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Abstract 
Past research has been successful in identifying a robust statistical error-based controller 
for synchronizing chaotic systems with and without inherent time delays. However, for 
an arbitrary time delay, neither local nor global stability is a certainty. Care must be taken 
to identify such stability pockets prior to implementing the statistical error-based 
controller design (SEBCD) strategy.  These hybrid systems arise in many physical and 
biological settings and impose additional constraints on controller design. Our new 
approach involves generating initial (zero-state) error distributions based on differences 
between the response and drive signals. The differences are used to estimate stability 
limits and controller gains only within these stable pockets. In the present investigation, 
autoregressive integrated moving average (ARIMA) models of these synchronization 
errors are used to develop graphical stability maps that highlight the connections among 
controller gains and the spectral nature of the resulting ARIMA coefficients.  
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1. Overview 

 
In previous investigations the robustness of a statistical controller originally devised for 
synchronizing chaotic oscillators has been studied.  Later research has extended this work 
to hybrid systems that involved coupling functional ordinary differential equations to 
such chaotic system. Such time delay hybrid systems paired a functional system with a 
chaotic oscillator. These systems arise in many practical settings where there is a 
dependence on past state information. Two classical examples of delay systems are the 
Mackey-Glass (1977) and Marcus and Westervelt (1989) equations. Hence, for an 
arbitrary time delay local or global stability is not a certainty. Care must be taken to 
identify those stable zones prior to implementing the statistical error-based controller 
design (SEBCD) procedure. Studies of such complex systems highlighted the efficacy of  
SEBCD for designing a robust controller using moment estimates. For the Olgac and 
Sipahi system examined in Morgan & Morgan (2014) those stability pockets were found 
to lie in the intervals 0<τ<0.1624 and 0.1859<τ<0.2222. Any cases with delays outside 
these intervals produce unstable drive dynamics. Nevertheless, synchronization can be 
achieved despite the fact that the response system tracks the unstable drive to oblivion. 
Since the same response model is employed here as in Morgan & Morgan (2013 & 2014), 
the prior statistical error-based controller design applies in the present setting. However, 
the present paper addresses the role of the resulting gain-error characteristic equation and 
its impact on error dynamics associated with such coupling designs.   
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1.1 Approach 
The initial step in the analysis involves constructing interval approximations for each 
nonlinear term in our chaotic model from descriptive statistics of the unsynchronized 
response system. Thus, armed with these interval estimates, local stability was assessed 
and used to determine the global stability requirement for a given drive-response 
combination. Under this paradigm, the stability of the drive system is not necessary for 
establishing overall system synchronization, only the response is needed. The drive only 
dictates the path the response system will take. Figure 1a shows the uncoupled dynamic 
response of a hybrid system (Olgac and Sipahi) prior to synchronization while Figure 1b 
highlights the influence of the drive on the synchronized response. Note a high level of 
compression occurs with synchronization and the conversion speed is accelerated. The 
gain-error characteristic equation examined in this study characterizes the level of fidelity 
between the drive and response system and is the main focus of the present inquiry. 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The basic design philosophy has been outlined in detail in prior papers, Morgan & 
Morgan (2012, 2013 & 2014).  Those approaches removed local nonlinearities via 
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                                                        Figure 1a)   Dynamic Responses:  Uncoupled 

                                               Figure 1 b)   Dynamic Responses:  Coupled 
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construction of fuzzy intervals for each nonlinear term appearing in the response system 
equations.  A system of ordinary differential equations were then converted as shown 
below for the response system into a set of linear interval equations for estimating 
controller settings from a gain-error characteristic polynomial.  Unlike our prior effort in 
Morgan and Morgan (2012) that followed a design procedure suggested by Bhiwani & 
Patre (2011) for a classical proportional-integral-derivative (PID) controller, the current 
approach eliminates a cumbersome optimization step encountered with the former. The 
constraints imposed in the present design are that all error-based moment gains must be 
positive and all generated errors are bounded by the initial state errors between the 
number of controller parameters matches the number of state equations was considered.    
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 The gain-error characteristic equation for the Lorenz system takes the following form                           

                                 p( ε)    =     (k1- Cmax) +   k2  ε  +    k3 ε2 

 

 

 
The Cmax term appearing in the above equation is the maximum value found from 
bracketed terms of the interval description of the original Lorenz system.  Two distinct 
solutions are possible based upon the sign of the discriminant associated with the gain-
error characteristic polynomial.  Interestingly, the sign of the discriminant also dictates 
the type of image produced.  A negative value of this quantity generates overlapped 
images while a positive one produces displaced images.  It was also observed that the k1  
gain controlled the error level between synchronized states, as reported in Morgan and 
Morgan (2012), and that the regression model developed in that study was applicable for 
all drive systems linked to this particular Lorenz controller. That analysis revealed the 
presence of two distinct zones (unstable and stable regions) whose size was bounded by 
the length of the maximum fuzzy interval while the minimum fuzzy interval enclosed the 
un-entangled (critical) point.   
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2. Discussion of Results 

 
Beyond just impacting image patterns, the discriminant (D) was also found to alter the 
error structure. For discriminant values greater than zero, a diverse collection of non-
predictable error patterns arose that were not readily linked in any discernible manner to 
the controller parameters as highlighted in Figure 2a.  However under conditions where 
the discriminant is less than zero, an emerging pattern evolves. The error structure 
became sinusoidal and locks into a critical frequency (see Figure 2b).  As depicted in 
Figure 3, increasing the proportional controller gain, k1, reduced the error signal 
amplitude but did not alter the critical locking frequency. 
 

 
                                                 Figure 2a: Dual Image Error Patterns  

                                        
 
 

 
Figure 2b: Single Image Error Pattern  
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Figure 3: Error-gain Linkage  

 
 
The effect of the discriminant, D, on the proportional controller gain, k1, is summarized 
in Figure 3 for a fixed k3 and parametric values of k2. There is a bifurcation point between 
dual and single image behavior at D=0. With increasing k2 , the critical k1 transition point 
shifts to higher values. This condition also delineates error structures as well.  In prior 
papers the asymptotic hyperbolic responses of both the mean error and error standard 
deviation functions, as summarize in Figure 4, are discussed.   
 

 
Figure 4: Asymptotic Behavior 
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Two models were developed for predicting the error pattern in the single image region.  
The first model devised was an Autoregressive Integrated Moving Average (ARIMA) 
where the seasonal structure was removed via a simple sinusoidal expression employing 
the critical locking frequency.  The full/complete model was the sum of the empirical 
expression contribution and the ARIMA description of the non-seasonal noise structure.  
The second model retains the simple empirical expression but adds normal random noise 
with a mean and standard deviation matching the errors arising from a fit of the seasonal 
empirical model. These models are summarized in Table 1.  The non-seasonal ARIMA 
model (2-0-2) parameters described in detail in Table 2 consist of two autoregressive and 
two moving average terms both of order one and two.   No seasonal differencing was 
required. The Minitab (version 16) software package was used to estimate the model 
parameters.   
 
 
 

Table 1: Non-Seasonal ARIMA Model 
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Table 2: Non-Seasonal ARIMA Model Structures 

 
 
 
                                                                       Seasonal                           Non-Seasonal 
 

                                                   
  

   
                           

 
 
                                                                       Seasonal                           Random 
 

                                                   
  

   
                           

 

 
The non-seasonal ARIMA model (2-0-2) parameters described in detail in Table 2 consist 
of two autoregressive and two moving average terms both of order one and two.   No 
seasonal differencing was required. The Minitab (version 16) software package was used 
to estimate the model parameters.  A histogram of the ARIMA residuals are shown in 
Figure 5a and the normality is highlighted in Figure 5b.  The large residuals observed in 
the tails of the normal probability plot are associated with early errors arising during the 
initial controller convergence phase. In addition the associated autocorrelation (ACF) and 
partial autocorrelation (PACF) plots (Figures 6a & 6b, respectively) indicate a reasonable 
data fit.  Future studies will focus on improving the ARIMA modeling.  Simulation 
results employing the respective devised models are shown in Figure 7 and in each case 
they are a good representation of the actual controller synchronization data.  
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Figure 5a: ARIMA Residuals Plot  

 
 
 

 
                                                     Figure 5b: ARIMA Residuals Normal Probability Plot  
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                                                    Figure 6a: ARIMA Residuals Autocorrelation Plot 

 
 
 
 

 
Figure 6b: ARIMA Residuals Partial Autocorrelation Plot 
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Figure 7: Predictive ARIMA Model Simulations 

 

Conclusions 

 

 
The error characteristic equation has a dominant effect on error structure. This unique 
equation also dictates controller requirements for the controller gains.  It shows that two 
uniquely solutions are possible depending upon the sign of the discriminant associated 
with this equation. For discriminant values less than zero, an asymptotic error profile 
evolves with a fixed frequency. However, if the discriminant value is greater than zero, 
no discernible pattern is detected.  Under conditions of fixed controller parameters for k3  
and k2,  the error-gain linkage relationship is a linear one.   An ARIMA 2-0-2 provides a 
reasonable description of the asymptotic error structure. 
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