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Abstract
This work proposes a method to construct prediction intervals for integrals of non-Gaussian random

fields over bounded regions (called block averages in the geostatistical literature). The method uses
a semiparametric approach that does not require distributional assumptions, but only parametric as-
sumptions about the mean and covariance functions of the random field. The resulting semiparametric
bootstrap prediction interval overcomes some drawbacks of the commonly used plug-in block kriging
prediction interval: the former has better coverage probability properties than the later since it accounts
for the uncertainty from parameter estimation, and does not rely on the assumption of Gaussianity. The
method is illustrated in the prediction of block averages of cadmium traces in a potentially contaminated
region in Switzerland.
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1. Introduction

In this work we consider the problem of constructing prediction intervals for integrals of random
fields over bounded regions (also called block averages in the geostatistical literature), based
on observations at a finite set of sampling locations. This problem is of importance in many
earth sciences, such as hydrology, mining and pollution assessment, where interest centers on
spatial averages rather than on ensemble averages. Previous approaches to this problem have
assumed, explicitly or implicitly, that the random field is Gaussian. But often the variables of
interest display markedly non-Gaussian features, so there is a need for methods that do not
rely on Gaussianity. We propose here one such method based on the bootstrap.

The suggestion of using bootstrap in geostatistical problems was first posed by Solow (1985),
who proposed it to estimate kriging variances, and later Cressie (1993) expanded and outlined
several possible approaches in generic terms. For the problem of constructing prediction in-
tervals for the value of a random field at a single location, different bootstrap variants were
proposed by Wang and Wall (2003), Sjöstedt-de Luna and Young (2003) and De Oliveira and
Rui (2009). The latter two articles proposed parametric bootstrap calibration approaches that
are applicable for, respectively, Gaussian and log-Gaussian random fields. Following Cressie
(1993), Schelin and Sjöstedt-de Luna (2010) proposed a semiparametric bootstrap approach
that does not require distributional assumptions, but only assumptions about the second-order
structure of the random field.

The problem of prediction of an integral of a random field over a bounded region has been
considered extensively in the literature, for instance, by Cressie (1993), Chilès and Delfiner
(1999), Cressie (2006), De Oliveira (2006) and Gotway and Young (2007). But the problem
of constructing prediction intervals for integrals has been much less studied. The common
approach is to use the so-called block kriging prediction interval computed from estimated
covariance parameters; this is called the plug-in (or estimative) approach. This approach has
two potentially serious drawbacks. The first, common to all plug-in prediction intervals, is that
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it does not account for the uncertainty from parameter estimation, and as a result the coverage
probability of these plug-in prediction intervals tend to be smaller than the intended (nominal)
coverage probability. The second drawback is that the block kriging prediction interval is
derived under the assumption that the random field is Gaussian, and as a result the coverage
probability of these intervals may not be close to the intended (nominal) coverage probability
when the random field is not Gaussian. For the case of Gaussian random fields, De Oliveira and
Kone (2015) proposed a method to construct prediction intervals based on bootstrap calibration
that overcomes the first drawback. It was shown there that bootstrap calibrated prediction
intervals have better coverage properties than plug-in block kriging prediction intervals. We
propose here a method to construct bootstrap prediction intervals for some types of non-
Gaussian random fields that aims at overcoming both drawbacks.

In this work we adapt the semiparametric bootstrap approach proposed by Schelin and
Sjöstedt-de Luna (2010) for constructing prediction intervals for values at single locations in
some types of non-Gaussian random fields, to the construction of prediction intervals for inte-
grals over bounded regions. In addition, the method is extended to the cases of random fields
with non-constant mean function and when the data contain measurement error. The proposed
methodology is semiparametric in the sense that parametric assumptions are made about the
mean and covariance functions of the random field, where the former is assumed linear in the
regression parameters and the latter does not depend on the mean function, but no assump-
tions are made about the distributions of the random field. The construction of the prediction
intervals uses the so-called hybrid bootstrap method (Shao and Tu, 1995), where some key
quantiles are estimated by semiparametric bootstrap. Finally, the proposed methodology is
applied to the construction of prediction intervals for spatial averages of cadmium traces in a
potentially contaminated region in Switzerland.

2. Problem Formulation and Model Description

Consider the random field {Z(s) : s ∈ D} representing the spatial variation of a quantity of
interest that varies continuously over the region of interest D ⊂ R2. It is assumed that D
is compact and |D| > 0, where |D| denotes the area of D (or more precisely its Lebesgue
measure), and Z(·) is an L2 random field, i.e., E{Z2(s)} < ∞ for all s ∈ D. No assumptions
are made about the family of finite-dimensional distributions of Z(·), except for second-order
assumptions. Specifically, the mean and covariance functions of the random field are assumed
to be given by

E{Z(s)} =

p∑
j=1

βjfj(s) =: µ(s) and cov{Z(s), Z(u)} = σ2Kφ(s,u), (1)

where f(s) = (f1(s), . . . , fp(s))
′ are known location-dependent covariates, β = (β1, . . . , βp)

′ ∈
Rp are unknown regression parameters, σ2 = var{Z(s)} > 0 is unknown, Kφ(s,u) is a correla-
tion function in R2 that is continuous on D ×D, and φ is an unknown correlation parameter.
Examples of non-Gaussian random fields satisfying (1) include t random fields (Røislien and
Omre, 2006) and Gaussian-Log-Gaussian random fields (Palacios and Steel, 2006).

The observed data consist of possibly noisy measurements of the random field at distinct
sampling locations s1, . . . , sn ∈ D, say Zobs = (Z1,obs, . . . , Zn,obs)

′, where

Zi,obs = Z(si) + εi , i = 1, . . . , n; (2)

here {εi}ni=1 are i.i.d with mean zero and variance τ2 ≥ 0 (the so-called nugget effect), represent-
ing measurement errors independently distributed of the random field Z(·). The model param-
eters are then the regression parameters β ∈ Rp and covariance parameters θ = (σ2,φ, τ2) ∈
Θ ⊂ Rq, q ≥ 3.
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The goal is to make inference about a spatial (weighted) average of the random field over a
subregion of D of positive area, say B ⊆ D, also know as a block average in the geostatistical
literature. This spatial average is the random variable defined by the stochastic integral

ZB =
1

|B|

∫
B
w(s)Z(s)ds, (3)

where w(·) is known, nonnegative and piecewise continuous on D; see Cramér and Leadbetter
(1967) or De Oliveira and Kone (2015) for details and properties of this stochastic integral.

Let F be the joint distribution of (Z′obs, ZB), assumed to be compatible with (1) but other-
wise unknown. For α ∈ (0, 1) we are interested in the construction of approximate 100(1−α)%
prediction intervals for ZB, that is, we seek random intervals

(
L(Zobs), U(Zobs)

)
for which

PF {L(Zobs) ≤ ZB ≤ U(Zobs)} ≈ 1− α, for any F compatible with (1).

Our aim is to develop a distribution-free approach that works well for a wide variety of non-
Gaussian random fields.

3. Distribution-free Plug-in Prediction Intervals

In all that follows the sampling design {s1, . . . , sn} is fixed throughout and the dependence of
many quantities on it is not made explicit. Also, it is assumed that the n × p matrix X with
entries (X)ij = fj(si) has full rank (= p < n), and the n× n matrix Σθ with entries

(Σθ)ij = σ2Kφ(si, sj) + τ21{si = sj}, (4)

is positive definite for all θ ∈ Θ, where 1{A} denotes the indicator function of event A.

The problem of predicting a spatial average based on point-referenced data has been con-
sidered extensively in the literature, for instance by Cressie (1993, 2006), Chilès and Delfiner
(1999), De Oliveira (2006) and Gotway and Young (2007). The best linear unbiased predictor
(BLUP) of ZB based on the data Zobs (also know as the block kriging predictor) and its mean
squared prediction error are given, respectively, by

ẐB(θ) = λ′B(θ)Zobs (5)

σ̂2B(θ) = σ2KBB(φ)− 2σ2λ′B(θ)KB(φ) + λ′B(θ)ΣθλB(θ),

where

λ′B(θ) =
(
σ2KB(φ) +X(X ′Σ−1θ X)−1(fB − σ2X ′Σ−1θ KB(φ))

)′
Σ−1θ

fB =
1

|B|

(∫
B
w(s)f1(s)ds, . . . ,

∫
B
w(s)fp(s)ds

)′
KB(φ) =

1

|B|

(∫
B
w(u)Kφ(s1,u)du, . . . ,

∫
B
w(u)Kφ(sn,u)du

)′
KBB(φ) =

1

|B|2

∫ ∫
B×B

w(s)w(u)Kφ(s,u)dsdu;

see Cressie (1993, Section 3.4.5) for details.

If the covariance parameters θ were known, then a tentative 100(1−α)% prediction interval
for ZB would be

IB(α,θ) =
(
ẐB(θ)− Φ−1(1− α/2)σ̂B(θ) , ẐB(θ) + Φ−1(1− α/2)σ̂B(θ)

)
=

(
LB(α,θ), UB(α,θ)

)
, say, (6)
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where Φ−1(·) is the quantile function of the standard normal distribution (the dependence
of LB(·) and UB(·) on the data is not made explicit to simplify notation). The coverage
probability of this prediction interval is exactly 1 − α when Z(·) is Gaussian. But in practice
the covariance parameters θ are not known. The simplest and most common practical solution
is to use the so-called plug-in (or estimative) prediction interval obtained by replacing θ in (6)
with θ̂ = θ̂(Zobs), an estimate obtained from the same data used for prediction. The resulting
interval IB(α, θ̂) is called the plug-in block kriging prediction interval. This solution has two
potentially serious drawbacks.

First, the coverage probability of IB(α, θ̂) differs from the nominal coverage probability (the
one that holds when the true parameter values are used), because it does not take into account
the sampling variability from parameter estimation. As a result, its actual coverage probability
tends to be smaller than the nominal coverage probability, and the coverage probability error
may range from negligible to substantial, depending on the data generating mechanism, ob-
served data and true parameters. An approach to correct this drawback of plug-in prediction
intervals is to use bootstrap. For Gaussian random fields, De Oliveira and Kone (2015) explored
two bootstrap calibration strategies to calibrate IB(α, θ̂) by adjusting its bounds LB(α, θ̂) and
UB(α, θ̂) to LaB(α, θ̂) and UaB(α, θ̂) say, in such a way that the coverage probability of the
calibrated prediction interval is closer to 1− α. It was shown through a simulation study that
the coverage probability of bootstrap calibrated prediction intervals substantially improve upon
that of plug-in block kriging prediction intervals.

Second, the construction of (6) relies on the assumption that the random field Z(·) is
Gaussian, so for non-Gaussian random fields its coverage may be far from 1− α, even asymp-
totically. For instance, Schelin and Sjöstedt-de Luna (2010) showed, for random fields with
constant mean and exponential covariance function observed on a regular sampling design in
R, that the asymptotic distribution (both infill and increasing domain) of Ẑs0(θ̂) − Z(s0) is
not Gaussian when Z(·) is a non-Gaussian random field. If a random interval analogous to (6)
could be constructed that is tailored to the particular non-Gaussian random field under study,
then bootstrap calibration could also be used to adjust the bounds of such prediction interval.
But this seems unfeasible for most non-Gaussian random fields since the joint distribution of
(Z′obs, ZB) is usually unknown for these models. For instance, this is the case for log-Gaussian
random fields (arguably the class of non-Gaussian random field most commonly used in geo-
statistics), for which the sampling distributions of ZB and ZB | Zobs are both unknown.

In this work we propose a distribution-free semiparametric bootstrap approach aimed at
overcoming both of the aforementioned drawbacks. It is an adaptation of the method proposed
by Schelin and Sjöstedt-de Luna (2010) to construct prediction intervals for Z(s0), the value
of the random field at a single location, to the construction of prediction intervals for ZB. In
addition, the method is extended to the case of random fields with non-constant mean function
and when the data contain measurement error.

4. Bootstrap for Dependent Data

The bootstrap is a powerful methodology based on resampling for estimating sampling distri-
butions of statistics. Although it was initially developed for situations with independent and
identically distributed data, it was shortly extended to more general situations; see Efron and
Tibshirani (1993) and Shao and Tu (1995) for extensive treatments. For situations involving
dependent data, several resampling schemes are possible that aim at preserving the dependence
of the observed data. The first called block bootstrap makes very few assumptions about the
data generating mechanism. It involves dividing the data into blocks and resampling the blocks,
which may be of different sizes and may or may not overlap; see Lahiri (2003) for an extensive
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treatment of different variants of this scheme. The second scheme called semiparametric boot-
strap makes some parametric assumptions about the data generating mechanism. It involves
fitting the proposed model using a distribution-free approach, and then resampling the residu-
als as if they were i.i.d. This scheme was first suggested in the geostatistical literature by Solow
(1985) for the estimation of kriging variances, and later a more extensive description appeared
in Cressie (1993, Section 7.3.2). Iranpanah, Mohammadzadeh and Taylor (2011) described
both schemes and carried out a simulation experiment to compare their accuracy and efficiency
in estimating the variance of several statistics, including that of the plug-in kriging predictor
of Z(s0). Their findings point to the superiority of the semiparametric bootstrap (SP) scheme
over the moving block bootstrap (MBB) scheme. Nevertheless, it should be pointed out that
their simulation study may not be totally fair. The true mean of the simulated data was used
to simulate the bootstrap data in the SB scheme, while no such accommodation was made for
the MBB scheme. This may partly explain the smaller biases and mean squared errors of the
SP scheme.

Let F be the joint distribution of (Z′obs, ZB), assumed to be compatible with (1) but oth-
erwise unknown. Let R(Z′obs, ZB) a random variable (root) that is a function of (Z′obs, ZB),
with the property that for every zobs, R(zobs, ·) is a strictly monotone function (say strictly
decreasing). Two examples to be investigated in Section 5 are R(Zobs, ZB) = ẐB(θ̂)−ZB and
R(Zobs, ZB) = ẐB(θ̂)/ZB, so they both depend on the observed data only through the plug-in
block kriging predictor ẐB(θ̂). If H(x) denotes the distribution function of R(Z′obs, ZB), then
for α ∈ (0, 1) and any F we have

1− α = PF
(
H−1(α/2) ≤ R(Zobs, ZB) ≤ H−1(1− α/2)

)
= PF

(
R−1(Zobs, H

−1(1− α/2)) ≤ ZB ≤ R−1(Zobs, H
−1(α/2))

)
,

where H−1(·) is the quantile function of H, and for any a ∈ R, R−1(Zobs, a) is the solution
in ZB of the equation R(Zobs, ZB) = a. If we replace in the above identity H−1(α/2) and
H−1(1− α/2) with estimates, Ĥ−1(α/2) and Ĥ−1(1− α/2) say, then(

R−1
(
Zobs, Ĥ

−1(1− α/2)
)
, R−1

(
Zobs, Ĥ

−1(α/2)
))
, (7)

is an approximate 100(1 − α)% prediction interval for ZB; this is what Shao and Tu (1995,
Section 4.1.5) call the hybrid bootstrap method for the construction of prediction intervals. The
goal is to obtain the estimates Ĥ−1(α/2) and Ĥ−1(1− α/2) using semiparametric bootstrap.

4.1 Semiparametric Bootstrap

This bootstrap scheme makes only second-order assumptions about the random field, specif-
ically those in (1), while its family of finite-dimensional distributions is left unspecified. The
implementation relies on being able to express the variables’ generating mechanism in terms of
independent and identically distributed random variables, similarly as in common regression
models and autoregressive time-series models. Let

Ψθ := var(Z′obs, ZB)

=

(
Σθ σ2KB(φ)

σ2K′B(φ) σ2KBB(φ)

)
, (8)

where Σθ is given in (4). Also, let Lθ and L̄θ be, respectively, the n× n and (n+ 1)× (n+ 1)
lower triangular matrices from the Cholesky factorizations of Σθ and Ψθ, i.e., Σθ = LθL

′
θ and
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Ψθ = L̄θL̄
′
θ. If δ(s) := Z(s) − µ(s) is the centered random field, then the data and spatial

average can be decomposed as(
Zobs

ZB

)
=

(
Xβ
µB(β)

)
+

(
ζ
δB

)
=

(
Xβ
µB(β)

)
+ L̄θεn+1, (9)

where ζ = (δ(s1) + ε1, . . . , δ(sn) + εn)′, µB(β) =
∫
B w(s)µ(s)ds/|B|, δB =

∫
B w(s)δ(s)ds/|B|,

and εn+1 = L̄−1θ (ζ′, δB)′. The components of εn+1 have mean zero, variance one, and are
uncorrelated. In addition, we assume these components to be i.i.d. with distribution Fε, say.

Let β̂ = β̂(Zobs) and θ̂ = θ̂(Zobs) be distribution-free estimators of the regression and
covariance parameters based on the observed data, for instance, θ̂ may be the weighted least
squares estimator (Cressie, 1993 Section 2.6.2) and β̂ = (X ′Σ−1

θ̂
X)−1X ′Σ−1

θ̂
Zobs. Define the

n× 1 vector of residuals by

ε̂n = (ε̂1, . . . , ε̂n)′ = L−1
θ̂

(Zobs −Xβ̂),

and the centered residuals by

ε̃i = ε̂i −
1

n

n∑
k=1

ε̂k, i = 1, . . . , n. (10)

Then Fε can be estimated by the empirical distribution function of the ε̃is, namely, F̂ε̃(x) =
1
n

∑n
i=1 1{ε̃i ≤ x}. If ε∗n+1 := (ε∗1, . . . , ε

∗
n, ε
∗
n+1)

′ iid∼ F̂ε̃, then the bootstrap data and spatial
average are defined as (

Z∗obs
Z∗B

)
:=

(
Xβ̂

µB(β̂)

)
+ L̄θ̂ε

∗
n+1. (11)

By the above construction (Z∗
′

obs, Z
∗
B)

approx∼ F , and hence the distribution of R(Zobs, ZB) can
be approximated by that of R(Z∗obs, Z

∗
B). For the cases considered here R(Z∗obs, Z

∗
B) depends on

Z∗obs only through Ẑ∗B(θ̂
∗
), where θ̂

∗
= θ̂(Z∗obs) and Ẑ∗B(θ̂

∗
) = λ′B(θ̂

∗
)Z∗obs are, respectively, the

covariance parameters estimate and plug-in block kriging predictor based on the bootstrap data.
By sampling from the bootstrap joint distribution of the data and spatial average independently
a large number of times (say M times), H(·) can be estimated by the empirical distribution of
the R(Z∗obs, Z

∗
B). We summarize all the steps in the following.

Algorithm. Let B ⊂ D, α ∈ (0, 1) and M ∈ N large. Then:

Step 1. Compute the parameter estimates β̂ = β̂(Zobs) and θ̂ = θ̂(Zobs), and the plug-in block
kriging predictor ẐB(θ̂) in (5).

Step 2. Compute the Cholesky factors Lθ̂ and L̄θ̂ of, respectively, Σθ̂ and Ψθ̂ in (4) and (8).

Step 3. Compute the centered residuals ε̃1, . . . , ε̃n in (10).

For j = 1, . . . ,M do the following:

Step 4. Simulate ε
∗(j)
n+1 = (ε

∗(j)
1 , . . . , ε

∗(j)
n , ε

∗(j)
n+1)

′ iid∼ F̂ε and compute (Z
∗(j)′
obs , Z

∗(j)
B )′ as in (11).

Step 5. Compute θ̂
∗(j)

= θ̂(Z
∗(j)
obs ) and Ẑ

∗(j)
B (θ̂

∗(j)
) = λ′B(θ̂

∗(j)
)Z
∗(j)
obs .
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Figure 1: Map of the Jura region with the 359 sampling locations (◦), land use type subregions
(color-coded), and four rectangular blocks (red lines).

Step 6. Compute R∗j = R(Z
∗(j)
obs , Z

∗(j)
B ) and order them from smallest to largest, say R∗(1) ≤ R

∗
(2) ≤

. . . ≤ R∗(M).

Step 7. An approximate 100(1− α)% prediction interval for ZB is(
R−1

(
Zobs, R

∗
([M(1−α/2)])

)
, R−1

(
Zobs, R

∗
([M(α/2)])

))
,

where [a] denotes the integer part of a.

5. Example

We consider the problem of inference about contamination levels in a region of about 15 km2

in the Swiss canton of Jura. A field survey that took place in 1992 collected measurements
of traces in top soil of the heavy metals cadmium, chromium, cobalt, copper, lead, nickel and
zinc at 359 locations scattered throughout the region. The region of interest includes the four
land use types forest, meadow, pasture and tillage; see Figure 1. The sampling protocol and an
initial analysis are described in Atteia et al. (1994), and the datasets and geostatistical analyses
appear in Goovaerts (1997). In this section we analyze the cadmium (Cd) traces measured in
parts per million (ppm).

Exploratory data analysis suggests that the mean of cadmium traces is constant throughout
the region (not shown), and their histogram in Figure 2 (left) shows that the distribution of
cadmium traces is not close to Gaussian. Figure 2 (right) plots the empirical semivariogram
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Figure 2: Left: Histogram of measured cadmium traces; Right: Empirical semivariogram (o)
and fitted semivariogram (—) of measured cadmium traces.

of cadmium traces, which display an apparent discontinuity at the origin, interpreted as mea-
surement error. Then, we assume the cadmium traces vary throughout the Jura region as an
(unspecified) non-Gaussian random field with constant mean β and isotropic exponential co-
variogram σ2 exp(−d/φ), where d ≥ 0 represents distance. The parameter estimates obtained
by least squares are

β̂ = 1.290, σ̂2 = 0.476, φ̂ = 0.039, τ̂2 = 0.212,

and the fitted semivariogram is displayed in Figure 2 (right).

We construct 95% prediction intervals for spatial averages (3) with w(s) ≡ 1 corresponding
to the four blocks displayed in Figure 1, each of which is entirely contained in a land use type;
the block coordinates appear in Table 1. For each of the aforementioned blocks we computed
two 95% prediction intervals for ZB based on the bootstrap algorithm described in Section 4.1
with M = 3000, using the roots R1(Zobs, ZB) = ẐB(θ̂)− ZB and R2(Zobs, ZB) = ẐB(θ̂)/ZB.

Table 2 displays the different prediction intervals. Except for block 4, the bootstrap predic-
tion intervals obtained from the two roots are similar, and for all blocks the prediction intervals

Table 1: Coordinates of the rectangular blocks (in km) and their respective land use type.

Block Block coordinates Land use type

1 [3.62, 4.45]× [2.30, 2.88] Forest

2 [1.77, 2.23]× [1.84, 2.63] Meadow

3 [1.58, 2.06]× [0.38, 0.78] Pasture

4 [3.06, 3.23]× [5.02, 5.38] Tillage

Jura [0.2, 5.2]× [0.2, 5.2] Mixed
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Table 2: Semiparametric bootstrap 95% block prediction intervals for cadmium traces in four
subregions using the roots R1(Zobs, ZB) = ẐB(θ̂) − ZB and R2(Zobs, ZB) = ẐB(θ̂)/ZB, and
the plug-in 95% block prediction intervals obtained from (6). The numbers in square brackets
are the lengths of the intervals.

Block Land use type R1(Zobs, ZB) R2(Zobs, ZB) Plug-in (6)

1 Forest (1.04, 1.54) [0.50] (1.06, 1.55) [0.49] (1.11, 1.47) [0.36]

2 Meadow (1.01, 1.59) [0.58] (1.06, 1.60) [0.54] (1.10, 1.52) [0.42]

3 Pasture (0.94, 1.65) [0.71] (1.02, 1.69) [0.67] (1.07, 1.62) [0.55]

4 Tillage (0.61, 1.65) [1.04] (0.83, 1.69) [0.86] (0.82, 1.64) [0.82]

Jura Mixed

obtained from R1(Zobs, ZB) are slightly wider than those obtained from R2(Zobs, ZB) [widths
reported in square brackets]. These prediction intervals seem to have little sensitivity to the
choice of root in this case. To assess the benefit of accounting for parameter uncertainty when
constructing prediction intervals, we also computed the plug-in block kriging prediction inter-
vals obtained from (6), which are also reported in Table 2. The plug-in prediction intervals
differ substantially from the bootstrap prediction intervals for all blocks. Although for each
block the bootstrap and plug-in prediction intervals are similarly centered, the bootstrap pre-
diction intervals are wider than the plug-in prediction intervals, as expected since the former
take into account the uncertainty from parameter estimation. When compared to the plug-in
prediction intervals, the bootstrap prediction intervals obtained from R1(Zobs, ZB) are between
22–39% wider than the corresponding plug-in prediction intervals. As a result, the coverage
probability of these bootstrap prediction intervals is expected to be closer to 0.95 than that of
the plug-in prediction intervals.

6. Conclusions

This work proposes a semiparametric bootstrap approach for the construction of prediction
intervals for integrals of random fields over bounded regions, that is applicable to a variety of
non-Gaussian random fields. The methodology seeks to overcome the two drawbacks of plug-in
block kriging prediction intervals discussed in Section 3. The main attractive of the proposed
method is its semiparametric nature which does not require distributional assumptions, but
only parametric assumptions about the mean and covariance functions. The analysis of the
cadmium data in Section 5 illustrates the fact that the semiparametric bootstrap prediction
intervals may be substantially wider than the plug-in block kriging prediction intervals, so the
former are expected to have much better coverage properties than the latter.

The proposed methodology is applicable to many but not all non-Gaussian random fields.
For instance, if Z(·) = exp(Y (·)) where Y (·) is a Gaussian random field with mean function∑p

j=1 αjfj(s)− C(s, s)/2 and covariance function C(s,u), then

E{Z(s)} = exp
( p∑
j=1

αjfj(s)
)

=: µ(s) and cov{Z(s), Z(u)} = µ(s)µ(u)
(
exp
(
C(s,u)

)
− 1
)
,

so these do not satisfy (1): the mean function is not linear in the regression parameters and
the covariance function depends on the mean function. Nevertheless, we conjecture that the
semiparametric bootstrap approach may be extended to random field models such as this, but
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doing so would require the use of distribution-free methods to estimate the regression and
covariance parameters jointly.
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