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Abstract
We consider estimating planned sales call frequencies of a selling company with incomplete

information caused by short recording durations in diary surveys. For practical reasons,
it is necessary to keep the recording period short. Missing data occur when the recording
period is not long enough to include observations with low call frequencies. We derive the
maximum likelihood estimators of the multinomial cell probabilities for the planned sales
call frequencies using the expectation maximization (EM) algorithm. We show that the
EM algorithm estimators have good asymptotic properties in terms of both bias and mean
squared error (MSE) and are more accurate and reliable than the estimators obtained by
the näıve approach of treating the absence of a sales call as a non-called on respondent
(i.e., zero frequency). The effect on the estimators when the number of frequency classes
increases is also investigated.

Key Words: EM algorithm, Incomplete information, Multinomial cell probabilities, Sales
call frequencies, Diary survey

1.. Introduction

To estimate planned sales call frequencies of a selling company, diary surveys are
often used to collect sample data. Most of these diaries have short durations such
as a week because using long durations in these surveys makes it harder to recruit
representative samples and may cause reporting (observation) fatigue which can
jeopardize the reliability of the data collected. However, short recording durations
may cause missing information for observations with low call frequencies. For ex-
ample, to estimate monthly total sales calls received by physicians for each of many
pharmaceutical companies, a random sample of physicians maintains a diary for
a week listing sales calls they receive from various companies. For each call, the
frequency of calls is also recorded, e.g., weekly, monthly, etc. When frequencies are
low, say, monthly, there may be no call for a given company and frequency data
are missing. The näıve approach of treating the absence of a sales call as a non-
called on respondent with zero frequency may lead to estimates that are inefficient
and biased. Traditional maximum likelihood method is unable to estimate the call
frequencies with this type of missing information either. To illustrate, suppose the
call frequencies of a pharmaceutical company can be classified into four categories:
weekly, monthly, quarterly, and never, denoted by A1, A2, A3, and A4, respectively.
Suppose the recording duration is a week. Denote the events that a physician re-
ceives a sales call in the recording duration and a physician does not receive a sales
call in the recording duration by C and NC, respectively. The data structure is
summarized in Table 1.

The multinomial cell probabilities pi, for i = 1, . . . , 4 are the parameters we are
interested in estimating. The counts n2NC , n3NC , and n4NC are regarded as latent
(unobservable) since we are only able to observe their sum nNC .
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Table 1: Counts of Physicians And Cell
Probabilities for Surveys That Measure
Total Sales Calls

Categories C NC Cell Prob.

Weekly n1C 0 n1\p1
Monthly n2C (n2NC) n2\p2

Quarterly n3C (n3NC) n3\p3
Never 0 (n4NC) n4\p4
Total nC nNC n\1

a Note: The latent frequencies of physicians
are in parentheses.

Denote the conditional probabilities that a physician receives at least one sales
call and a physician does not receive any sales calls in the previous week given that
these physicians are in category Ai by γ1i and γ2i, respectively, for i = 1, . . . , 4. It
is self-explanatory that we have γ2· = (γ21, γ22, γ23, γ24) = (0, 34 ,

11
12 , 1).1 The com-

plementary rule of probability implies γ1i = 1 − γ2i, for i = 1, . . . , 4, by which, we
have γ1· = (γ11, γ12, γ13, γ14) = (1, 14 ,

1
12 , 0). Let θ = (p1, p2, p3, p4) be the parame-

ter vector of cell probabilities. Denote the complete data vector of frequencies by
x = (n1C , n2C , n3C , n2NC , n3NC , n4NC). The complete-data likelihood function is
given by

f(x|θ) =
n!

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !

3∏
i=1

(γ1ipi)
niC

4∏
j=2

(γ2jpj)
njNC .

(1.1)
From (1.1), the complete-data log likelihood, omitting terms that do not depend on
pi, for i = 1, . . . , 4, is

l(θ) =
3∑
i=1

niC log pi +
4∑
j=2

njNC log pj . (1.2)

To maximize this likelihood subject to the constraint that
∑4

i=1 pi = 1, we introduce
a Lagrange multiplier λ and maximize the Lagrangian function

Z =

3∑
i=1

niC log pi +

4∑
j=2

njNC log pj + λ
(

1−
4∑

k=1

pk

)
. (1.3)

On solving the five simultaneous equations obtained by setting the partial deriva-
tives of (1.3) with respect to pi, for i = 1, . . . , 4, and λ, equal to zero, respectively,
we find that the complete-data maximum likelihood estimate of the parameter θ is
given by

θ̂(x) =
(n1C
n
,
n2C + n2NC

n
,
n3C + n3NC

n
,
n4NC
n

)
. (1.4)

The first component in (1.4) provides the maximum likelihood estimate for p1.
However, we are unable to estimate pj , j = 2, 3, 4 by (1.4) since the frequencies
n2NC , n3NC , and n4NC are unobservable.

1For the sake of simplicity, we assume that there are exactly four weeks in a month.
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The näıve approach of treating the absence of a sales call as a non-called on
respondent is equivalent of estimating p2, p3, and p4 as p̂2 = n2C

n , p̂3 = n3C
n , and

p̂4 = nNC
n , respectively, which is obviously inappropriate because their discrepancies

from the corresponding estimates given in (1.4) may very likely cause big bias.
We propose an approach to estimate multinomial cell probabilities p2, p3, and

p4 when the data have latent frequencies as shown in Table 1. Our approach makes
use of the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin
1977). We investigate the asymptotic properties of the estimators obtained by
the EM algorithm and compare them with the estimators obtained by the näıve
approach in terms of the bias and mean squared error (MSE). The effect on the
estimators when the number of frequency classes increases is also studied.

The rest of the paper is organized as follows. In Section 2, we derive the EM
algorithm estimators for the multinomial cell probabilities. In Section 3, we derive
the asymptotic variance-covariance matrix of the parameter estimators. In Section
4, we describe the simulation study used to investigate the asymptotic properties
of the estimators. Section 5 discusses the results. Section 6 concludes the paper.

2.. Estimating Planned Sales Call Frequencies via the EM Algorithm

The EM algorithm is an efficient iterative procedure to find maximum likelihood
estimates and is particularly suitable for problems with incomplete data. Each
iteration consists of an expectation step (E-step) followed by a maximization step
(M-step). To apply the EM algorithm to the problem of estimating planned sales
call frequencies p2, p3, and p4 as discussed in the previous section, note that the
complete-data likelihood in (1.1) has the regular exponential-family form

f(x|θ) = b(x) exp(η(θ)t(x)T )/a(θ), (2.1)

where η(θ) = (log (p2/p1), log (p3/p1), log (p4/p1)) denotes a 1×3 vector parameter,
t(x) = (n2C + n2NC , n3C + n3NC , n4NC) denotes a 1 × 3 vector of complete-data
sufficient statistics, and the superscript T denotes matrix transpose (see Equation
(2.1) in Dempster et al. 1977). When the data are from a regular exponential
family, a simple characterization of the EM algorithm described below applies. Let
y = (n1C , n2C , n3C , nNC) denote the observed data vector of frequencies and let
θ(v) denote the current fit of θ after v iterations. Notice that since p1 can be
estimated using the relationship p̂1 = 1− p̂2 − p̂3 − p̂4, we only need to develop the
EM algorithm for estimating p2, p3, and p4. Therefore, from now on, the vector of
unknown parameters θ will be redefined as θ = (p2, p3, p4). The (v+ 1)th iteration
consists of the following two steps:
E-step: Estimate the complete-data sufficient statistics t(x) by finding

t(v) = E(t(x)|y,θ(v)). (2.2)

M-step: Determine θ(v+1) as the solution of the equations

E(t(x)|θ) = t(v). (2.3)

As pointed out in Dempster et al. (1977), equations (2.3) are the familiar form of the
likelihood equations for maximum-likelihood estimation given data from a regular
exponential family. That is, if we were to suppose that t(v) represents the sufficient
statistics computed from an observed x drawn from (2.1), then equations (2.3)
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usually define the maximum likelihood estimator of θ. The EM algorithm proceeds
by alternating (2.2) and (2.3) iteratively until ||θ(v+1) − θ(v)|| is sufficiently small.

More specifically, on the (v+1)th iteration, in the E-step, to find the conditional
expectation of the complete-data sufficient statistics t(x) given the observed data
y and the current fit θ(v) for θ, notice that conditional on y, effectively nNC , the
latent cell counts (n2NC , n3NC , n4NC) follow a multinomial distribution with a total
count of nNC and cell probabilities

( 0.75p
(v)
2

0.75p
(v)
2 + 11

12p
(v)
3 + p

(v)
4

,
11
12p

(v)
3

0.75p
(v)
2 + 11

12p
(v)
3 + p

(v)
4

,
p
(v)
4

0.75p
(v)
2 + 11

12p
(v)
3 + p

(v)
4

)
. (2.4)

Therefore, the E-step yields

t
(v)
1 = E(n2C + n2NC |y,θ(v)) = n2C + n

(v)
2NC (2.5)

t
(v)
2 = E(n3C + n3NC |y,θ(v)) = n3C + n

(v)
3NC (2.6)

t
(v)
3 = E(n4NC |y,θ(v)) = n

(v)
4NC , (2.7)

where,

n
(v)
2NC = 0.75nNCp

(v)
2 /P

(v)
NC (2.8)

n
(v)
3NC = 11

12nNCp
(v)
3 /P

(v)
NC (2.9)

n
(v)
4NC = nNCp

(v)
4 /P

(v)
NC , (2.10)

and P
(v)
NC = 0.75p

(v)
2 + 11

12p
(v)
3 + p

(v)
4 . The M-step requires the calculation of the first

moments of the sufficient statistics t(x). In the Appendix A, using the properties
of exponential families, we show that

E(tj |θ) = npj+1, j=1,2,3. (2.11)

On the (v + 1)th iteration, the M-step is undertaken by letting the right-hand side

of (2.11) equal to t
(v)
j given in (2.5) - (2.6) and solving for p

(v+1)
j+1 for j = 1, 2, 3.

This leads to the updated estimates

p
(v+1)
2 = (n2C + n

(v)
2NC)/n (2.12)

p
(v+1)
3 = (n3C + n

(v)
3NC)/n (2.13)

p
(v+1)
4 = n

(v)
4NC/n. (2.14)

The initial values used to start the EM algorithm are p
(0)
2 = n2C/n, p

(0)
3 = n3C/n,

and p
(0)
4 = 1− n1C/n− p(0)2 − p

(0)
3 .

To investigate the effect on the estimators when the number of frequency classes
increases, we consider another scenario in which the company’s call frequencies can
be classified into seven categories, namely weekly, biweekly, monthly, bimonthly,
quarterly, half-yearly, and never. Adopting the same notations C and NC to repre-
sent the events that a physician receives a sales call in the recording duration and
a physician does not receive a sales call in the recording duration, respectively, the
data structure is given in Table 2.

The conditional probabilities that a physician does not receive any sales calls
in the previous week for each category are γ2· = (γ21, γ22, γ23, γ24, γ25, γ26, γ27) =
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Table 2: Counts of Physicians And Cell
Probabilities for Surveys That Measure
Total Sales Calls With Increased Number
of Frequency Classes

Categories C NC Cell Prob.

Weekly n1C 0 n1\p1
Biweekly n2C (n2NC) n2\p2
Monthly n3C (n3NC) n3\p3

Bimonthly n4C (n4NC) n4\p4
Quarterly n5C (n5NC) n5\p5
Half-yearly n6C (n6NC) n6\p6

Never 0 (n7NC) n7\p7
Total nC nNC n\1

a Note: The latent frequencies of physicians
are in parentheses.

(0, 0.5, 0.75, 78 ,
11
12 ,

23
24 , 1). Conditional on the observed sum of all latent cell counts

nNC , the latent cell counts

(n2NC , n3NC , n4NC , n5NC , n6NC , n7NC)

follow a multinomial distribution with a total count of nNC . Casting (2.2) in the
current scenario, the (v + 1)th iteration in the E-step yields the complete data
sufficient statistics

t
(v)
1 = E(n2C + n2NC |y,θ(v)) = n2C + n

(v)
2NC (2.15)

t
(v)
2 = E(n3C + n3NC |y,θ(v)) = n3C + n

(v)
3NC (2.16)

t
(v)
3 = E(n4C + n4NC |y,θ(v)) = n4C + n

(v)
4NC (2.17)

t
(v)
4 = E(n5C + n5NC |y,θ(v)) = n5C + n

(v)
5NC (2.18)

t
(v)
5 = E(n6C + n6NC |y,θ(v)) = n6C + n

(v)
6NC (2.19)

t
(v)
6 = E(n7NC |y,θ(v)) = n

(v)
7NC , (2.20)

where

n
(v)
2NC = 0.5nNCp

(v)
2 /P

(v)
NC (2.21)

n
(v)
3NC = 0.75nNCp

(v)
3 /P

(v)
NC (2.22)

n
(v)
4NC = 7

8nNCp
(v)
4 /P

(v)
NC (2.23)

n
(v)
5NC = 11

12nNCp
(v)
5 /P

(v)
NC (2.24)

n
(v)
6NC = 23

24nNCp
(v)
6 /P

(v)
NC (2.25)

n
(v)
7NC = nNCp

(v)
7 /P

(v)
NC , (2.26)

and P
(v)
NC = 0.5p

(v)
2 + 0.75p

(v)
3 + 7

8p
(v)
4 + 11

12p
(v)
5 + 23

24p
(v)
6 + p

(v)
7 .

Execution of the M-step on the (v + 1)th iteration based on (2.3) yields the
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updated estimates

p
(v+1)
2 = (n2C + n

(v)
2NC)/n (2.27)

p
(v+1)
3 = (n3C + n

(v)
3NC)/n (2.28)

p
(v+1)
4 = (n4C + n

(v)
4NC)/n (2.29)

p
(v+1)
5 = (n5C + n

(v)
5NC)/n (2.30)

p
(v+1)
6 = (n6C + n

(v)
6NC)/n (2.31)

p
(v+1)
7 = n

(v)
7NC/n. (2.32)

The initial values used to start the EM algorithm are p
(0)
2 = n2C/n, p

(0)
3 = n3C/n, p

(0)
4 =

n4C/n, p
(0)
5 = n5C/n, p

(0)
6 = n6C/n, and p

(0)
7 = 1− n1C/n−

∑6
j=2 p

(0)
j .

3.. The Observed Information Matrix and Asymptotic
Variance-Covariance Matrix Computation

The asymptotic variance-covariance matrix of parameter estimates in the EM frame-
work is computed as the inverse of the observed incomplete-data information matrix
I(θ̂;y), where

I(θ;y) = −∂2 logL(θ)/∂θ∂θT ,

and L(θ) denotes the observed data (or incomplete data) likelihood function. There
are a number of ways for calculating I(θ̂;y) in the literature. See McLachlan and
Krishnan (2008) for an overview of these methods. We will use the one established
in Louis (1982) to compute I(θ̂;y).

Let Lc(θ) denote the complete data likelihood function. Let Sc(x;θ) denote the
gradient vector of the complete-data log likelihood function, i.e.,

Sc(x;θ) = ∂ logLc(θ)/∂θ.

Let Ic(θ;y) denote the expected conditional complete-data information matrix, i.e.,

Ic(θ;y) = Eθ{Ic(θ;X)|y}, (3.1)

where Ic(θ;X) represents the complete-data information matrix, i.e.,

Ic(θ;X) = −∂2 logLc(θ)/∂θ∂θT .

Louis (1982) showed that

I(θ̂;y) = Ic(θ̂;y)− [covθ{Sc(X;θ)|y}]θ=θ̂. (3.2)

We now use the example in Section 1 with the data structure given in Table 1 to
illustrate how to apply (3.2) to compute the observed incomplete-data information
matrix I(θ̂;y). Let the unknown parameter vector θ = (p2, p3, p4)

T . Rewriting the
complete data log likelihood function given in (1.2), omitting terms that do not
include unknown parameters, we have

logLc(θ) = (n2C + n2NC) log p2 + (n3C + n3NC) log p3 + n4NC log p4. (3.3)
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On taking the first derivative of (3.3) with respect to θ, we have the complete-data
score statistic

Sc(x;θ) = ∂ logLc(θ)/∂θ

=


n2C+n2NC

p2
n3C+n3NC

p3
n4NC
p4

 . (3.4)

Taking the second derivative of (3.3) with respect to θ yields

Ic(θ;x) = −∂2 logLc(θ)/∂θ∂θT

=


n2C+n2NC

p22
0 0

0 n3C+n3NC

p23
0

0 0 n4NC

p24

 . (3.5)

To calculate the conditional expectation in (3.1), note that conditional on the ob-
served data vector y = {n1C , n2C , n3C , nNC}, effectively nNC , the latent cell counts
(n2NC , n3NC , n4NC) follow a multinomial distribution with a total count of nNC
and cell probabilities( 0.75p2

0.75p2 + 11
12p3 + p4

,
11
12p3

0.75p2 + 11
12p3 + p4

,
p4

0.75p2 + 11
12p3 + p4

)
. (3.6)

Assign new notations (p̃2, p̃3, p̃4) to the corresponding three cell probabilities in
(3.6). The conditional expectation of the complete data information matrix is given
by

Ic(θ;y) = Eθ

(
−∂

2 logLc(θ)

∂θ∂θT
|y
)

=


n2C+nNC p̃2

p22
0 0

0 n3C+nNC p̃3
p23

0

0 0 nNC p̃4
p24

 . (3.7)

From (3.4), using the fact that (n2NC , n3NC , n4NC) have a multinomial distribution,
we find that the [covθ{Sc(X;θ)|y}] is given by

[covθ{Sc(X;θ)|y}] =


nNC p̃2(1−p̃2)

p22
−nNC p̃2p̃3

p2p3
−nNC p̃2p̃4

p2p4

−nNC p̃2p̃3
p2p3

nNC p̃3(1−p̃3)
p23

−nNC p̃3p̃4
p3p4

−nNC p̃2p̃4
p2p4

−nNC p̃3p̃4
p3p4

nNC p̃4(1−p̃4)
p24

 . (3.8)

On subtracting (3.8) from (3.7), we obtain the incomplete-data information matrix
I(θ;y) as

I(θ;y) =


n2C+nNC p̃

2
2

p22

nNC p̃2p̃3
p2p3

nNC p̃2p̃4
p2p4

nNC p̃2p̃3
p2p3

n3C+nNC p̃
2
3

p23

nNC p̃3p̃4
p3p4

nNC p̃2p̃4
p2p4

nNC p̃3p̃4
p3p4

nNC p̃
2
4

p24

 . (3.9)

Evaluating this last expression at θ = θ̂, which are the estimates obtained on
the last iteration of the EM procedure, we obtain the observed incomplete-data
information matrix I(θ̂;y). The asymptotic covariance matrix of the maximum
likelihood estimators of θ = (p2, p3, p4)

T is computed as the inverse of the observed
information matrix, I−1(θ̂;y).
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4.. Simulation

We use a simulation study to investigate the asymptotic properties of the estimators.
Denote the estimators obtained from using the EM algorithm by θ̂ and the true
parameter values by θ. The bias of the estimators is computed as

BIAS(θ̂) =
1

r

r∑
m=1

θ̂
(m) − θ,

where r is the number of simulation runs and θ̂
(m)

is the estimate from the mth
simulation run with m = 1, . . . , r. The mean squared error (MSE) of the estimators
is computed as

MSE(θ̂) =
1

r

r∑
m=1

(θ̂
(m) − θ)2.

For the first scenario with four frequency classes, we use the true parameter values
θ = [p2, p3, p4] = [0.30, 0.20, 0.25] in the simulation. In the second scenario with
seven frequency classes, the true parameter values used in the simulation are θ =
[p2, p3, p4, p5, p6, p7] = [0.15, 0.20, 0.20, 0.15, 0.10, 0.10]. We run simulation for each
scenario. For each simulation we fix the sample size n from 25 to 10,000 as n = 25,
50, 100, 200, 500, 1000, 2000, 5000, and 10,000. For each sample size n, we use the
following steps of simulation process.

Steps in each simulation process:

1. Create a data set of size n

(a) Generate multinomial data

(b) Use binomial distributions to generate total no call frequency n2 and
observed counts for each frequency class

2. Set initial values

3. Find θ̂ by repeating the E- and M-steps alternatively until the differences
between estimates in two consecutive iterations are all less than 10−5

4. Repeat steps 1-3 1000 times and compute BIAS(θ̂) and MSE(θ̂).

5.. Results and Discussion

For MSEs of cell probability estimates shown in Figure ??, the pattern of conver-
gence to zero as the sample size increases is the same for all three cell probabilities.
The MSEs of the cell probability p2 become less than 0.01 for sample sizes greater
than 200. For sample sizes greater than 500, the MSEs of cell probabilities p3 and
p4 become less than 0.01.

Table 3 shows the biases for cell probabilities p2, p3, and p4 in the näıve approach
of treating the absence of a sales call as a non-called on respondent in comparison
with those in the EM algorithm. The biases in the näıve approach are huge and do
not decrease as the sample size increases. For the EM Algorithm, the absolute value
of the bias in the estimate for p2 becomes less than 0.01 for sample sizes greater
than 50 and the same achievement is made by the estimates for p3 and p4 for sample
sizes greater than 100. In general, the bias tends to approach zero as the sample
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Table 3: Comparison of biases in cell probabilities p2, p3, and p4 between the EM
algorithm and the näıve approach

Sample Size n 50 100 200 500 1000 2000 5000 10000

p2
EM Algorithm -0.0105 -0.0016 0.0059 0.0005 0.0007 0.0002 -0.0002 -0.0007
Näıve Approach -0.2264 -0.2251 -0.2235 -0.2249 -0.2248 -0.2249 -0.2250 -0.2252
p3
EM Algorithm -0.0182 -0.0118 -0.0076 0.0054 0.0032 -0.0006 -0.0011 0.0005
Näıve Approach -0.1832 -0.1839 -0.1839 -0.1829 -0.1831 -0.1834 -0.1834 -0.1833
p4
EM Algorithm 0.0243 0.0143 0.0038 -0.0057 -0.0038 0.0008 0.0010 0.0001
Näıve Approach 0.4053 0.4099 0.4095 0.4078 0.4080 0.4087 0.4082 0.4084

Table 4: Comparison of MSEs in cell probabilities p2, p3, and p4 between the EM
algorithm and the näıve approach

Sample Size n 50 100 200 500 1000 2000 5000 10000

p2
EM Algorithm 0.0194 0.0102 0.0060 0.0022 0.0012 0.0005 0.0002 0.0001
Näıve Approach 0.0526 0.0513 0.0503 0.0507 0.0506 0.0506 0.0507 0.0507
p3
EM Algorithm 0.0342 0.0192 0.0106 0.0049 0.0023 0.0012 0.0005 0.0002
Näıve Approach 0.0339 0.0340 0.0339 0.0335 0.0335 0.0336 0.0336 0.0336
p4
EM Algorithm 0.0378 0.0224 0.0127 0.0055 0.0025 0.0014 0.0005 0.0003
Näıve Approach 0.1689 0.1703 0.1689 0.1668 0.1667 0.1672 0.1667 0.1668

size increases. In other words, we have good reason to believe that the estimators
we have developed are asymptotically unbiased.

Table 4 compares the MSEs in the näıve approach with those in the EM algo-
rithm. The MSEs in the EM algorithm are much smaller than those in the näıve
approach when the sample size is fixed. Moreover, the MSEs in the näıve approach
stay at the similar level when the sample size increases, whereas those in the EM
algorithm converge to zero as the sample size increases. Moreover, for the EM al-
gorithm, the pattern of convergence to zero as the sample size increases is the same
for all three cell probabilities. The MSEs of the cell probability p2 become less than
0.01 for sample sizes greater than 200. For sample sizes greater than 500, the MSEs
of cell probabilities p3 and p4 become less than 0.01.

6.. Concluding Remarks

We have derived maximum likelihood estimators using the EM algorithm to estimate
the multinomial cell probabilities for planned sales call frequencies with incomplete
information caused by the short recording duration. The results have shown that
the EM algorithm estimators are asymptotically unbiased and consistent and there-
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fore more accurate and reliable than the näıve approach of treating the absence
of a sales call as a non-called on respondents. Our approach can be applied to
other situations where the data are collected using activity diary surveys with short
recording durations. One example is the popular travel diary studies used in trans-
portation planning. Most of these travel diaries have short durations such as a day
or a week and this may cause similar missing data structures as the one discussed in
this paper. One aspect of our approach that remains to be investigated in a future
work is to see how different ways of specifying initial values affect the properties of
the estimators.

Appendix A.. Derivation of (2.11)

Rewrite the likelihood function in (1.1) in the multiparameter exponential family
form of

p(x|θ) = h(x) exp[

k∑
j=1

ηj(θ)Tj(x)−B(θ)], (A.1)

where T (X) = (T1(X), . . . , Tk(X)) is a sufficient statistic as

p(x|θ) =
n!

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !

3∏
i=1

(γ1ipi)
niC

4∏
j=2

(γ2jpj)
njNC

=
n!W

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !
pn1C
1 pn2C+n2NC

2 pn3C+n3NC
3 pn4NC

4

=
n!W

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !
pn1

(p2
p1

)n2C+n2NC
(p3
p1

)n3C+n3NC
(p4
p1

)n4NC

=
n!W

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !

exp[(n2C + n2NC) log(p2/p1) + (n3C + n3NC) log(p3/p1) + n4NC log(p4/p1) + n log p1]

=
n!W

n1C !(n2C + n2NC)!(n3C + n3NC)!n4NC !

exp[(n2C + n2NC) log(p2/p1) + (n3C + n3NC) log(p3/p1) + n4NC log(p4/p1)

− n log(1 +
3∑
j=1

exp(log
pj+1

p1
))],

where W =
∏3
i=1 γ

niC
1i

∏4
j=2 γ

njNC

2j is a known constant. The complete-data likeli-
hood (1.1) is a three-parameter exponential family with η = (log(p2/p1), log(p3/p1), log(p4/p1)),
T (x) = (n2C + n2NC , n3C + n3NC , n4NC), and A(η) = n log(1 +

∑3
i=1 exp(ηi)).

By the Corollary 1.6.1 of Bickel and Doksum (2000), the first moments of the
sufficient statistics of a k-parameter exponential family indexed by η = (η1, . . . , ηk)
can be calculated as

Eη0
T(X) =

( ∂A
∂η1

(η0), . . . ,
∂A

∂ηk
(η0)

)T
.

According to this corollary, the first moments of the sufficient statistics T (x) =
(t1, t2, t3) = (n2C + n2NC , n3C + n3NC , n4NC) are given by

Eθ(tj) =
∂

∂ηj
n log(1 +

3∑
j=1

eηj ) =
neηj

1 +
∑3

j=1 e
ηj

=
n
pj+1

p1

1 +
∑3

j=1
pj+1

p1

=
n
pj+1

p1
1
p1

= npj+1, j=1,2,3.
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