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Abstract
Consider the common statistical problem of using data to decide between a null model and a

more general alternative. Within the significance testing framework, one will decide in favor of the
alternative model (reject the null hypothesis) only when the p-value is sufficiently small. Within
the discrepancy function / model selection framework, the decision is based on which model is
deemed to provide the more accurate depiction of the underlying data generating mechanism. In
this paper, we establish a connection between the frameworks. We will show how the p-value can
serve as an estimate of the probability on the null model under the discrepancy function framework.
Furthermore, we will discuss the implications of imposing significance testing principles on a model
selection problem.
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1. Introduction

Berger and Wolpert (1988) write that “Advancement of a subject usually proceeds by ap-
plying to complicated situations truths discovered in simple settings.” Indeed, that is the
hope for this paper. To motivate our ideas, we will focus on a simple problem. Suppose
Y1, . . . , Yn, Y are independent and identically distributed with mean µ (unknown) and vari-
ance σ2. The problem is to predict y after observing y1, . . . , yn. Predicting the future based
on observing the past is the essence of statistics. Our problem, although simple, is not triv-
ial, and will provide a useful template to more complicated problems in statistical inference
and model selection.

Let ŷ denote the predicted value of y. We will require a judgement on the accuracy of
the prediction. Define

∆(ŷ) = EY (Y − ŷ)2

= σ2 + (ŷ − µ)2

as the mean squared error of prediction. Aside from the distribution variance, prediction
accuracy under the mean squared error criterion depends only on the accuracy of ŷ as an
estimate of the distribution mean µ. So for this problem, a prediction ŷ is synonymous with
an estimate µ̂. The choice of an estimator will depend on the selection of a model. The
following models are under consideration:

Mo : Y1, . . . Yn, Y ∼ N
(
µo, σ

2
)

M : Y1, . . . Yn, Y ∼ N
(
µ, σ2

)
.

The null mean µo is a prespecified value. Under model Mo, we put forth the estimate
µ̂ = µo regardless of the data observed. Under model M, we use the data information in
creating the estimate µ̂ = y. The decision between models is to be based on which model
puts forth the more accurate estimator.
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The problem as stated is reminiscent of a hypothesis testing problem. Data y1, . . . , yn
is to be used in testing the null hypothesis Ho : µ = µo against a general alternative
Ha : µ ̸= µo. A decision in a null hypothesis significance testing problem may proceed
through the use of a p-value. Define

p = 2 (1− Φ(|z|))
= Pr

(
χ2 (1) > z2

)
where z =

√
n (y − µo) /σ̂ is the standardized test statistic. The problem is also reminis-

cent of model selection within a discrepancy function framework. Write

d (µ̂, µ) = (µ̂− µ)2 .

A discrepancy function provides a measure of disparity between the true model and a fitted
candidate model. The mean squared estimation error d may be treated as a discrepancy
function, where the fit of a model is judged by a comparison between the estimated mean
and the true mean. The discrepancy d is the focus of inference in a model selection prob-
lem. However, d is a random variable since the fitted value µ̂ is a function of the sample
Y1, . . . , Yn. We instead should say that the distribution on the discrepancy d is the quantity
of interest.

In the next section, we establish a connection between the significance testing approach
and the discrepancy function approach to model selection. We begin with the simple prob-
lem described here, then show how the development holds in a much broader setting. In
Section 3, we consider two examples. The paper closes with some concluding remarks.
The primary contribution of the paper is the presentation of a useful interpretation of a p-
value. The connection works in both directions. We will also discuss the implications of
imposing significance testing principles on a model selection problem.

2. P-value as an estimated probability

Under the null model Mo, the discrepancy d (µo, µ) does not involve the observed sam-
ple. Its distribution is simply a point mass at (µo − µ)2. Under general model M, the

distribution on the discrepancy d
(
Y , µ

)
=
(
Y − µ

)2
is induced from the distribution on

the sample mean. Model selection criteria are often developed by focusing on the expected
value of an overall discrepancy. See McQuarrie, Tsai (1998) or Burnham, Anderson (2002)
for an overview. Instead of summarizing the distributions via an expectation, we will base
our model evaluation on the probability

Pr
[
d (µo, µ) < d

(
Y , µ

)]
= Pr

[
(µo − µ)2 <

(
Y − µ

)2]
. (1)

So, the preferred model is that which is most likely to provide the more accurate estimate of
the true distribution mean. Think of the null model discrepancy (µo − µ)2 as a bias due to

model misspecification. Think of the general model discrepancy
(
Y − µ

)2
as an error due

to parameter estimation. When model bias is negligible in comparison to estimation error,
the null model will be preferred. This may be so without the null conforming precisely to
the truth. A fundamental aspiration of the discrepancy function approach to model selection
is a balance between goodness of fit and parsimony.

We will use the bootstrap to estimate the distributions on the respective discrepancies.
Let

(
y
(b)
1 , . . . , y

(b)
n

)
denote a sample of size n from the empirical distribution. The sample
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mean y serves as the empirical distribution mean. Let y(b) denote the mean of the bootstrap
sample. A bootstrap realization from the distribution on d (µo, µ) is written as

d̂ (µo, µ) = d (µo, y)

= (µo − y)2 .

Since the distribution on d (µo, µ) consists of a point mass only, so does its estimate. Denote
a bootstrap realization from the distribution on d

(
Y , µ

)
as

d̂ (y, µ) = d
(
y(b), y

)
=

(
y(b) − y

)2
.

Repeat for b = 1, . . . , B to create the estimated distribution on the discrepancy for the
alternative model. Let Pr∗ denote probability with respect to this estimated distribution.
The bootstrap sampling scheme leads to an estimate of the probability in (1) as

P̂r
[
d (µo, µ) < d

(
Y , µ

)]
= Pr∗

[
d̂ (µo, µ) < d̂

(
Y , µ

)]
= Pr∗

[
(µo − y)2 <

(
Y

(b) − y
)2]

≈ 1

B

B∑
b=1

1

{
(µo − y)2 <

(
y(b) − y

)2}
. (2)

We see in expression (2) the features which define the problem of deciding between two
models. Support for the alternative model is strongest when the distance between the null
mean and sample mean is large compared to the sampling variability. These same features
appear when we take a significance testing approach to model selection. We are now in
a position to present an argument connecting discrepancy function estimation and signifi-
cance testing.

If the model assumptions on the true distribution are nearly correct, then the sampling
distribution on the sample mean is approximately normal,

Y ≈ N

(
µ,

σ2

n

)
.

Bootstrap resampling is ideal in the case when the empirical distribution captures the fea-
tures of the true distribution. If the true distribution is approximated by the empirical dis-
tribution, then the bootstrap distribution on the sample mean is also approximately normal,

Y
(b) ≈ N

(
y,

σ2

n

)
.

The bootstrap distribution on the overall discrepancy is induced to become(
Y

(b) − y
)2

≈ σ2

n
χ2 (1) .

That is, the estimated distribution on the sampling error under the general model is a scaled
chi-square distribution. We can take another look at the estimated probability in expression
(2). Write

P̂r
[
d (µo, µ) < d

(
Y , µ

)]
= Pr∗

[
(µo − y)2 <

(
Y

(b) − y
)2]

≈ Pr

[
σ2

n
χ2 (1) > (µo − y)2

]
= Pr

[
χ2 (1) > z2

]
.

JSM 2015 - Biometrics Section

2517



Thus, we have the approximation

P̂r
[
d (µo, µ) < d

(
Y , µ

)]
≈ p. (3)

Expression (3) establishes the p-value as an estimate of the probability that the null model
provides a more accurate estimator than the general model.

Arguments and criticisms against the p-value are numerous, yet the use of the p-value in
statistical inference has not slowed appreciably. Ideally, a statistical testing problem would
be summarized through a measure of belief and/or a measure of evidence. Typically, a
p-value does not provide such an interpretation. However, there are situations in which the
p-value does provide a more desirable interpretation. Pawitan (2001) considers likelihood
inference in the case when asymptotic normality holds and shows that the p-value provides
information equivalent to a likelihood based measure of evidence. Goodman (2001) writes
on interpreting a p-value by transforming p into a minimum Bayes factor. Casella, Berger
(1987) show that the p-value matches a measure of belief in a Bayesian sense for a one-
sided testing problem with a symmetric, noninformative prior.

By appealing to a discrepancy based model selection view of hypothesis testing, our
result allows for an intriguing view of the p-value. We presented a simple case to aid
in understanding, but the proof leading to (3) only requires a pivotal quantity, a normal
approximation, and a discrepancy defined as a squared error of estimation. To see how
the development holds in a broader setting, consider regression coefficient testing within a
generalized linear model. Define competing models

Mo : η = β0 + β1x1 + . . .+ βk−1xk−1

M : η = β0 + β1x1 + . . .+ βk−1xk−1 + βkxk

where η is a function of the mean response. Deciding between models Mo and M is
analogous to testing the null hypothesis Ho : βk = 0. A significance testing approach is
based on the p-value

p = Pr
[
χ2 (1) > w

]
where w =

(
β̂k/SEk

)2
is a Wald statistic. We will compare this to a model selection

approach based on the discrepancy

d
(
β̂k, βk

)
=
(
β̂k − βk

)2
.

The quantity of interest in our model selection problem is the probability

Pr
[
d (0, βk) < d

(
β̂k, βk

)]
= Pr

[
(0− βk)

2 <
(
β̂k − βk

)2]
. (4)

Model selection is based on the probability that the null model provides a more accurate
estimate of the regression coefficient βk than the alternate model. Again, it is not a require-
ment for the null model to be true for the null model to be better. It may be that setting
the coefficient estimate to zero is more accurate than an estimate using data, because the
general model estimate introduces additional sampling variability. An estimate of the prob-
ability in (4) computed via bootstrap resampling becomes

P̂r
[
d (0, βk) < d

(
β̂k, βk

)]
=

1

B

B∑
b=1

1

{(
0− β̂k

)2
<
(
β̂
(b)
k − β̂k

)2}
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An argument completely analogous to the one made in the first problem establishes

P̂r
[
d (0, βk) < d

(
β̂k, βk

)]
≈ p. (5)

The derivation leading to (5) establishes the p-value as an estimate of the probability on the
null model under a discrepancy function framework.

3. Examples and Discussion

3.1 Point spread data example

Gelman et al. (2003) present data on the scores of NFL football games. A point spread
is designated for betting purposes prior to each game. The point spread represents the
number of points added to the underdog (i.e., the team perceived to be weaker) score so
that the dispersion of bets on each team is roughly the same. The bookmaker, taking a
percentage off each bet, is guaranteed to make money provided that the point spread is a
fair reflection of betting preference. We wish to determine whether or not there is some
additional information beyond what is represented in the point spread. Define the actual
point differential as the favored team’s score minus the underdog score. The actual point
differential will be negative if the weaker team surprises by winning the game. Define
random variables

Y1, . . . Yn ∼
(
µ, σ2

)
where Yi is the actual point differential minus the point spread. The point spread represents
a single number summary for the entire pool of bettors. If bettors are exhibiting rational
behavior, their actions should reflect all relevant information available prior to the game.
Define the null model as Mo : µ = 0. Call this the “wisdom of the crowd” model in that
the information used by the pool of bettors is not exhibiting a systematic bias.

We are in the setting of the simple problem described in Section 1. The data consists
of n = 672 games, resulting in sample mean y = 0.07 and sample standard deviation
s = 13.86. The p-value for testing Ho : µ = 0 computes to be

p = Pr

[
χ2 (1) > 672

(
0.07− 0

13.86

)2
]

= .896.

Null hypothesis significance testing, and by extension the p-value, is criticized for the il-
logical premise of testing the correctness of a theory when no theory is exactly correct. The
discrepancy function approach fills the gaps in logic. Recall that the search is for the model
providing the most accurate prediction / estimation. The null model may be best in this
sense without matching the true model. Using the bootstrap algorithm for estimating the
probability on the null, we get

P̂r
[
d (0, µ) < d

(
Y , µ

)]
=

1

B

B∑
b=1

1

{
(0− 0.07)2 <

(
y(b) − 0.07

)2}
= .892.

The probability estimate is well approximated by the p-value. The discrepancy approach
then allows for a nice interpretation of the p-value. Clearly the p-value is not the probability
that the null model is true. But the p-value is, in some sense, the estimated probability that
the null model is better than the general alternative. In the example, we do not believe
the “wisdom of the crowd model” is precisely true. However, the large p-value can be
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interpreted as providing strong support that this model is the best of those models available.
The result here is consistent with the broader observation that betting markets regularly
account for all relevant information. In fact, the point spread is of interest to even those
fans not wagering on the games, as it provides one of the best measures on the relative
strength of the competing teams.

3.2 Rhabdo data example

Exertional rhabdomyolysis (Rhabdo) occurs when strenuous exercise causes excessive skele-
tal muscle cell breakdown. Creatine kinase (CK) is a biomarker used for diagnosing
Rhabdo. Smoot et al. (2014) provide data for studying the CK levels in Division I foot-
ball players at the University of Iowa. The covariates include position, height, weight, age,
and race. Our example will focus on the association between a pre-camp measurement of
CK level and a measurement of CK level after 1 week of camp. CK levels are log trans-
formed in our model since the distributions on the pre and post camp measurements are
right skewed. The null model assumes no association between these two measurements.
Under this model, a monitoring system for elevated CK levels would not need player spe-
cific baseline measurements. We compute the p-value for testing the corresponding null
hypothesis Ho : βk = 0 as

p = Pr

χ2(1) >

(
β̂k − 0

SEk

)2


= .0090.

We compute a bootstrap estimate of the probability on the null model under a squared error
discrepancy as

P̂r
[
d (0, βk) < d

(
β̂k, βk

)]
=

1

B

B∑
b=1

1

{(
0− β̂k

)2
<
(
β̂
(b)
k − β̂k

)2}
= .0092.

Again we take note of the accuracy of the p-value as an approximation to a discrepancy
function probability.

Under the significance testing philosophy, one does not decide in favor of the alternative
(i.e., reject the null hypothesis) unless the p-value is sufficiently small. There is an appeal
to this sort of thinking. Philosophy of science reflects a preference toward the null model.
For instance, Occam’s Razor and Popper’s view on falsifiability are both founded on the
principle of building from simple to more complex models. Good science calls for the
acceptance of the simplest model which provides an accurate representation of the observed
data. Because of the small p-value in the Rhabdo example, the null model is not considered
to be acceptable. Therefore, a decision in favor of the more general alternative is justified.

Under our discrepancy function framework, one prefers the model most likely to put
forth the more accurate estimate. Because this probability is estimated by the p-value,
the rule is to decide in favor of the alternative when p < 1/2. This is quite a different
viewpoint from the significance testing philosophy. But we can use the information from
p to perform a model evaluation rather than simply a model selection. The computation of
a small probability on the null model offers a separation between a case where we merely
select the more general alternative and a case where the data is providing a clear distinction.
A requirement of a small probability on the null before deciding in favor of the larger model
is in line with the significance testing philosophy of favoring the null model unless a strong
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indication to the contrary is provided by the data. Here, the evidence is substantial in favor
of the model which includes an association between the baseline CK level and the week 1
CK level. Behind the principle requiring p to be sufficiently small is the premise that one
is not willing to recognize the larger model until sufficiently convinced that the regression
coefficient (effect size) can be distinguished from zero using the available data.

4. Concluding Remarks

The results in this paper are limited to the use of a squared error discrepancy and a can-
didate class with only two (nested) models. Such conditions are necessary to form a con-
nection between discrepancy function estimation and the p-value. We must emphasize,
however, that these conditions are not necessary for the use of probability measurements as
an evaluation on a candidate class of models. Neath, Cavanaugh, and Riedle (2012) use the
bootstrap resampling scheme described in this paper for model selection problems based
on the Kullback-Leibler discrepancy with no restrictions on the candidate class.

In this paper, we have shown that the p-value may be interpreted as the probability
on the null model providing a more accurate estimate than a general alternative. The in-
terpretation holds for a selection between two models based on a discrepancy defined by
the squared error of estimation. The p-value, although widely used, suffers from a lack
of interpretability. The result provided in this paper allows one to better understand the
information provided by a p-value summary. Furthermore, the use of probability in a dis-
crepancy function framework allows one to measure the support for a model using a very
familiar criterion. A small p-value, as would be required for accepting the larger model
in a significance testing framework, indicates a clear decision under the model selection
framework.
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