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Abstract

Proteins perform many functions within the cells of organisms, and these functions are closely re-
lated to their subcellular locations: where in a cell they reside. Protein sequences are entering
databases faster than their subcellular locations can be empirically measured, so there is a need for
predictors that can accurately predict protein subcellular locations. One numerical representation
of the amino acid composition of proteins is called pseudo amino acid composition, turning a long
string of amino acids which make up a protein into a length 20 (or greater) vector (whose first
20 values are the normalized occurrence frequencies of the 20 “standard” amino acids). Through
this transformation, using a benchmark dataset of 3002 fungal proteins, initial decision tree meth-
ods of random forests, AdaBoost, SAMME, and bagging were applied to protein data to establish
“baseline” predictive performance results, and then some prediction methods found in the literature,
support vector machines and the covariant discriminant algorithm, were applied as well. We found
that support vector machines improve over all of the decision tree methods, with the covariant dis-
criminant algorithm giving an even further improvement, with potential room to perform better in
and of itself in the near future, as long as more data can be made available for locations with small
numbers of protein representatives in the benchmark dataset. Performance comparisons were also
made with some computational tools which were able to accept the benchmark dataset (or subsets
thereof).

Key Words: Protein subcellular location prediction, Random forests, AdaBoost, SAMME, Support
vector machines, Covariant discriminant algorithm

1. Introduction

Kuo-Chen Chou and Hong-Bin Shen’s 2007 review paper [1], “Recent progress in protein
subcellular location prediction”, provides an excellent introduction to this area of research,
and both of the authors are associated with many papers in the literature. The review article
provides a good basis for much of the introduction section here.

First of all, we must mention biological cells. “...the cell is deemed to be the most basic
structural and functional unit of all living organisms and often is called a ‘building block of
life’ ” [1]. Many different components, probably known as organelles, perform specialized
tasks inside cells. It is mostly these organelles that we will come to term as “subcellular
locations”. We can briefly describe the functions of some organelles, specifically those
which will appear later in the paper as potential locations for proteins to be predicted to.
The plasma membrane surrounds the cell as a lipid layer that controls what goes in and out
of the cell. The cytoplasm is the “jelly” that holds the cell together, and other organelles
are suspended in it. The cytoskeleton is a network of filaments that branches through the
cytoplasm, serving many functions. The endoplasmic reticulum (ER) synthesizes proteins
and lipids and transports proteins. The Golgi apparatus modifies and stores products of
the endoplasmic reticulum. The mitochondria is associated with cellular respiration. The
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nucleus contains chromosomes and is basically the “powerhouse” or brain of the cell. The
peroxisome turns peroxide into water. And the vacuole is a sac that holds materials such as
water [2].

It is the case that many of the functions that sustain cell life are due to the work of
proteins. There may be around one billion proteins in an average cell, and since these
proteins are so important to cell function, it is a must to understand their functions and
residencies. While physical biochemical experiments can be conducted to measure the
subcellular locations of proteins, these are expensive, take time, and are impractical in the
modern age of fast entry of protein data into databases. Thus, many proteins can be found
in databases that either lack subcellular location annotation, or that have annotation with
“uncertain labels”, i.e. the annotation was not through experimental observation. If progress
cannot be made, the gap between newly found proteins and their subcellular locations will
grow. Quoting the paper, “To use these newly found proteins for basic research and drug
discovery in a timely manner, it is highly desired to develop an effective method to bridge
such a gap. During the past 15 years, a variety of predictors have been developed to deal
with the challenge” [1]. The paper then goes on to discuss predictors that the authors
consider distinguishable from others based on some special features.

Now that we understand the general reasons why many proteins lack subcellular lo-
cation annotation and why such annotation is desired, let us shift back to understanding
proteins some more. The building blocks of proteins are amino acids, and there are 20 that
are found in proteins, from alanine through valine. The biological activities of a protein are
mainly determined by the amino acids that constitute it, and these activities are most cell
processes as well as the catalyzation of reactions in cells [3]. For the purposes of this re-
search, the amino acid sequences of proteins will be our raw data, subject to transformation
via Chou’s pseudo amino acid composition (which will be described in a further section),
which then will result in our cleaned-up data which will be subject to actual methods/al-
gorithms and analysis. There also exist other ways of representing proteins as data, which
can be used alone, or in conjunction with something like pseudo amino acid composition.
These include full sequential representation, a protein’s functional domain, GO database
space [1], position-specific scoring matrices [4], and others.

In terms of our actual predictors (models), we will have models that are built with pro-
tein training data (including annotation for known subcellular locations). For then analyzing
the predictive accuracy of the models, testing data (which omits known location annotation)
will be fed through them, and what will result is a list of predicted locations for each pro-
tein in the testing data. These predictions are then compared with the corresponding known
locations, and accuracy can be measured in a variety of ways, including by location. If a
predictor has a high accuracy on the testing data, there is hope that this predictive ability
will translate to other proteins out in the protein population, and that in the future, accu-
rate predictors can actually be used by researchers to augment experimental observation
of protein locations, and give reasonable predictions for proteins that truly lack subcellular
location annotation.

2. Literature Review

There exist many papers in the literature on the topic of predicting protein subcellular lo-
cation/localization. Since three different aspects of problem-solving exist (choosing how to
represent the protein as data, choosing how to transform this raw data, and choosing pre-
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diction algorithms/methods), there exist numerous combinations of approaches for solving
the problem of protein subcellular location prediction. For example, Chou and Shen’s re-
view paper focuses on the following transformation and prediction combinations: amino
acid composition with the covariant discriminant algorithm (CD); pseudo amino acid com-
position with CD, K nearest neighbors (KNN), and optimized evidence theoretic K nearest
neighbors (OET-KNN); FunD with KNN and OET-KNN; and GO with KNN and OET-
KNN, where amino acid composition is a “simpler’”” form of pseudo amino acid composition
which will be seen in a further section, FunD and GO involve proteins being coded with
zeros and ones depending on “hits” against databases, the covariant discriminant algorithm
is a method used in this paper, and the KNN/OET-KNN methods involve, respectively, a
protein being assigned to the location that its K nearest neighbors are a part of, and a more
complicated variant thereof [1]. Chou and Shen were also willing to consider the more dif-
ficult multiclass problem: a problem where proteins should be predicted to more than one
location, of which many papers in the literature do not cover.

In other papers, we find many other different approaches. Some methods end up as
computational tools that can be found on websites/webservers, or that can be downloaded
as executables. Some of these include SignalP, WoLF PSORT, Phobius, TargetP, TMHMM,
FragAnchor, and PS-Scan [5]. A large list can also be found at [43] of PSORT-family tools,
as well as many other tools. In this author’s opinion, however, many of these tools contain
a steep learning curve inherent in their usage, as their internal methods/algorithmic steps
and output can be quite cryptic and difficult for non-experts to read and interpret. Also for
example, TargetP only predicts proteins to one of three possible locations, and this could
be considered “not enough” or “too broad” in terms of possibilities [6]. At the end of this
paper, performance results of some of these tools will be discussed briefly.

Otherwise, we can also find, as examples: the covariant discriminant algorithm pre-
dicting for apoptosis proteins [7]; pseudo amino acid composition in conjunction with the
Lyapunov index, Bessel function, Chebyshev filter and complexity measure factor [8,9];
position-specific scoring matrices, principal component analysis, and support vector ma-
chines [4]; log-odds sequence logos [10] and a host of other method combinations. The
coverage of just these mentioned papers shows the many different possible approaches to
predicting locations of these proteins, and certainly there exist plenty more methods that
still need to be attempted or created.

3. Methodology

The data for this project was obtained from the UniProt Knowledgebase (UniProtKB), in
the “reviewed entries” subset, named “Swiss-Prot”. Proteins from fungal organisms were
the focus of this project. To define a good “benchmark” dataset, several subsetting criteria
which are found in many papers in the literature were followed:

¢ Proteins must be reviewed and have annotation for subcellular location

* Proteins must only have annotation for one location (as the multi-class prediction
problem is more difficult, and not the subject of this project)

* Protein location evidence must be experimental (not inferential)
* Proteins must not be fragments (amino acid sequences must start with methionine)

* Proteins must not have unknown amino acids anywhere in their sequences
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* Proteins must have 100 or more amino acids in their sequences (this qualifies as
“sufficiently long”)

After subsetting by the previous rules, “50/50” BLASTClust was then applied to the pro-
teins (if two or more proteins are at least 50% similar over at least 50% of their lengths,
they are considered as part of a cluster, and only one of them is randomly chosen to be
kept). After all of this subsetting, 3002 fungal proteins remained, their annotated subcellu-
lar locations being the following: cytoplasm for 770 proteins, cytoskeleton for 95 proteins,
endoplasmic reticulum (ER) for 38 proteins, endoplasmic reticulum membrane (ER mem-
brane) for 247 proteins, Golgi apparatus for 24 proteins, Golgi apparatus membrane for 75
proteins, mitochondria for 365 proteins, mitochondria membrane for 187 proteins, nucleus
for 952 proteins, nuclear membrane for 24 proteins, peroxisome for 8 proteins, peroxisome
membrane for 11 proteins, plasma membrane for 10 proteins, secreted for 82 proteins, vac-
uole for 14 proteins, and vacuole membrane for 100 proteins, for a total of 16 different
subcellular locations being represented. For initial methods, the data was divided into a
70% testing set and a 30% training set; however, later methods would take advantage of
cross-validation (either ten-fold or jackknife) and thus use the entire dataset for training
and testing. Then the data was appropriately transformed via Chou’s pseudo amino acid
composition, using a correlation factor of A = 15. This left us with a data matrix of 3002
rows and 35 columns (3002 observations of 35 variables), where 35 comes from 20 standard
amino acids + 15 interaction terms.

3.1 Random Forests

From the abstract of Leo Breiman’s famous 2001 paper “Random Forests” [13]: ‘“Ran-
dom forests are a combination of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all trees in
the forest”. For a slightly-modified version of Breiman’s definition: “A random forest is a
classifier consisting of a collection of tree-structured classifiers [using] independent iden-
tically distributed random vectors [for determining the different variables involved in the
creation of each individual tree] and each tree casts a unit vote for the most popular class
[for each data point]...”. In simple terms, a random forest is a combination of many indi-
vidual tree predictors, where each decision tree is built using a randomly-selected subset of
our variables and a bootstrapped sample of our training data. Each tree then outputs a class
prediction for each data point, and the mode of the predictions for a data point becomes its
final prediction. Breiman’s paper goes into detail and covers many topics such as theoretical
justification, bounds on error rates, comparisons to adaptive boosting, implementation, etc.
A quick suggestion for the success of random forests is that an upper bound for the error
rate of a decision tree ensemble can be shown to depend on the correlations between the
trees in the ensemble, and that a random forest can have low between-tree correlations.

3.2 Adaptive Boosting

As mentioned in [14], boosting can be a successful technique for solving a two-class clas-
sification problem (in the case of a multi-class problem, the problem is split up into several
two-class problems). A well known specific algorithm is “AdaBoost” as given by Freund
and Schapire in 1997. In AdaBoost, the idea is to combine many weak classifiers in an
appropriate linear combination such that the resulting final classifier is very accurate. Start
with all training data points equally-weighted and build a classifier (such as a decision tree).
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For data points that are misclassified, increase their weights, and for points that have been
correctly classified, decrease their weights. Then build a new classifier. This classifier will
hopefully classify the higher-weighted data points better than the previous classifier. Repeat
this process many, many times, then combine all of the classifiers in a linear combination
to obtain final classifications for all training data points. Let training data be defined as
(x1,¢1), --., (X, ¢ ) Where a vector of predictor variables x; € R™ and a response variable
¢ € 1,2,..., K (is qualitative, taking on one of a finite number of values). The AdaBoost
algorithm is then as follows:

* Initialize observation weights as w; = 1/n,i =1,2,....,n

* For m = 1to M (with M being the number of classifiers to build):

Fit a classifier 7(™) (x) to the training data using weights w;

Compute err(™ = 37 w; x I(c; # T (7)) / S0 w;

1 — eryr(m)
Compute o™ = log <W> *

err(m)

Set w; < w; X exp (a(m) x 1 (CZ' #* T(m)(xi))) ,i=1,2,...n

Re-normalize w;
« Output C(z) = argmax Y M _ o™ x 1(T0™)(z) = k)

AdaBoost is considered to be very accurate for two-class problems, however, it’s potential
lack of applicability to multi-class problems has led to the next method to be seen.

3.3 SAMME

SAMME (Stagewise Additive Modeling using a Multi-class Exponential Loss Function) is
the same as AdaBoost, with the only difference being condition * from before. In SAMME,
1 —err(™
AdaBoost. Otherwise, the one change can make SAMME a better alternative to AdaBoost
in multi-class problems, with details given in [14].

o™ = log + log(K — 1). Note that when K = 2, SAMME reduces to

3.4 Bagging

Random forests weren’t Breiman’s first foray into ensembles of decision trees. In 1996,
his paper “Bagging Predictors” [15] introduced the idea of combining multiple predictors
such that each one used a bootstrapped sample of the training data, to improve performance
and the potential instability inherent in some procedures. The word “bagging” is a stand-in
for “bootstrap aggregating”, and the terms are used interchangeably. One of the sections
in his paper deals with the application of bagging to decision trees. We can explain our
implementation with simplicity. We build multiple decision trees, where each tree uses a
bootstrapped sample of our training data. Thus, for an individual classifier, a data point
from the training data may appear in our bootstrapped training data once, more than once,
or not at all. After training our many, many trees, the final prediction for a data point is the
mode of the predictions given for that data point by all of the trees.
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3.5 Support Vector Machines

Some papers in the literature, including very recent papers, suggest the use of support vector
machines (SVMs) as appropriate models for classification [4,16]. Note that the method only
considers two-class classification problems “by default”, but modifications can be made for
a problem like ours that involves 16 classes (locations). By [17], the algorithm can be
defined. Consider testing data points (of one of two possible classes) as labeled pairs of the
form (x;,y;),4 = 1,...,l withx; € R™ and y; € {—1, 1}. Each x; is the vector of variable
values associated with a specific data point, and its associated y; indicates which of the two
classes the data point is a member of. Taken together, each (x;, y;) is one row of our testing
data matrix. The following quadratic optimization problem is then solved:

!
N
iy O )
subject to y; (W (x;) +b) > 1 — &,
& > 0.

What we have are the training vectors x; being mapped to a higher, possibly infinite dimen-
sional space by the function ¢. The idea is that, in a higher dimensional space, data points of
different classes may be linearly separable using a hyperplane, where they weren’t linearly
separable originally. Or if they still aren’t linearly separable, they are at least much more
linearly separable than they originally were. When training points are (closely or fully) lin-
early separable, testing data points can then be predicted based on which side of the sepa-
rating hyperplane they fall on. Back in (I), C' > 0 and the &; indicate that perfect separation
may not be attained as previously mentioned. Also important is K (x;,%;) = ¢(x;)T ¢(x;)
(the kernel function), where we use the radial basis function (RBF)

K (xi,x;) = exp(—llxi —x;]%),7 > 0. )

C and v are the two parameters for the researcher to choose (or, practically, find the best
pair using cross-validation). Note that our problem involves 16 possible classes, not just
two, so to use the SVM method, (16)(16 — 1)/2 = 120 “one vs. one” models must be
created, where each one considers just training data points of two classes and finds the
best separation between just those two. A voting scheme then determines the overall final
prediction for a data point.

3.6 Covariant Discriminant Algorithm

This (somewhat older) method is mentioned in [1,18], and can be described as follows by
[1]. Consider (P1,Ps,...,Py), a group of N proteins, from the M possible subcellular
locations (S, S2, ..., Spr). In our problem, N = 3002 and M = 16. Now consider any
location subset .S,,,. It’s uth protein is represented as

T
Py = [PmaPm.2+Pm.20-Pm.20+A) s 3)

each entry being one of the 20+ A\ values from the protein’s pseudo amino acid composition.
Also define the standard vector of .S, as

I7)m = [ﬁm71pm,2~'~ﬁm,20---ﬁm,20+>\]T7 (4)
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each entry being an average pseudo amino acid composition value for all of the proteins
in S,,. Consider P,, to be the “standard” or “average” protein in subcellular location m.
Now let P be a query protein whose location we wish to predict. We want to consider the
similarity between P and each P,,,. Define our similarity measure as follows:

F(P,P,,) = D3, (P,P,,) +In|Cp|, ®)

where
D%Jah(P7 Pm) = (P - Pm)TC;nl (P - Pm) (6)

is the squared Mahalanobis distance between P and P,,,. C,, is the (20 + \) x (20 + \)
covariance matrix for .S, with entry

N,
1 m
¢y = N1 2o P = Pma) (P = Pma) @
m

u=1

C;Ll is its inverse, |C,,| is its determinant, and V,,, is just the number of proteins in S,,,. It
should be noted that due to properties of the Pseudo Amino Acid Composition, any covari-
ance matrix C,, will be singular and hence not have an inverse. The work-around will be
the following “dimension-reducing” procedure: drop one of the 20 + A variables (normal-
ized amino acid frequencies or interaction terms) so that only 20 + A — 1 are considered.
Then the covariance matrices become theoretically invertible (although it may still be dif-
ficult in practice), and progress can continue. It can also be shown that it doesn’t matter
which variable is dropped: F'(P, P,,) values will end up the same no matter which variable
is dropped [1]. In our case, M = 16 F(P,P,,) values will be computed for query protein
P, and the location associated with the smallest one will become the location prediction for
P.

4. Analysis

In the spirit of [19], all of our decision tree methods were run using either the data split
into a 70% training set and a 30% testing set, or using ten-fold cross-validation on the en-
tire dataset. In the training set of 2101 proteins, locations were as follows: cytoplasm for
526 proteins, cytoskeleton for 66 proteins, endoplasmic reticulum (ER) for 29 proteins, en-
doplasmic reticulum membrane (ER membrane) for 174 proteins, Golgi apparatus for 18
proteins, Golgi apparatus membrane for 50 proteins, mitochondria for 268 proteins, mi-
tochondria membrane for 132 proteins, nucleus for 663 proteins, nuclear membrane for
17 proteins, peroxisome for 6 proteins, peroxisome membrane for 7 proteins, plasma mem-
brane for 5 proteins, secreted for 58 proteins, vacuole for 9 proteins, and vacuole membrane
for 73 proteins, and in the testing set of 901 proteins, locations were as follows: cytoplasm
for 244 proteins, cytoskeleton for 29 proteins, endoplasmic reticulum (ER) for 9 proteins,
endoplasmic reticulum membrane (ER membrane) for 73 proteins, Golgi apparatus for 6
proteins, Golgi apparatus membrane for 25 proteins, mitochondria for 97 proteins, mito-
chondria membrane for 55 proteins, nucleus for 289 proteins, nuclear membrane for 7 pro-
teins, peroxisome for 2 proteins, peroxisome membrane for 4 proteins, plasma membrane
for 5 proteins, secreted for 24 proteins, vacuole for 5 proteins, and vacuole membrane for
27 proteins. All analysis was done using R statistical software, except for the attempted
calculation of some matrix inverses, which was done in MATLAB (to no avail).
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4.1 Random Forests

R’s “randomForest” package contains implementations of Leo Breiman’s original random
forest algorithm. We built a forest of size 500 trees on our 70% training data and then used
the model to predict subcellular locations for the 30% testing data. Recall that a random
selection of variables is used to build each tree.

Table 1: Statistics by Class

Sn Sp PPV | NPV | Pr DR DP BA MCC | NObs
Cytoplasm 045 | 076 | 041 | 0.79 | 0.27 | 0.12 | 0.3 0.6 0.2 244
Cytoskeleton 0 1 NA 097 | 003 |0 0 0.5 0 29
ER 0 1 NA 099 | 001 | O 0 0.5 0 9
ER (membrane) 052 | 095 | 047 | 096 | 0.08 | 0.04 | 0.09 | 0.73 | 0.45 73
Golgi apparatus 0 1 NA 0.99 | 0.01 | O 0 0.5 0 6
Golgi apparatus (membrane) | 0.04 | 1 1 097 | 003 |0 0 0.52 | 0.2 25
Mitochondria 032 | 097 | 0.53 | 092 | 0.11 | 0.03 | 0.07 | 0.64 | 0.36 97
Mitochondria (membrane) 0.04 | 1 1 094 | 0.06 | O 0 0.52 | 0.18 55
Nucleus 0.78 | 0.61 | 048 | 0.86 | 0.32 | 0.25 | 0.52 | 0.69 | 0.36 289
Nucleus (membrane) 0 1 NA 0.99 001 | O 0 0.5 0 7
Peroxisome 0 1 NA 1 0 0 0 0.5 0 2
Peroxisome (membrane) 0 1 NA 1 0 0 0 0.5 0 4
Plasma membrane 0 1 NA 099 | 001 | O 0 0.5 0 5
Secreted 0.62 | 099 | 0.65 | 0.99 | 0.03 | 0.02 | 0.03 | 0.81 | 0.63 24
Vacuole 0 1 NA 099 | 001 | O 0 0.5 0 5
Vacuole (membrane) 0 1 0 0.97 003 | 0 0 0.5 -0.01 27
Key:

Sn: Sensitivity, Sp: Specificity, PPV: Positive Predicted Value, NPV: Negative Predicted
Value, Pr: Prevalence, DR: Detection Rate, DP: Detection Prevalence, BA: Balanced
Accuracy, MCC: Matthews Correlation Coefficient, NObs: Number of Proteins

Table (1| shows statistics by class for the predictive ability of the random forest model on
the training data. Here and elsewhere, covariance matrices will be omitted in the interest
of avoiding difficult-to-read/-understand tables. It was the case that 47% of proteins in
the training data were correctly predicted to their subcellular locations. Unfortunately for
many locations, by sensitivities of 0 and specificities of 1, it is the case that no proteins are
predicted to those locations, leaving less than half of the locations to absorb all of the predic-
tions. By this, MCC values are O for those locations, which indicates a performance on par
with that of random guessing. Stand-out locations for decent performance are cytoplasm,
ER (membrane), mitochondria, nucleus, and secreted, in terms of balanced accuracy and
MCC. Our best location is secreted: 66% sensitivity (about two-thirds correctly predicted),
99% specificity (virtually no incorrect predictions of secreted), balanced accuracy of 81%,
and MCC of .63. The model performs alright but is too general to predict for locations that
(for the most part) have few representatives in the testing data and overall. However, this
was our best performance of all of the decision tree ensemble methods, and table[I]is a good
representative for the trends that were observed in “statistics by class” tables for all of the
other decision tree ensemble methods, thus those tables can be omitted to save space.

4.2 Adaptive Boosting

R’s “adabag” package contains implementations of Freund and Schapire’s AdaBoost, Zhu’s
SAMME, and Breiman’s bagging. For AdaBoost to stay consistent with random forest, we
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build an ensemble of 500 trees using a bootstrapped sample of our training data for each
tree. Recall that data point weights will not be uniform after the first tree is created. Here,
43% of proteins were correctly predicted.

4.3 Ten-fold cross-validation

For an alternative validation method, we use ten-fold cross-validation on the whole dataset
instead of using the training and testing set. This allows each protein to be training data for
90% of the time, while still getting a prediction. Base, simple intuition might suggest that
we should expect better results with the cross-validation. Here, 42% of proteins were cor-
rectly predicted, a surprise since cross-validation is often employed to increase predictive
accuracy.

44 SAMME

Recall that SAMME is supposed to be a better alternative to (modified to handle more
than two-class cases) AdaBoost. Implementation is the same: 70/30 training/testing split,
500 trees built on bootstrapped samples of the training data. Here, 42% of proteins were
correctly predicted.

4.5 Support Vector Machines

For this method, jackknife validation is used to assess model performance. In jackknife
validation, build a predictive model using all but one of your data points, and then use this
model to predict the class for the one left-out data point. Repeat this process for each data
point being used as the left-out data point. In our case, 3002 models are created as our
benchmark dataset has 3002 proteins. Jackknife validation allows every protein to have its
location predicted where the greatest possible amount of information builds the model that
is doing the predicting.

Table 2: Statistics by Class

Sn Sp PPV | NPV | Pr DR | DP BA | MCC | NObs

Cytoplasm 0.53 | 0.74 | 041 | 0.82 | 0.26 | 0.14 | 0.33 | 0.64 | 0.25 770
Cytoskeleton 0.01 | 1 033 1 097 | 003 |0 0 0.5 0.05 95
ER 0 1 NA 0.99 | 0.01 | O 0 0.5 0 38
ER (membrane) 0.52 | 096 | 0.56 | 0.96 | 0.08 | 0.04 | 0.08 | 0.74 | 0.5 247
Golgi apparatus 0 1 NA 0.99 | 0.01 | O 0 0.5 0 24
Golgi apparatus (membrane) | 0.05 | 1 044 | 098 | 002 | O 0 0.53 | 0.15 75
Mitochondria 045 | 095 | 0.56 | 093 | 0.12 | 0.05 | 0.1 0.7 0.44 365
Mitochondria (membrane) 0.24 | 098 | 048 | 0.95 | 0.06 | 0.01 | 0.03 | 0.61 | 0.31 187
Nucleus 0.72 | 0.72 | 0.54 | 0.85 | 0.32 | 0.23 | 042 | 0.72 | 0.41 952
Nucleus (membrane) 0 1 NA 099 | 001 | O 0 0.5 0 24
Peroxisome 0 1 NA 1 0 0 0 0.5 0 8
Peroxisome (membrane) 036 | 1 1 1 0 0 0 0.68 | 0.6 11
Plasma membrane 0 1 NA 1 0 0 0 0.5 0 10
Secreted 0.8 0.99 | 0.75 | 099 | 0.03 | 0.02 | 0.03 | 0.9 0.77 82
Vacuole 0 1 NA 1 0 0 0 0.5 0 14
Vacuole (membrane) 0.17 | 099 | 047 | 097 | 0.03 | 0.01 | 0.01 | 0.58 | 0.27 100
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We can already see a noticeable increase in improvement over the decision tree methods,
with the majority of locations seeing some kind of representation, and at least nucleus and
secreted proteins performing “well”.

4.6 Covariant Discriminant Algorithm

For this method we also use jackknife validation, as it lends itself to the method very nicely.
For each protein, “simply” compare it to the average protein of each location using the
previously-mentioned similarity measure (5), which involves a non-Euclidean measure of
distance. The location associated with the smallest similarity measure value for a protein
becomes that protein’s location prediction.

Table 3: Statistics by Class

Sn Sp PPV | NPV | Pr DR | DP BA MCC | NObs

Cytoplasm 047 | 09 0.61 | 0.83 | 0.26 | 0.12 | 0.2 0.68 | 0.4 770
Cytoskeleton 092 | 094 | 034 | 1 0.03 | 0.03 | 0.09 | 0.93 | 0.54 95
ER 1 1 1 1 0.01 | 0.01 | 0.01 | 1 1 38
ER (membrane) 0.7 096 | 0.62 | 097 | 0.08 | 0.06 | 0.09 | 0.83 | 0.63 247
Golgi apparatus 0 1 NA 0.99 | 0.01 | O 0 0.5 0 24
Golgi apparatus (membrane) | 0.92 | 0.98 | 0.51 | 1 0.02 | 0.02 | 0.04 | 0.95 | 0.68 75
Mitochondria 0.65 | 094 | 0.61 | 095 | 0.12 | 0.08 | 0.13 | 0.8 0.58 365
Mitochondria (membrane) 078 | 094 | 047 | 098 | 0.06 | 0.05 | 0.1 0.86 | 0.57 187
Nucleus 0.57 | 091 | 0.74 | 0.82 | 0.32 | 0.18 | 0.24 | 0.74 | 0.52 952
Nucleus (membrane) 0 1 NA 099 | 001 | O 0 0.5 0 24
Peroxisome 0 1 NA 1 0 0 0 0.5 0 8
Peroxisome (membrane) 0 1 NA 1 0 0 0 0.5 0 11
Plasma membrane 0 1 NA 1 0 0 0 0.5 0 10
Secreted 0.99 | 1 093 | 1 0.03 | 0.03 | 0.03 | 0.99 | 0.96 82
Vacuole 0 1 NA 1 0 0 0 0.5 0 14
Vacuole (membrane) 093 | 097 | 049 | 1 0.03 | 0.03 | 0.06 | 0.95 | 0.66 100

Notice our new best classification accuracy of 61%. Also of note are ER proteins being
perfectly predicted, five locations having balanced accuracies above 90%, and all locations
being more than trivially represented, with the exception of six locations. These locations
have fewer observations than the number of variables being considered (35 — 1 = 34), thus
their respective C,,, matrices aren’t invertible. The simple addition of new observations to
give those six locations more than 35 observations would immediately remove this issue,
and based on the fact that locations here with smaller numbers of locations (as long as they
are greater than 35) perform well, we would expect great performance on these six locations
as well, leading to an even larger overall classification accuracy, certainly greater than 61%.

5. Comparisons with Computational Tools and Conclusions

Sufficiently many methods have been attempted to facilitate discussion relating to the pre-
dictive strength of methods on proteins of different locations. For our decision tree methods,
predictive performance is simply not competitive with the later methods, in terms of overall
classification accuracy, and ability on a wide variety of locations. The methods only even
“guaranteed” predictions for five locations (cytoplasm, ER membrane, mitochondria, nu-
cleus, and secreted) at all, mainly in the top locations in terms of number of observations
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found in either the testing data, or entire dataset in the cross-validation cases. In any partic-
ular case, the method was really only notably accurate on nucleus proteins as well, which
helped to raise the classification accuracy, but didn’t allow the model to generalize to other
locations.

Our later methods (support vector machines and the covariant discriminant algorithm)
fared better, particularly the latter, which itself would certainly perform better with just
the addition of some more data points in the appropriate locations. Notice how support
vector machines performs particularly well on locations with many observations (nucleus,
cytoplasm, etc.), where the covariant discriminant algorithm performs particularly well on
locations with fewer (but greater than 35) observations (ER, secreted, etc.).

Some comparisons of these results to those given by some computational tools were
performed to the extent that comparisons can reasonably be made. Tools mainly from
[43] were considered, and were as follows: SubLoc, ESLPred, HSLPred, pSLIP, Protein
Prowler, TargetP, WoLF PSORT, Proteome Analyst, SLP-Local, and PredSL. The following
points summarize these findings:

* Many tools only predict to three to five common locations, where these methods can
predict to any locations that are found in the benchmark dataset.

* Some tools’ websites were “down”.
* WoLF PSORT could only handle about 10% of the benchmark dataset.

* SLP-Local gave “quasi-accurate” predictions, but one location was listed as “Cyto-
plasm or Nucleus”, which is unspecific as a prediction and superficially ensures many
“technically correct” predictions.

* PredSL predicted most proteins as “Other”, a very vague prediction.

The main point is that apples-to-apples comparisons were very hard to make, as all of
the tested tools clearly had many uses, but not necessarily in simple, accurate location
predictions of many different proteins. It seems reasonable to suggest that methods like
these here in this paper should at least be used in tandem with the other important functions
that the computational tools provide, as the ability to predict to more than just a preset
number of locations is very important: let the data provide as much flexibility in predictions
as possible.
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