 92.63 99.72 99.93  61.97 91.26 98.55 99.63 

rho(ρ) % 
 

52.41  47.59 

 

To better understand variability in major dimensions, we further visualize shape and 
magnitude of the first two eigenfunctions (top panel) and their effects on overall mean 
(bottom panel) at both levels in Figure3. 

In the top panel of Figure 3A, subject-specific 𝜙1
(1)(𝑡) gradually increases and turns 

positive from about 4 years before diagnosis. As a result, subjects with positive PC1 
scores will tend to have smaller cognitive test scores during 6 to 4 years before HD 
diagnosis and greater scores from then than the population average. In contrast, 
�̂�2

(1)
(𝑡) 𝑖𝑠 positive until 3 years after diagnosis, and subjects with positive PC2 scores 

will tend to have greater test scores than population average during that time. Effects of 
loading respective PCs is shown in bottom panel by adding or subtracting estimated 
√𝜆 × 𝜙(𝑡) from the overall mean. Although overall trend of cognitive decline over time 
is obscured by loading PC1, it is remained by loading PC2. 

For subject/test specific level 2, Figure 3B shows that its 1st eigenfunction is positive 
throughout the entire time period, suggesting that subject tests with a positive PC1 score 
correspond to a larger relative test score than subject average or interpreted as more prone 
to a shift in the related cognitive test. A further examination reveals that the weight 
placed in the middle is quite stable and is about five times less than that on the edges of 
the period. This result indicates that variation in the middle period is much smaller and 
consistent, which is also confirmed by loading PC1 on the overall mean. For the 2nd PC, 
its eigenfunction is positive and quite stable from 4 years before diagnosis to the time of 
diagnosis, and a subject with positive 2nd PC score thus tend to have a shift in related 
cognitive test. Loading the 2nd PC shifts the amplitude of overall mean quite consistently 
during the middle period.  
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Figure3. Plot estimated eigenfunctions 𝜙(𝑡) vs years to diagnosis (t) for the first two PCs 
in top panel for each level. Display 𝜇  𝑎𝑛𝑑 𝑏𝑎𝑛𝑑𝑠 𝜇 ± √𝜆 × 𝜙(𝑡)  in bottom panel with 
red dashed line (+) and green dashed line (-). 

A. Level 1 (subject)  

 
 

B. Level 2 (subject/test)  

 

Next, we evaluate the performance of MFPCA model on predicting/fitting observed 
functions of our sparse data. Results of the first two patients are illustrated in Figure 4. 
Since observed sparse functions are fitted very well by predicted functions, our MFPCA 
model provides accurate estimates for sparse HD data. The 95% point-wise confidence 
bands (thin dashed lines) are much wider at both ends of the time interval due to fewer 
observations during these periods (data of EDA is not shown). 
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Figure4. Plot predicted functions and their 95% confidence bands for the 1st two HD 
patients. Each row corresponds to a patient, and column 1- 5 stands for tests (1, SDMT; 
2, stroop color; 3, stroop word; 4, stroop interference; 5, FrSBe). For each subject, 
observations are pinpointed by blue dots {Xij(t)}. The predicted functions are labeled by 
thick dashed lines, i.e. �̂�𝑖𝑗(𝑡) = �̂�(𝑡) + �̂�𝑗(𝑡) + �̂�𝑖(𝑡) + �̂�𝑖𝑗(𝑡) 

 
 

3.2 MFPCA-based Prediction of HD performance  

Finally, we construct a multivariate linear regression (MLR) model to predict change in 
TFC using the 1st two PCs of both levels from MFPCA (2.1). When evaluating 
effectiveness of a novel model, it's important to compare it against a benchmark. Hence, 
we also choose a standard model (2.2) for comparison. For both models, outcome, 
𝑌𝑖 = 𝑇𝐹𝐶𝑖(𝑡5) − 𝑇𝐹𝐶𝑖(𝑡1) , is used to present progress of impairment in overall 
performance, and 𝑌𝑖 ∈ {−9,1} for our data. Vi contains 2 covariates, age and education 
years at baseline, to adjust models. Major distinction is that PC scores from MFPCA 
model represent cognition progress in model 2.1, while baseline and change in original 
cognitive test are used in model 2.2 

(2.1)  𝐸(𝑌𝑖) =  𝛽0 +  ∑ 𝛽𝑘𝝃𝒊𝒌

𝑁1

𝑘=1

+ ∑ 𝛽𝑗𝑙𝝃𝒊𝒋𝒍

𝑁2

𝑙=1

+ 𝑉𝑖
𝑇𝛾 

(2.2) 𝐸(𝑌𝑖) =  𝛽0 +  ∑ 𝛽𝑗𝑋𝑖𝑗(𝑡1)

5

𝑗

+ ∑ 𝜃𝑗[𝑋𝑖𝑗(𝑡5)

5

𝑗

− 𝑋𝑖𝑗(𝑡1)] + 𝑉𝑖
𝑇𝛾 

 

We use best-subset method for model section, and our result of final model (5V) in 
Table2 show that adjusted PC1 score from subject/stroop color test is the most 
significant predictor (estimated β= 0.53, p< 0.001), indicating higher values of this PC 
score are associated with smaller TFC deterioration over time. In addition, both adjusted 
PC1 and PC2 scores from subject/SDMT test are significant but in two opposite ways, 
and subject-specific PCs and baseline education year are also useful covariates.  
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Table2. Coefficient estimates for the best MLR models using PC scores of MFPCA as 
predictors (5V) vs Benchmark analysis (5B) selected by subset method. Int = Intercept, 
C1 = the 1st PC score, C2 = the 2nd PC score, S = SDMT, C = color test, W = word test, 
I= interference test, F= FrSBe, E = education at baseline, and A = age at baseline; (‘***’ 
0.001, ‘**’ 0.01, ‘*’ 0.05, and‘.’ 0.1) 

MFPCA-based model (5V) 
 Level 1  Level2 C1  Level2 C2  Adjust 

Int C1 C2  S C W I F  S C W I F  E A 
-5.57 0.55 -0.78  0.38 0.53     -0.70      0.25  

** (.) **  ** ***     *      *  

Benchmark analysis (5B) 
   Baseline  Change  Adjust 

Int   S C W I F  S C W I F  E A 
-4.16    1.04  -0.46 -0.36   1.29 0.78     0.23  

*    *     ** (.)     (.)  

The MFPCA-based model (5V) is much better than the benchmark analysis (5B) in terms 
of three aspects. First, the MPFCA-based model has higher adjusted R2 than the 
benchmark model (adjusted R2 35.6% vs 29.0%). Second, the MPFCA-based model 
provides much more in-depth information. For example the benchmark model only shows 
that SDMT change is positive for prediction; however, the MPFCA-based model 
indicates that SDMT actually exerts two opposite impacts derived from two uncorrelated 
PCs at level 2, although the positive effect is more significant. Finally, the MPFCA-based 
model can quantify subject and subject/test specific effects separately while benchmark 
model cannot. 

4. Conclusion 

In summary, MPFCA can integrate information from all of subjects and cognitive tests to 
capture two major modes of variation at both levels of data. The first two PC scores at 
both levels are used as predictors of overall performance change in HD patients, for they 
are able to shrink high dimensional data while retaining most original cognitive 
information. Our finding reveals that MPFCA is a better methodology to identify key 
cognitive predictors for overall HD performance than standard benchmark analysis, and 
adjusted scores of subject specific PC and subject/test specific PC related to SDMT and 
STROOP color tests have significant impact on total functional capacity change. 
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