JSM2015 - Section on Bayesian Statistical Science

Bayesian Local Influence of Semiparametric Structural Equation Models
Ming Ouyang*

Abstract

This research develops a Bayesian local influence method for semiparametric structural equation
models. The effects of minor perturbations to individual observations, sampling distributions, and
prior distributions on the statistical inference are assessed with the use of various perturbation
schemes. We construct a Bayesian perturbation manifold to characterize such perturbation schemes.
The first- and second-order influence measures are proposed to quantify the degree of minor per-
turbations to different aspects of a statistical model on the basis of a variety of objective functions
such as Bayes factor. We conduct simulation studies to evaluate the empirical performance of the
Bayesian local influence procedure.

Key Words: Bayesian local influence, perturbation schemes, latent variables, semiparametric
modeling, MCMC method

1. Introduction

In the behavioral, social, psychological, and medical sciences, latent variables that are
not directly assessable via a single observed variable and instead should be measured by
multiple observed indicators are commonly encountered. In the analysis of the interrela-
tionships among observed and latent variables, structural equation model (SEM) [20] is one
of the most popular and efficient methods. In the conventional SEM, outcome latent vari-
ables are usually regressed on explanatory latent variables in a linear form. However, this
linear and parametric SEM may be too restrictive to correctly reflect the reality. To relax
the assumption of the conventional SEM, we consider a semiparametric SEM that incorpo-
rates the nonlinear functions of latent variables and covariates as well as their interactions.
Abundant nonparametric modeling and smoothing techniques such as smooth splines [10],
kernel methods with local polynomials [7, 8], and penalized splines [23], have been devel-
oped in a frequentist framework over the past decades. Recently, due to the nice features
of the Bayesian approach and the rapid development of the sampling-based computing
tools, Bayesian nonparametric methods have received increasing attention in substantive
research [see, for example, 25, 26]. In this study, we consider a semiparametric SEM,
which comprises a confirmatory factor analysis model and a nonparametric structural e-
quation, wherein the univariate and bivariate nonparametric functions are modeled via the
Bayesian P-splines approach [6, 16].

In substantive research, erroneous results of the statistical inference could be caused by
several improper model inputs such as data and model specification. To identify potential
outliers or influential observations and assess the stability of estimation outputs with re-
spect to model and data inputs, Cook [4] proposed local influence analysis in the context
of linear regression models. Since the pioneering work of Cook [4], local influence has
received considerable attention as an important statistical inference beyond estimation, and
has already been applied to a large number of statistical models including SEMs. For exam-
ple, Zhu and Lee [31] extended Cook’s approach to incomplete data models. Lee and Tang
[18] applied the local influence approach to nonlinear SEMs. Lee et al. [19] assessed local
influence for nonlinear SEMs with ignorable missing data. Song and Lee [24] conducted
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a local influence analysis for mixture of SEMs. However, the abovementioned researches
were developed through the maximum likelihood (ML)-based estimation methods. Com-
pared to the rapid development of local influence in the frequentist framework, Bayesian
local influence analysis results are quite limited. Among a very first work was conducted by
McCulloch [21], which extended the local influence approach to assess the effect of pertur-
bation to prior on the Bayesian analysis. Recently, Zhu et al. [31] considered a geometric
approach to simultaneously assess outliers and/or influential observations, perform model
comparison, and conduct sensitivity analysis by introducing various perturbations to the
data, sampling distributions, and the prior distributions of model parameters, respectively.
However, the previous studies mainly focused on parametric models and thus are not di-
rectly applicable to the present model framework. In this article, we develop Bayesian local
influence procedure in the context of semiparametric SEM. To our knowledge, no study has
focused on the Bayesian local influence of such semiparametric latent variable model.

The remainder of the article is organized as follows. Section 2 defines the semiparamet-
ric SEM. The Bayesian P-splines approach for estimating univariate and bivariate nonlinear
functions is briefly described as well. Section 3 introduces the Bayesian perturbation model
and manifold, the first- and second-order local influence measures based on the objective
function of Bayes factor, and the associated posterior computation. Section 4 presents sim-
ulation studies to assess the empirical performance of the proposed methodology. Section
5 reports an application to the study of bone mineral density (BMD). Section 5 concludes
the paper.

2. Semiparametric Structural Equation Model

2.1 Model description

Let y; be a p x 1 random vector of observed variables. A measurement model for
characterizing latent variables on the basis of multiple observed indicators is defined as
follows:

y; = Az, + Aw; + €, (D

where x; is a vector of fixed covariates, A is a matrix of coefficients, wo; = (w;1,- - , wiq)T
is a ¢ x 1 random vector of latent variables with ¢ < p, A is a p x ¢ factor loading matrix,
€; is a p x 1 residual random vector independent of =o; and distributed as A[0, ®] with a
diagonal covariance matrix ¥. To examine the interrelationships among latent variables,
we partition ; into (n?, &1)T, where n;(q1 x 1) and &;(g2 x 1) denote the outcome and
explanatory latent vectors, respectively, and &; is assumed distributed as N[0, ®*] with a
covariance matrix ®*. A nonparametric structural equation for assessing the functional
effects of the explanatory observed and latent variables on the outcome latent variables is

defined as follows. For an arbitrary element n;, inn; , 4 =1,2,--- ;nandj =1,2,--- | qy,

nij = gj1(zi1) +- - +gjp(zip) + fi1 (&)t + fig (ﬁiq2)+z Pjuv (Eius §iv) + i, (2)
u<v

where 2;1,-- -, z;p are fixed covariates, gj1,- - ,gjp, fj1, -, fjq2 and hjy, are the un-

specified univariate and bivariate smooth functions, ¢;; is the residual error distributed as
N0, ts;] and independent of §; and d;, for j # h. For notational simplify, in what follows,
we suppress the subscript j in (2) by assuming ¢q; = 1. Then, (2) can be simplified to

ni = g1(zi1) + - +gp(zip) + f(&n) + -+ fo. (&igo) + Z houw (i, &iv) + 65 (3)

u<v

An extension to the case with g; > 1 is straightforward. The semiparametric SEM defined
by (1) and (2) is an impotent extension of the ordinary linear SEM. The proposed model
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not only releases the linear assumption on the relations between explanatory and outcome
variables, but also accommodates the pairwise functional interactions of latent variables.
The proposed model is not identifiable without imposing appropriate identifiability con-
straints. To identify the measurement equation, a simple and common method is to fix some
elements of A at preassigned values (see Section 4). To identify the structural equation, we
need to identify all the univariate and bivariate unknown functions. Using the idea of Song
et al. [26], we impose the identifiability constraints for g4(-), fx(-), and hy, (-, -) as follows:

max(z1d, ,2nd)
9d = / ga(z)dz/range(z14; -+, 2na) = 0, “)
min(zid,* ,2nd)
fi= | n@weas =0, 5)
Buv (gv) - /_ huv (fm {v)p(iu)dgqt = 07 fOT' all values Of fv, (6)
Buv (€u> = / huv (fua gv)p(fv)dgv = 07 fOT' all values Of gw (7)

where p(&;) is the prior distribution of &;. According to Song et al. [26], the constraints
(4)—(7) enforce g4(+), fr(-), and hyy (-, -) to be identified and orthogonal to each other.

2.2 Modeling of nonparametric functions

The unknown smooth functions g4(-), fr(-) and hy,(-)s in Equation (2) are unspec-
ified and require estimation based on the observed data. The Bayesian P-splines [6, 16]
approach can be used to approximate the unknown functions of both covariates and la-
tent variables. For covariates z;;, we can approximate gq(-) using traditional B-splines

approximation Zﬁl YarB5(+), where K7 is the number of splines determined by the
number of knots, 4, are unknown coefficients, and B, (-) are B-splines basis functions of
appropriate orders. For the unknown functions of latent variables, however, the traditional
B-splines approximation cannot be used because latent variables are unobservable and their
observations need to be updated in MCMC iterations. Consequently, predefining the finite
ranges of latent variables and determining the positions of the knots beforehand is impos-
sible. We propose the use of “probit transformation” method introduced in [26] to address
the problem. Let ®(-) be the cumulative distribution of A(0,1). The unknown smooth
function of latent variable f,.(-) is modeled by Zfil Bk Bjr(®(-)), where Bj,(®(-)) are
the composite functions of B-splines basis Bj(-) and probit transformation ®(-). For
bivariate nonparametric functions of latent variables, instead of using tradition tensor prod-
uct B—splines approach, we consider the modified tensor product B-splines approximation
Zf LS buwstUns (0(€i0)) Vet (D (1) ), where Us,s (D(+)) and Vi (D(-)) are likewise the
composite functions of B-splines basis and probit transformation. With the B-splines ap-
proximation, equation (3) can be rewritten as

D Kj j
i = ZZ'deBdk sz + ZZB]kB]k 51]))
d=1 k=1 j=1k=1 (8)
q2 Qg2

+ZZZZbuvstUus (€0)) Vit (B(€0)) + 6.

u=1v=1 s=1 t=1

In practices, a common choice of the B-splines basis function is cubic B-splines. To
control the smoothness of the approximations and prevent overfitting, we introduce various
penalties to the coefficients of B-splines basis functions in (8) (see Section 3.2).
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3. Bayesian Local Influence Analysis

3.1 Bayesian perturbation model

T

In this section, we first develop the Bayesian perturbations model. Let w = (w!, wT

v
wg)T be the perturbation mapping from the infinite set {2, where w,, w,, and w,, corre-
spond to the perturbation to the data, the sampling distribution, and the prior distributions
of parameters, respectively. Let p(y, o, 6) be the joint probability density in Bayesian
model. We introduce perturbation w into the density function denoted by p(y, zo, 0|w).
Thus, for w varies in €2, the Bayesian perturbation model )t can be defined as a family
of probability density p(y, o, 8lw € ). We assume that p(y, @, f|w) have a common
dominating measure for all w € € and there is a central point w® of € representing no
perturbation, such that p(y, @, 8|w®) = p(y, =, 0).

To measure each perturbations w, we propose the Bayesian perturbation manifold based
on the Bayesian perturbation model 90t. For a given p(y, @, f|lw) € I, w may be dif-
ferent from w’, we consider a smooth curve C(t) = p(y, @, O|w(t)) through the space
of 9 with open interval domains containing 0, by which we have p(y, =, 8|w(0)) =
p(y, @, O|lw). We likewise assume that C'(t) is smooth enough such that the tangent vector
{(y,,8|w(t)) = dlog p(y, ™, Blw(t))/dt exists with By,  o((y, o7, 0|w(t))?) < oco.
For all possible smooth C'(t), we formed the tangent space 7;,9% based on the tangent vec-
tors {(y, @, 8|lw(0)) = d log C(t)/dt|i—o, which satisfies [ {(y, o, 0|w(0))C(0)dzdf =
0. For any two tangent vectors, v1(w) , v2(w), we have the inner product

<vl(w),v2(w) >= /vl(w) -v2(w)p(y, @, 0|w)dydwodd. )

Consider a perturbation vector w = (wj), let d,,; = 9/0,,; be the partial derivatives, the
inner product of tangent vectors d,,£(y, @, 0|w) and 0., £(y, @, B|w) is

Gij (w) = Ey,w,G [&wg(yv w, H‘W)awje(yﬂ w, 0’(‘))]

) (10)
= _Ey,w,e [awljwkg(yv w, 0|W)i| )

where E - ¢ [-] represents the expectation with respect to the distribution p(y, @, 8|w).
The metric matrix G(w) = (g;j(w)) is associated with the expected Fisher information
matrix. Thus, the elements of G(w) can measure the amount of perturbation to the model.
An appropriate perturbation to the semiparametric SEM requires that G(w) is a diagonal
matrix [32], we then interpret the diagonal element g;;(w) as the amount of perturbations
generated by w;.

Next, we consider an appropriate objective function f(w,w"), which assesses the sen-
sitivity of the interested inference on the perturbation under consideration. Notably, a large
value of the objective function can be caused in two ways. The first way is the discrepancy
between the observed data and the fitted model, which is what we need to detect; whereas
the second way is the deviance between the perturbed distribution and the baseline distri-
bution, which is independent of what we observe. Thus, the local influence method devel-
oped for quantifying the effect of perturbation in the Bayesian analysis should be rescaled
by dividing the minimal geodesic distance between p(y, @, 8|w) and p(y, @, 8|w"), de-
noted by d(w,w?). As a result, the influence measure for comparing p(y, =, @|w) and
p(y, @, 0|w?) is defined as

= §< 5 - (11)

2609



JSM2015 - Section on Bayesian Statistical Science

3.2 Local influence measures

As pointed out by [33], all possible smooth curves p(y, @, @|w(t)) pass through w® =
w(0), the local behaviour of f(w(t),w’) = f(w(t),w(0)) can then be measured by
limy 0l M f(w(4),w(0))- Since the Taylor’s expansion of f(w(t),w(0)) at 0 is equal to
F(w(0),w(0)) + f(w(0)) + 3 f(w(0))t? + o(t?), where f(w(0)) and f(w(0)) denote the
first- and second-order derivatives of f(w(t),w(0)) with respect to ¢ evaluated at 0. The
first-order local influence measure is defined as

flw(®),w(0)?  [v70f(w(0))]?

Flp(w(0)) = I IM pwowon = 8 G000 = oGO 02

where v = dw(t)/dt|i=0, 0. f(w(0)) denotes the first-order derivatives of f(w(t),w(0))
with respect to w(t) evaluated at t = 0 and G(w(0)) is Fisher information matrix formed
by g;; in (10). Based on the Cauchy-Schwarta inequality and Chen et al. [3] we can prove
that

argmax FI(w(0)) = [G(w(0))] " [0uf(w(0)], (13)

where v = [G(w(0))] !, f(w(0)), and arg max, FI¢(w(0)) is a vector of the maximum
first-order local inference measures of all components.

If the first-order local influence F'1¢(w(0)) equals 0, following Zhu et al. [33], we can
use f (w(0)) to assess the second-order local influence measure of perturbation w to the
Baeysian model. We consider a specific smooth curve C(t) = Exp)(tv), where the
Exp,y(0)(tv) stands for the geodesic p(y, @, 8|w(t)), passing through Exp,, (o) (tv)|i=0 =
w(0). Thus, we have the Taylor’s series expansion of object function as follows:

J(Expy(0)(tv),w(0)) = f(w(0),w(0)) +tf(w(0)) + %th(E:va(O) (tv))[1=0 + o(t?),

(14)
where f(Exp,)(tv)) = d*f(Expe()(tv), w(0))/dt* called the Riemannian Hessian
[32]. Then, we can introduce the second-order influence measure for perturbation vector w
as follows:

(15)

o [(Bape)(tv),w(0))*  vT02 f(w(0))v
STp(w(0) = i = )2~ oTGw(0)v

where 92 f(w(0)) denotes the second-order derivatives of f(w(t),w(0)) with respect to
w(t) evaluate at w(0). Similar to that of first-order influence measure, we have the maxi-
mum second-order local influence measures of all components as follows:

arg max SI;(w(0)) = diag{G(w(0))] " [82 f (w(0))}, (16)

where v is the eigenvector of [G(w(0))] 7102 f(w(0)) corresponding to the largest eigen-
value.

Regarding the choice of the objective function, Ibrahim et al. [12] have introduced sev-
eral candidates such as the Bayes factor, ¢—divergence, and the posterior mean distance.
In the present study, we focus on the Bayes factor because arg max, F'1¢(w(0)) # 0 when
the objective function is taken as the Bayes factor. Consequently, the computation of the
second-order influence measure is unnecessary. We consider the logarithm of the Bayes
factor as follows:

B(w(0)) = log p(y|w(t)) — log p(y|w(0))

17
:log/p(y,w,Ow(t))dwd@—log/p(y,w,0|w(0))dwd0. a7
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Based on the (13), d,, f(w(0)) needs to be calculated. By assuming the legitimacy of
interchange of integration with differentiation, we have

Ow f(w(0)) = Oty B(w(1))li=0
B f@w(t)p(y,w,ww(t))dwd0’
[ p(y, =, 0lw(t))dw dO 1=0
B f@w(t)ﬁ(y,w,le(t))p(y,w,H\w(t))dwdé"
B [ p(y, =, 0|w(t))dw do =0 (18)

B Py, =, 0lw (1))
- / Qully . 0l(t) 1 e 8l

—/8w€(y,w,0[w(t))p(w,Hly,w(t))dwdmt0
= Ew 0 |0ul(y, @, 0|w(t))] |i=o,

where E g [-] denotes the expectation with respect to the posterior distribution p(zo, 8|y, w(t)).

3.3 Prior distribution

An important issue in implementing a full Bayesian analysis is to specify the prior
distribution of the unknown parameters. Firstly, we discuss the regression coefficients in
equation (8). For the univariate functions of covariates and latent variables, random walk

priors coped with the constrained Gaussian density are assigned to v, = (Y41, , V4 Kg)
and 3, = (Bj1,+ -+, Bjk;) as follows:
T\ H3/2 T.
POvalmr,) = (22) " exp { =24t My 74} (19)
2m 2
K*/2
Tg J ey T
wolma) = () e {-2aMa 5, 20)

where K = rank(M~ ) and K = rank(Mg_), M~ and M g are the penalty matri-
d Ya j ﬁ] Yd IB]

ces derived according to the random walk priors [25], 7y, and g, are the inverse smoothing

parameters that control the amount of penalty. For the regression coefficients associated

with the interactions terms, to avoid over-smoothing of the bivariate functions of latent

variables, we set the following prior distributions [26]:

S
[ /ﬁlstﬁ exp{— ﬂlstﬁ(buvst;bws(t—n)Q 1 x

=1t
. . 2
1 H [/ %557 exp - o2t sty @b

where 71 and 7, follow the gamma distribution Gamma(aw,, , Bb.,, ), and Yjx,-s follow the
uniform distribution U (0, 1).

Secondly, we specify the prior distributions for the structural parameters such as A,
A, W, o5, and ®*. The following conjugate prior distributions [20] are considered. For

jzlv"'7p’

. I

p(buv’ThTQ) =
S

A N[ j0, 2 A 0] j N[ jwajzAgo]
?l); ~ Gamma[%o, ﬁgo] vyt ~ Gammalaso, Bso),
®*  ~ Wishart[Ry, po],

where A;‘-F and AjT denote the jth row of A; and A, respectively; 1); is the jth diagonal
element of W; Ao, Ajo, ajo, Bjo, @50, S50, po, as well as positive definite matrices 3 Ajos
3, and Ry, are hyperparameters with preassigned values.

2611



JSM2015 - Section on Bayesian Statistical Science

3.4 Posterior computation

To calculate the first- and second-order local influence measures, we need to calcu-
late the expectation E g(-) in (10) and (18). However, this expectation is intractable
because it involves high-dimensional integration. Thus, we employ MCMC methods such
as the Gibbs sampler [9] and the Metropolis-Hastings algorithm [11, 22] to conduct the
Bayesian estimation and local influence analysis. The Gibbs sampler algorithm can be im-
plemented as follows: at the ¢ iteration with current values {w(t), H(t)}: (a) draw ©o from
p(w|Y, AW AD) \I’(t),wgt), <I>*<t),’y(t),ﬁ(t), b(t)); (b) draw 8 from p(0]Y, w(t+1)).
Due to its complexity, step (b) is further decomposed into: (b1) draw AT from p(AlY,
wtt) AG W) (b2) draw (AUHD, @D from p(A, O|Y, w1, AGD). (b3)
draw wgtﬂ) from p(15]ew @D, 40 30 p®)): (b4) draw &) from p(®* |+,
(b5) draw ~**D from p(~y|ww®+D, wgtﬂ), 7,1, B0 b1); (b6) draw BUHY from p(~|
wttl), wgtﬂ),rﬁ(ﬂ,’y(tﬂ), b®); (b7) draw bV from p(b|w(t+1),¢§t+1),Tgt),rg),
(D 90 g1 (b8) draw 7D from p(7 |y*+ ) and 75D from p(7'5|ﬁ(t+1));
(b9) draw T&tﬂ) from p(71|b**Y, 9®)) and Tgt_‘—l) from p(72|b®1, 9®)); and (b10)
draw 9 from p(19|7'gt+1) , Tgﬂ_l), b)),

The full conditional distributions involved in (b1)—(b9) are the normal, inverse gamma,
and the inverse Wishart distributions, respectively. Sampling from them is efficient and
straightforward. However, those involved in (a) and (b10) are complex. In particular, the
conditional distribution in (b10) is the gamma distribution truncated in [0, 1]. Sampling
from these non-standard distributions requires additional sampling technique such as the
Metropolis-Hastings algorithm.

3.5 Perturbation schemes

In this section, we discuss the computation of the first-order local influence. The
main task is to compute G(w(0)) involved in the Fisher information matrix (10) and
O0wl(y, o, 0|w(t))|i=o involved in the Bayes factor (18). Considering that w,(t), ws(%),
and wy(t) denote the perturbation to the data, sampling distributions, and the prior dis-
tributions of parameters, respectively, they are independent of each other. Thus, we have
Uy, w,0lw(t)) = L(y|wo, 0, wy(t)) + (N, 0,ws(t)) + £(£]0) + £(0|wy(t)), and we
can separately discuss G(w(0)) and 0,,¢(y, wo, 8|w(t))|:=o that are related to the data,
sampling distributions, or the prior distributions of parameters only.

First, we discuss the perturbation schemes corresponding to the observed-data log-
likelihood. Let wy (t) = (wy, (), ,wy, (t))" and w(0) = (1,---,1)". The perturbation
scheme for the observed data is given by

=1
G(wy(0)) = 2IT. !

By directly perturbing the observed data log-likelihood, we can diagnose the overall impact
of outliers or influential observations on the model.

Second, to diagnose whether the nonparametric structural equation (8) is adequate to
illustrate the nonlinear relationships among the observable and latent explanatory variables
on the outcome latent variables, we discuss the perturbation wg(¢) corresponding to the
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sampling distribution. For the purpose of illustration, we take the following simple struc-
tural equation as an example:

ni = g(2zi) + f1(&n) + f2(&2) + hia(&in, &i2) + 6. (22)

Perturbation of covariates z; : Let ws, (t) denote a perturbation and wy, (0) = 0, then

£(nl€,0,ws, (1) = Z{(Th ws, (1) g(2i) — f1(&in) — fa(&i2) — hi2(&i1, &i2))? /s

+10g(27T1/15)}
oo, (LM, 0, w5, (1)) ]1=0 = - ; 9(zi)(ni — f1(&i1) — f2(&i2) — hi2(&ir, iz)),
Gaplen(0) = 2 Bl o(z07)

Perturbation of latent variable &;1 : Let ws, (t) denote a perturbation and ws, (0) = 0, then

£(n]€,0,ws,(t) = Z{(Wz 9(2i) — ws, () [f1 (&) + M2(&in, &ia)] — fa(&i2))? /s
—|—10g(271'w5)}
Busay (10 (N]€, 0, w5, (1)) 1=0 = - Z(fl(&l) + ha2(&in, §i2)) (0 — g(2:) — fa(&i2)),

Gfil (w52( )) Z Ew 0[ (fl(gzl) + h12(€7,15€1,2)) ]

Perturbation of latent variable ;5 : Let ws, (t) denote a perturbation and w, (0) = 0, then

£(n]€,0,ws,(t) = Z{(m 9(zi) — f1(&n) — wey (D[ f2(Ei2) + ha2(&in, E2)])? /s
+10g(27r1b5)}
oy (1)L (M€, 0, sy (1)) 1=0 = - Zl(fz(&'z) + haa(&in, &i2)) (mi — 9(zi) — f1(&)),

1=

Gen(wss(0)) = ;T:Ew,e[l/}é(ﬁ(fiz) + hiz(&in, &i2)) ).

Perturbation of interaction h12(&;1,&;2) Let ws, (t) denote a perturbation and w, (0) = 0,
then

€(nl§, 0,ws,(t) = *% ( mi — 9(zi) — f1(&n) — fa(&i2) — ws, (D) h12(Eir, &i2))? /s
1 (27T¢6)}
oo, () (1€, 0, w5y (1)) 1=0 = - Z haa(&ir, &i2) (i — 9(2i) — f1(&a) — f2(&i2)),

CRINNGE

G(fn@z)(wsz( ) = Z [%hm(&hfn) .

Finally, to assess the sensitivity of Bayesian results to prior inputs, we discuss the
perturbation schemes corresponding to the prior distributions of model parameters. We
consider the structural parameters of primary interest, including regression-type parameters
A and A, as well as variance/covariance parameters ¥ and 5. The perturbation schemes
are given below:

Perturbation of A;: Let w,(t) denote a perturbation and w4 (0) = 1, then

A Ajo, Ty 0a®) = —3{pa, loa(:25) +log [Za,,]

Fwalt)(A; — A0) (Sa,0) 1 (A; — Ajo) |,
Ouat)l(AlAjo, X a0, wa(t))]i=0 = %{pA - il(Aj — Ajo0) (Za,) (A - AjO)}’
Gawa(0) = pa/2. "
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p
where p 4, denotes the dimension of A; and pa = op A;-
j=1

Perturbation of A;: Let wy (t) denote a perturbation and wy (0) = 1, then

UA A jo, By 0r(t) = —5{pa, 108(52F) + 0g [Za,|
+wa () (Aj — Ajo) (Ba,e) (A — Ajo)},
Duop (0 LA Ao, a0, WA (E))|t=0 = %{pA - é(AJ — 7o) (Za,0) HA; — Ajo)},
Caln(0)) = pa/2 "
where pj ; denotes the number of parameters of A ; excluding the fixed elements and pp =

P

) PA;-

j=1

Perturbation of ¥: Let wy (t) denote a perturbation and wy (t) = 1, then

(W5 o, Bjo, we (1)) = ajolog(we () Bjo) — log(T'(cjo)) + (ejo — 1) log(¥; )

—we ()Bjov;
Do (1) L(® ~Hvjo, Bjo, we (1)) =0 = il[ajo — Bio; ],
iz

p
Glg(0)(wa(0)) = 21 @jo,
]:

where I'(+) is the gamma function.
Perturbation of 15: Let wy, (t) denote a perturbation and wy, () = 1, then

0y euso, Boo, was (1)) = ausolog(wys, () Bso) — log(I'(aso)) + (cuso — 1) log(ep5™)
—Waps (t)ﬁéoiﬁgl,

Doy 0 (W5 Mo, Bo, wys () |i=0 = auso — Bsots ',
Gy, (0)(wa(0)) = a0,

For a specific perturbation scheme and an objective function, we use the following steps
to implement Bayesian influence analysis:

Step 1. Construct a Bayesian perturbation model p(y, zo, 8|w) and choose the objective
function f(w(t),w(0)).

Step 2. Calculate 9y, f (w(0)), 82 f(w(0)), and G(w(0)) = (&%jwkﬂ(y, w7, 0|w(0))).

Step 3. If O, f(w(0)) # 0, we calculate argmax, FIf(w(0)), the first-order local
influence measure. If J,, f(w(0)) = 0, we calculate arg max, SIf(w(0)), the second-
order local influence measure.

Step 4. Let M (0), be the jth element of arg max,, F'I(w(0)) or arg max, SIf(w(0)),
and C' = M(0) + 3SM(0), where M (0) and SM (0) are the mean and the standard de-
viation of {M(0); : j = 1,---,m}. For a selected objective function f(w(t),w(0)), if
M (0); > C, then the jth observation is detected as influential.

4. Simulation Study

4.1 Simulation 1

In the first simulation study, we focus on the diagnosis of outliers and/or influential
observations. We consider the perturbation corresponding to the data, w = w,, and a
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semiparametric SEM with p = 9,¢ = 3, ¢4 = 1,and ¢ = 2. For? = 1,--- ;1500 and
j=1,---.9,
. a.T T L
vij = Aj i + AjT w5 + €, (23)

ni = g1(zin) + 92(2i2) + f1(&i1) + fo(&i2) + hi2(&in, &i2) + 0, (24)

where g1(zi1) = 223, ga(zi2) = 0.2exp(3zi2)—2/3, f1(&i1) = 3exp(3&1)/[1+3 exp(3&i)]
—1.5, fa(&i2) = sin(1.5;2) — &i2), h12(&i1, &iz) = 5(P(§1) — 0.5) cos(2mP(&i2)), @(+) is
the cumulative distribution function of N (0, 1); ;, 21, and z;2 are generated from uniform
distribution U(—1, 1),

A1 A1 0O 0 0 O 0
0 1 As2 X2 O O 0

; 0
0O 0 0 0 0 1 Xgg No3

1
AT =10

0
in which 1s and Os are fixed to obtain an identified model, and As are unknown factor
loadings; ®* is the covariance matrix of &, = (&1, &z2). The true population values of
parameters are a; = 0.6, ; = 95 = 0.3, 7 = 1,---,9; Xo1 = A31 = A2 = Ag2 =
As3 = Ag3 = 1, and {gbn, b12, (Z)QQ} in ®* are {1.0, 0.3, 1.0}. To obtain the influential
cases, we replace the 500th observed variable as follows: for j = 1,---,9, y500,;, =
Ys00,5 + 1.55ign(ys500,5)-

The prior distributions discussed in Section 3.3 are used with the following prespecified
hyperparameters: the elements of Ao and Ao are taken as 0 and 0.8, respectively; 34,
and X4, are taken as the identity matrices of proper dimensions; ajo = 6, aso = 9,
Bjo = 1.8, Bso = 4; po = 7, Ry = 312, where I is the two-dimensional identity
matrix; o, = Qrg, = Qb,, = 1 and BT'Yd = Bmd = P»,, = 0.005. We utilize a total
of 16 equidistant knots to construct B} (-)s, By(®(-))s, Uys(®(+))s and Vi (P(-))s in the
approximation of g1 (z;1), g2(2i2), f1(&1), f2(&2), and hi2(&1, &2). The second-order and
first-order random walk priors are used to prevent the overfitting in the estimation of the
unknown univariate and bivariate smooth functions, respectively.

We carried out several pilot runs to check the convergence of the MCMC algorithm and
found that it converged within 10,000 observations. Thus, we collected additional 10,000
observations after discarding the 10,000 burn-in iterations to obtain the Bayesian estimates
of model parameters and to calculate the first-order local influence measures for various
perturbation schemes. The obtained results are reported in Figure 1.

In the first graph, the data and the prior distributions of the four kinds of parameters
discussed in Section 3.5 are simultaneously perturbed. Thus, we need to calculate a total of
1504 first-order local influence measures, wherein the 1st to 1500th elements correspond
to the data, and the 1501st to 1504th elements correspond to the prior distributions. Based
on the first graph, the 500th observation is detected as influential. However, the 1501st to
1504th measures are not significantly different from others, which implies that the Bayesian
results are not sensitive to the given prior input.

In the second to sixth graph, the 1501th first-local influence measure correspond to
91(zi1), 92(zi2)s f1(&1), f2(&i2), and hi2(&1, &i2), respectively. That is, we simultaneously
perturb the data and the sampling distribution by introducing perturbation to one of the
nonlinear terms of (24) in turn. The obtained results successfully detect the outlier and also
show that the main effects of the covariates and the latent variables as well as the interaction
effect between the two latent variables are all important and cannot be removed from the
model.
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4.2 Simulation 2

In this section, we conduct a simulation to examine whether or not the Bayesian local
influence analysis erroneously diagnoses unimportant effects as influential. We consider a
SEM, where the measurement equation is the same as that of Simulation 1, but the structural
equation has the following simpler form:

ni = g1(zin) + f1(&1) + 0s. (25)

We generate the observed data using this simpler model and then perform the Bayesian
local influence procedure based on larger model (24). The main purpose is to check
whether the perturbation of the sampling distribution can correctly detect important ef-
fects such as g1(z;1) and f1(&1), and discard unimportant ones such as g2(z;2), f2(&i2)s
and h12(&;1,&i2). Here, except the data are generated based on equation (25), all the other
settings are similar to those of Simulation 1. Likewise, in Figure 2 from the first to the
last graph, the 1st to 1500th first-order local influence measures correspond to the data, and
the 1501st corresponds to g1(zi1), g2(zi2), f1(&i1), f2(&2), and hi2(&1, i2), respectively.
As expected, the first graph simultaneously detects the outlier and the first important factor
91(zi1), the third graph simultaneously detects the outlier and the second important factor
f1(&1), whereas the other three graphs only show the outlier but do not display any sam-
pling distribution-related influential point, implying that ga(z;2), f2(&i2), and hi2(&i1, &i2)
that are perturbed respectively in these three graphs are nonsignificant and should be re-
moved from the model. Thus, by introducing perturbation to the sampling distribution, the
proposed Bayesian local influence procedure is capable of identifying the model structure,
thereby playing a role that is similar to model/variable selection.

5. An illustrative study

In this section, we applied the proposed methodology to a study of osteoporosis preven-
tion and control. A total of 1460 Chinese men aged 65 years and above were recruited using
a combination of private solicitation and public advertising from community centers and
public housing estates. A primary concern of this study is to investigate the functional re-
lationships between bone mineral density (BMD) and its correlated determinants including
‘Estrogen’, ‘Androgen’, ‘Precursors’, and ‘Metabolites’. However, BMD and its associated
determinants are latent constructs that should be measured by multiple observed variables.
The observed variables include spine BMD, hip BMD, estrone (E1), estrone sulphate (E1-
S), estradiol (E2), testosterone (TESTO), 5-Androstenediol (5-DIOL), dihydrotestosterone
(DHT), androstenedione (4-DIONE), dehydroepiandrosterone (DHEA), DHEA sulphate
(DHEA-S), androsterone (ADT), ADT glucuronide (ADT-G), 3a-diol-3G (3G), and 3d-
diol-17G (17G). According to medical knowledge, ‘BMD, 7’, ‘Estrogen, &;’, ‘Androgen,
&, ‘Precursors, £3°, and ‘Metabolites, £, are measured by { Spine BMD, Hip BMD}, {El,
E1-S, E2}, {TESTO, 5-DIOL, DHT}, {4-DIONE, DHEA, DHEA-S}, and {ADT, ADT-G,
3G, 3G-17G}, respectively. Due to the complex nature of the above mentioned latent vari-
ables, we expect that a simple linear SEM is inadequate to provide accurate analysis of the
true functional relationships between latent variables. Hence, a semiparametric SEM was
considered here.

In the measurement equation, p = 15, ¢ =5, q1 = 1, @2 = 4, @ = (0, &1, &2, 63, &4)7,
and A = 0. Given that each observed variable is clearly associated with only one latent
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variable, the factor loading matrix A has the following non-overlapping structure:

1 X1 0 O 0 0 O 0o 0 O 0o 0 O 0 01"
0 0 1 M2 As2 0 O 0 0 O 0 0 O 0 0

0o 0 0 O 0 1 X3 A3 0 0 0o 0 O 0 0 ,
0 0 0 O 0 0 O 0 1 Aiga Auzg 0O O 0 0

o 0 0 O 0 0 O 0 0 O 0 1 Xizs Auus Aisgs

)

where the 1s and Os are fixed to obtain an identified model and provide a clear interpretation
of the latent variables. The \;;s are unknown factor loadings reflecting the associations
between each latent variable and its associated observed variables. To examine the potential
determinants of BMD, we considered the following nonparametric structural equation:

ni =g1(2i1) + g2(zi2) + f1(&i1) + f2(&i2) + f3(&i3) + fa(&ia)
+ > s (Gaus €i0) + 3, 26)

u<v, u=1,--,4, v=1,- 4

where z;;1 and z;5 indicate respondents’ weight and age. Equation (26) is a full model with
all the main effects and all the interaction effects of the latent variables. We then use the
local influence procedure to check the significance of all the terms. The aforementioned
continuous measurements were standardized in advance of analysis. In the posterior com-
putation, the prior distributions discussed in Section 3.3 were specified for the unknown
parameters. The hyperparameters were taken to those that were assigned in the simulation
study. Again, a total of 16 knots was used to construct Bf(-)s, Bj(®(-))s, Uys(®(-))s and
Vit ((I)())S in the approximation of g; (Zﬂ), g2 (ZiQ), fi (fil), fo (gzg), and h12(fi1, 512) The
MCMC algorithm converged within 15,000 iterations. After convergence, we collected ad-
ditional 10,000 observations for the posterior inference. Because the sample size is 1460,
we set that the 1st to 1460th elements correspond to the data, whereas the 1461st to 1463th
elements correspond to the prior distributions in Figure 3, which showed that five observa-
tions, including the 303th, 390th, 398th, 405th, and 1279th observations, were identified as
influential, and the Bayesian results are not sensitive to the given prior input. Furthermore,
we checked the significance of each term in (26) one by one. Figure 4 showed that ‘an-
drogen, &>’ and ‘metabolites, {4 have important effects on BMD. However, Figure 5 did
not provide any evidence of interaction effects. Thus, the Bayesian local influence proce-
dure detected five influential observations and two important determinants of BMD in this
study. Exploration of the reason for each influential observation may be worthy of further
investigation.

6. Discussion

In this paper, we developed a Bayesian local influence procedure in the context of
semiparametric SEMs. We introduced a Bayesian perturbation model through perturbing
p(y|wo, 8), p(0), and p(zo|@) to characterize perturbations to the data, prior distributions,
and the sampling distribution. We proposed to use the first- and second-order local influ-
ence measures with the Bayes factor as the objective function to quantify the degree of
various perturbations to the interested feature of the analysis. The empirical performance
of the proposed method was demonstrated by simulation studies. An application to the
BMD study revealed new insights into osteoporosis prevention and control.

We can consider several possible extensions. First, this study adopts the Bayes factor
as the objective function in computing the first-order local influence measure. To achieve
better local influence efficiency, the use of other objective functions, such as ¢p—divergence,
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posterior mean distance, and the x?—divergence, may be worthy of further investigation.
Second, the proposed model only accommodates continuous observed variables. Given the
popularity of various types of data in substantive research, extending the current model
framework to incorporate mixed data types is of great importance. Finally, we can consider
a generalization of the proposed methodology to a longitudinal setting, which enables us
to assess the dynamic effects of time-varying covariates and latent variables on the time-
varying outcome of interest.
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Figure 1: The result of the local influence analysis in Simulation 1.
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Figure 2: The result of the local influence analysis in Simulation 2.
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Figure 3: The result of the local influence analysis in the BMD study.
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Figure 4: The result of the local influence analysis in the BMD study.
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Figure 5: The result of the local influence analysis in the BMD study.
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