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Abstract
Networks that can be modeled graphically may also be summarized through nodal measures, e.g.

degree. Nodal measures themselves may be summarized across the network; however, such sum-
maries are often focused on single statistics. Although the mean is the most commonly used statis-
tical summary of a nodal measure, the probability distribution of the nodal measure may be better
described using sets of summary measures. The collection of these summary measures may then
be used to more fully characterize the network. The purpose of this study was to examine the fea-
sibility of characterizing a network using summary measures of the probability distribution for the
nodal network measures. In a large simulation, nodal measures of the degree, betweenness, and
closeness for Erdös-Rényi and Watts-Strogatz generated graphs of varying parameter and size were
computed. Five summary measures based upon moments and four summary measures based upon
L-moments were examined. Through clustering and predictive modeling, the results of the analysis
demonstrate that uncorrelated moments and L-moments are dependent on the network type and that
the mean alone is not sufficient to characterize the network.
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1. Introduction

Many fields of research produce relational data that can be represented in the form of
graphs. Areas of research that falls into this category are numerous to include biology,
chemistry, engineering, medicine, and sociology, just to name a few. An extensive list of
research areas that have seen applications of graph matching were provided by Conte et al.
(2004) and Livi and Rizzi (2013).

Most of the graph measures available in the literature, such as degree centrality, be-
tweenness centrality, and closeness centrality, fall short of a full descriptive characteriza-
tion of the probability distribution of the nodal components even though the graph measures
themselves are built from those individual components. Based on a recently conducted lit-
erature review, there has not been extensive work examining the statistical characteristics
of the distributions resulting from the collection of nodal measures besides merely degree
distributions. The need for the probability distribution should be highly considered be-
cause, theoretically, it provides a more complete description of the graph measures, and
if the graphs can be defined by the probability distribution of its measures, then graph
comparisons and matching can be performed by comparing the probability distributions
themselves. Differences in distributions might provide a more nuanced explanation about
the differences between the networks, or how a network may be changing.

Although some researchers have looked at the probabilistic aspect of a graph by mea-
suring its entropy (Moonesinghe et al. 2007; Mowshowitz and Dehmer 2012), these mea-
sures do not capture the uniqueness of a given graph since entropy only measures how
diverse and random a particular probability distribution is, thus any comparison of two
graphs using entropy measures only compares the randomness of the graphs’ structure and
does not necessarily imply that they are identical since the measure itself is not unique.
One way of summarizing a probability distribution is through its set of moments which
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describe its central location, scale, symmetry, peakedness, as well as other higher order
characteristics.

As will be discussed later, the uniqueness of a probability distribution through its mo-
ments and L-moments can be guaranteed under certain conditions. Therefore it is plausible
that these characteristics, if applied to network analysis, may provide an approach to detect
graph similarity or dissimilarity. However, with the exception of testing the difference on
the mean and variance and testing for normality, no formal test of hypothesis have been de-
veloped for the other upper moments or L-moments (Pearson et al. 1977; Jarque and Bera
1980; D’Agostino and Belanger 1990; Seier 2002; Harri and Coble 2011; Galvao et al.
2013).

In this paper, the feasibility of using upper moments and L-moments of network mea-
sure distributions will be explored. In order to examine this feasibility, a data simulation
was performed in order to obtain a sample of moments and L-moments from distributions
of network measures for different networks. After a brief description of this simulation,
analysis on the feasibility of the use of the moments and L-moments is performed on the
collected data. The results from this analysis will help shape the objectives for research
on how to structure statistical tests to determine network difference, where a more focused
data simulation and a larger array of collected measures from the networks of interest may
be required.

2. Background

2.1 Graph Model

The first commonly used random graph generating algorithm was proposed by Erdös and
Rényi (1959) in which the algorithm constructs a graph by connecting any pair of nodes by
an edge with probability p, and in which each edge is independent from every other edge.
This results in a graph of n nodes and m edges having an equal probability of pm(1 −
p)(

n
2)−m from all possible undirected simple graphs of n nodes andm edges. One downside

to the Erdös-Rényi algorithm is that it is not scale-free as shown by Barabási and Albert
(1999), a property that many real world networks such as the World Wide Web possess
(Albert et al. 1999). A scale-free network is defined as one that has a power law degree
distribution between nodes. However, given its history, the Erdös-Rényi algorithm is widely
used in the literature as a baseline when making comparisons for network metrics and
classifications. Since each node has an equal probability of being connected to other nodes
and since the nodes are independent, the Erdös-Rényi random graph has nodal degrees that
follow the Binomial distribution (Erdös and Rényi 1959; Wasserman and Faust 1994). In
this formation, the probability that the degree k is equal to c for a given node is

P (k = c) =

(
N − 1

c

)
pc(1− p)N−1−c (1)

and that the distribution converges to the Poisson distribution when N is very large

P (k) ∼ e−KK
k

k!
(2)

where K is the mean degree (Albert and Barabási 2002). The random graph also has a
group clustering coefficient of C = K

N .
A random graph generator model that produces small-world properties was introduced

by Watts and Strogatz (1998). Small-world networks are networks where the shortest path,
L, between most pair of nodes in the networks are fairly small and grows proportionately
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to the logarithm of the network size, N , such that L ∝ logN . The algorithm for this model
functions by first starting with a ring lattice of size N . This is then followed by rewiring
each edge in the lattice with probability p such that duplicates and self-loops are excluded.
Many real world networks such as the neural network of the worm Caenorhabditis elegans,
the power grid of the western United States, and the collaboration network of film actors
are shown to possess the small-world characteristic of having small average shortest path
(Watts and Strogatz 1998). However, the Watts-Strogatz algorithm does not produce a
graph that has a scale-free power-law distribution, hence, neither the Barabási-Albert nor
the Watts-Strogatz algorithm is fully capable of modeling all real world networks. The
degree distribution for the Watts-Strogatz graph was shown by Barrat and Weigt (2000) to
be

P (k) =

min(k−K
2
,K
2
)∑

n=0

(K
2

n

)
(1− p)np

K
2
−n (pK2 )k−

K
2
−n

(k − K
2 − n)!

e−
pK
2 (3)

where k is the degree and K is the mean degree such that k ≥ K
2 . The group clustering

coefficient for the ring lattice is C(0) = 3(K−2)
4(K−1) while the group clustering coefficient for

a Watts-Strogatz graph can be approximated with a function of p such that

C ′(p) ' C(0)(1− p)3

' 3(K − 2)

4(K − 1)
(1− p)3

(4)

where p is the probability of rewire and K is the mean degree of the graph (Barrat and
Weigt 2000).

2.2 Graph Measures

Nodal degree, d(ni), is the number of direct links possessed by a node to other nodes and
has a range of [0, N − 1] for any graph and [1, N − 1] for connected graphs. Betweenness
measures the interactions between two nodes that might depend on other nodes that lie on
the path between the two (nodes in the middle). Node betweenness index is the sum of
the proportion of the shortest path that goes through node i between all node pairs j < k,
where j 6= i, k 6= i. Node betweenness can be calculated as

CB (ni) =
∑
j<k

gjk (ni)

gjk
(5)

where gjk (ni) is the number of shortest paths that contains node i and gjk is the total
number of shortest paths between j and k. Since it is a measure of proportion, it has the
range of [0, 1]. Closeness is a measure that is related to centrality measures, and it is defined
as the inverse of the sum of pairwise distances between the nodes given by

CC (ni) =
1(∑N

j=1 d (ni, nj)
) (6)

and contains the range of (0, 1
N−1 ].

2.3 Moments and L-Moments

In probability and statistics, a moment is a quantitative measure that describes a character-
istic of a probability distribution. An extensive set of moments may give a more descriptive
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summary of a random variable over the traditional approach of reporting the mean and
variance since the latter only describes the center mass and scale of the distribution, re-
spectively. It should be noted that while the existence of a moment generating function
(MGF) for a random variable implies that there exists an infinite set of moments, the con-
verse is not true. The characterization of a set of moments is not enough to uniquely define
a random variable because there may exist another random variable having the same set
of moments. However, uniqueness of moments is guaranteed if the random variables have
bounded support or if the MGF exists in the neighborhood of zero (Casella and Berger
2002). The kth moment of a continuous probability density function, f(x), is defined as

E
[
Xk
]
=

∫ ∞
−∞

xkf(x) dx (7)

and for a discrete probability mass function, P (X = x), as

E
[
Xk
]
=
∑
x∈X

xkP (X = x). (8)

The kth central moment is defined as

E
[
(X − E [X])k

]
. (9)

It is often useful to scale the upper moments (3rd, 4th, etc.) by a function of the variance
so that comparison can be made between different distributions regardless of the variance.
A kth standardized moment is defined as

γk =
E
[
(X − E [X])k

]
σk

. (10)

The 3rd and 4th standardized moments measure the symmetry and peakedness of the prob-
ability density function, respectively. However, not all moments exist for every distribution
and no moments exist for some distributions, notably the Cauchy distribution. One set
of metrics that solves the issue of nonexistent moments for some distributions is the L-
moments. L-moments have a theoretical advantage of being able to characterize a wider
range of distributions since the set of L-moments for a random variable exists if and only
if the random variable has a finite mean (Hosking 1990). However, this does not solve
the problem for distributions where the mean does not exist, instead, other techniques can
be used for those distributions such as the trimmed L-moments as defined by Elamir and
Seheult (2003).

First proposed by Hosking (1990), L-moments are linear combinations of order statis-
tics that describe the location and shape of the probability distribution analogous to classical
moments. The rth L-moment is defined as

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E [Xr−k:r] (11)

where Xj:n denotes the jth order statistic (jth smallest sample value) in an independent
sample of size n. Note that λ1 = E[X1:1] = E[X] = µ. The rth L-moment ratio is defined
as

τr =
λr
λ2

; r = 3, 4, ... (12)

and is akin to the standardized conventional moment as defined in equation (10) but has
a bound of (−1, 1). The 1st and 2nd L-moments are referred to as L-mean and L-scale,
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respectively, whereas the 3rd and 4th L-moment ratios are referred to as L-skewness and L-
kurtosis, respectively. Even though there has not been a term coined for the fifth L-moment
ratio, it can be interpreted as a measure of tendency to bimodality and will be referred to as
L-hyperkurtosis for the purpose of this research.

Hosking (1990) states that a set of L-moments is unique to a particular distribution as
long as the mean of the distribution exists and that the first two L-moments, λ1 and λ2, as
well as the third and fourth L-moment ratios, τ3 and τ4, are enough to summarize the main
features of a probability distribution. Additionally, the set of L-moments is considered more
robust to outliers than conventional moments (Hosking 1990). For example, a distribution
with one very outlying point will cause the variance to increase quite notably but does not
affect the L-scale to the same extent.

Direct estimators of the first four L-moments were derived by Wang (1996) that cir-
cumvent the need for using Probability Weighted Moments (PWMs). These estimators are
defined, respectively, as

λ̂1 =
(
n
1

)−1∑n
i=1 x(i) (13)

λ̂2 =
1
2

(
n
2

)−1∑n
i=1

((
i−1
1

)
−
(
n−i
1

))
x(i) (14)

λ̂3 =
1
3

(
n
3

)−1∑n
i=1

((
i−1
2

)
− 2
(
i−1
1

)(
n−i
1

)
+
(
n−i
2

))
x(i) (15)

λ̂2 =
1
4

(
n
4

)−1∑n
i=1

((
i−1
3

)
− 3
(
i−1
2

)(
n−i
1

)
+ 3
(
i−1
1

)(
n−i
2

)
−
(
n−i
2

))
x(i). (16)

Additionally, the second L-moment is strictly positive, and the fourth L-moment ratio, L-
kurtosis, is shown to have a tighter bound of 1

4(τ
2
3 − 1) ≤ τ4 < 1 (Hosking 1990).

3. Analyses

3.1 Network Simulations

A dataset comprised of moments and L-moments computed from distributions of network
measures of simulated Erdös-Rényi and Watts-Strogatz graphs were generated. The dataset
was created to study the feasibility of using moments and L-moments from a distribution
of network measures. The simulation was conducted in R using the igraph package (Csardi
and Nepusz 2006) for network generation and computing the network measures and the
lmom package (Hosking 2014) for computing the L-moments. The Erdös-Rényi algorithm
was selected as a baseline model whereas the Watts-Strogatz algorithm was selected since
it closely models many real world networks (Watts and Strogatz 1998).

The Erdös-Rényi algorithm takes in as input the number of nodes, n, and the proba-
bility, p, of connecting any two nodes. The Watts-Strogatz algorithm, on the other hand,
takes in the number of nodes, n, the dimension of the lattice, d, the number of connected
nearest-neighbors, m, and the probability, p, that an additional edge is added to a partic-
ular node (i.e. edge rewiring probability). The parameter selection for the simulation is
listed in Table 1 where 1000 independent networks were generated for each combination
of parameters.

For each simulated network, nodal measures as well as the moments and L-moments
from the distribution of the nodal measures as listed in Table 2 were computed. This
produced, for each parameter combination, a sample of 1000 moments and L-moments for
each network measures. Statistical analyses were then conducted using JMPr 10.0.1 on
the data as will be shown in the rest of this section.
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Table 1: Dataset parameters for feasibility study

Erdös-Rényi Watts-Strogatz

Parameters
p = {0.01, 0.03375, 0.0575,
0.08125, 0.105, 0.12875,
0.1525, 0.17625, 0.2}

p = {0.01, 0.03375, 0.0575,
0.08125, 0.105, 0.12875,
0.1525, 0.17625, 0.2}

p is the probability of a rewire
p is the probability of a new

edge
d = 1; the dimension of the

starting lattice
m = 4; the number of closest

neighbors for the starting lattice
Size n = 2k; k = 9, 10, 11 n = 2k; k = 9, 10, 11, 12

Table 2: Computed measures for pilot dataset

Network Measures Moments

Degree (Deg), Betweenness (Btw),
Closeness (Cls)

µ, σ2, γ3, γ4, γ5, λ2, τ3, τ4, τ5 (mean,
var, skew, kurto, hkurto, lscale, lskew,

lkurto, lhkurto)

3.2 Empirical Analysis

The purpose of the analyses is to scope the capability of characterizing networks using
moments and L-moments from the distribution of network measures. The analyses are
not all inclusive in answering the main objective but are merely a collection of various
preliminary studies that highlights the feasibility of the research hypothesis.

An initial look at the means of Degree, Betweenness, and Closeness for the Erdös-
Rényi as shown in Figure 1 suggests that the graph model is very discriminant based on
the first moment (i.e. mean) alone. On the other hand, the same could not be said for the
Watts-Strogatz model where the means of the measures do not discriminate the different
network very well. However, the distributions of λ2 of Degree, τ4 of Degree, and τ3 of
Betweenness for the Watts-Strogatz graph as shown in Figure 2 suggest that the upper
moments and L-moments could be used to discern the difference between the network. Due
to this finding, along with the knowledge that the Erdös-Rényi network does not possess
real world network characteristics (Barabási and Albert 1999), further analyses of the upper
moments and L-moments will not be reported for the Erdös-Rényi graph.

The Watts-Strogatz dataset was then examined to find a possible set of uncorrelated
and statistically significant predictors of the network parameter. This is performed by first
using Discriminant Analysis to visualize any separation of the network population on a two
dimensional plane using the Discriminant scores. Factor Analysis using using Varimax ro-
tation was then applied to find independent measures that account for a substantial amount
of the total variance within the collection of moments and L-moments. Using the set of
independent measures, logistic regression was then performed on each (size/parameter)
combination to find the set of moments and L-moments that were statistically significant in
modeling the particular network group.
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Figure 1: Scatterplot of mean Degree, mean Betweenness, and mean Closeness for Erdös-
Rényi

3.2.1 Discriminant Analysis

Discriminant Analysis was performed on all moments and L-moments obtained from De-
gree, Betweenness, and Closeness that are shown to be approximately normally distributed
for each network size to see if groupings are present with respect to the parameters. This
was performed using the linear method where the covariance for each group was assumed
to be the same. Since normality assumptions for the moments and L-moments are re-
quired in order to utilize this method, they were first inspected for univariate normality
using the Quantile-Quantile plot for each (size/parameter) combination, and it was shown
that only λ2,Deg, τ4,Deg, τ3,Btw, and τ4,Btw are shown to be approximately normal for all
of the (size/parameter) combinations. Therefore, only these moments are included for this
analysis.

The two dimensional discriminant scores were then plotted as shown in Figure 3 to il-
lustrate the groupings of the scores with respect to the parameters. It is apparent that as the
size of the network grows larger, it is easier to discriminate the parameters, where the mis-
classification rates are 16.67%, 7.744%, 2.589%, and 0422% for network sizes 512, 1024,
2048, and 4096, respectively. However, discrimination was still easily achieved for smaller
networks with parameter p ≤ 0.0575 where the misclassification is very low although it
was harder to completely separate the groupings for the largest network when the parameter
p ≥ 0.1525. As randomness increases (i.e. p increases), the Watts-Strogatz will converge
to the Erdös-Rényi graph (Watts and Strogatz 1998). Thus, the property exhibited might
be that of the Erdös-Rényi. From these results there appears to be some merit in using the
upper L-moments from the distribution of Degree measures in characterizing the network
population.
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Figure 2: Scatterplot of λ2 (L-scale) Degree, τ4 (L-kurtosis) Degree, and τ3 (L-skew)
Betweenness for Watts-Strogatz

3.2.2 Factor Analysis

To obtain the set of independent moments and L-moments for each network population
with a specific (size/parameter) combination, Factor Analysis (FA) was conducted on the
collected moments and L-moments from the distribution of Degree, Betweenness Central-
ity, and Closeness Centrality. Principal Components Analysis showed that the first six
components captured around 79%−89% of the total variance of the collection of moments
and L-moments. A Varimax rotation of the measure-space on the first six components
was applied to obtain the corresponding Factors. However, each Factor accounted for only
3% − 28% of the total variance indicating that there was no single Factor that captured a
large percentage of the total variance.

Moments or L-moments that correlate the most with each of the first six Factors were
selected to be included in the set of independent measures as shown in Table 3. There is no
single moment or L-moment that was shown to be highly correlated with the first six Factors
for all networks. These correlations ranged between 0.707− 1, with lower correlations are
more commonly seen in the higher Factors. Additionally, these results showed that µ does
not always account for the largest variance component and that the upper moments and
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Figure 3: Canonical plot of λ2,Deg, τ4,Deg, τ3,Btw, and τ4,Btw for Watts-Strogatz

L-moments may provide additional information.

Table 3: Moments with high correlation to the first six rotated factors

Most Highly Correlated Moments
Size/Parameter 1st Factor 2nd Factor 3rd Factor 4th Factor 5th Factor 6th Factor

512/0.01 µCls -0.955 γ3,Btw 0.926 γ3,Deg 0.991 γ3,Cls 0.902 γ4,Cls 0.854 µDeg 1
512/0.105 γ3,Btw 0.954 γ3,Cls 0.948 µBtw -0.926 τ5,Deg 0.968 σ2

Cls 0.925 γ4,Deg 0.810
512/0.2 γ4,Btw 0.929 γ4,Cls -0.973 γ3,Deg 0.922 λ2,Btw 0.881 µBtw -0.896 τ3,Cls 0.733

1024/0.01 λ2,Deg -0.957 γ3,Btw 0.948 γ3,Deg 0.994 γ5,Cls 0.864 λ2,Cls 0.830 µDeg 1
1024/0.105 γ3,Btw 0.955 γ3,Cls 0.967 µBtw -0.918 τ5,Deg 0.964 λ2,Cls 0.910 γ4,Deg 0.580
1024/0.2 γ3,Cls 0.984 γ4,Btw 0.927 γ3,Deg 0.916 λ2,Btw 0.908 λ2,Deg 0.952 µDeg 0.557

2048/0.01 τ4,Deg 0.969 γ3,Btw 0.953 γ5,Cls 0.888 γ3,Deg 0.997 λ2,Cls 0.867 µDeg 1
2048/0.105 γ4,Btw 0.939 λ2,Deg 0.928 γ3,Deg 0.966 σ2

Cls 0.841 γ4,Cls -0.954 τ3,Cls 0.832
2048/0.2 γ3,Cls 0.988 γ4,Btw 0.933 γ3,Deg 0.918 σ2

Btw 0.846 λ2,Deg 0.967 µDeg 0.707
4096/0.01 λ2,Deg -0.974 γ4,Cls -0.914 τ5,Deg 0.979 τ3,Btw 0.884 γ5,Btw 0.956 λ2,Cls 0.906
4096/0.105 γ5,Cls 0.932 γ3,Deg 0.959 σ2

Btw 0.831 γ4,Btw 0.925 λ2,Deg 0.943 τ3,Cls 0.823
4096/0.2 γ3,Cls 0.991 γ4,Btw 0.949 γ3,Deg 0.942 λ2,Btw 0.899 λ2,Deg 0.961 τ4,Deg 0.777

% Variance 17.2 − 28.2 14.6 − 22.5 13.4 − 14.7 10.8 − 14.2 7.4 − 13.1 3.7 − 9.9

NOTE: Deg=Degree; Btw=Betweenness; Cls=Closeness

3.2.3 Logistic Regression

Using the set of moments and L-moments obtained through FA, logistic regressions were
performed on each (size/parameter) combination with its respective independent moments
and L-moments. The purpose of this analysis was to find the set of significant and indepen-
dent moments and L-moments with respect to modeling each network. The logistic model
was structured with a two class outcome: the network (size/parameter) combination of in-
terest versus all other combinations. It should be noted that only a subset of the networks
were considered for the regressions, specifically parameter ∈ {0.01, 0.105, 0.2}, so that
the number of (size/parameter) combinations is relatively small and tractable. Significant
moments and L-moments based on the Likelihood Ratio χ2 of the Likelihood Ratio test
at α = 0.05 is shown in Table 4. Each model was shown to be significant based on the
−2LogLikelihood at α = 0.05. The Deviance test was unable to reject the null hypothesis
that more variables should be added to the model to give a better fit.

These result showed that significant moments and L-moments vary for each network
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Table 4: Moments with significant effects based on Likelihood Ratio Test through Logistic
Regression

Size/Parameter Significant Moments AUC
512/0.01 µCls, γ3,Btw, γ3,Deg, γ4,Cls 0.935

512/0.105 γ3,Cls, µBtw, γ4,Deg 0.910

512/0.2 γ4,Btw, γ4,Cls, γ3,Deg, τ3,Cls 0.833

1024/0.01 λ2,Deg, γ3,Btw, γ3,Deg, γ5,Cls, λ2,Cls 0.967

1024/0.105 γ3,Btw, γ3,Cls, µBtw, τ5,Deg, λ2,Cls 0.920

1024/0.2 γ3,Cls, λ2,Btw, λ2,Deg 0.971

2048/0.01 τ4,Deg, γ3,Btw, γ5,Cls, λ2,Cls 0.977

2048/0.105 γ4,Btw, λ2,Deg, γ4,Cls, τ3,Cls 0.552

2048/0.2 γ3,Cls, γ4,Btw, γ3,Deg, σ2Btw, λ2,Deg 0.961

4096/0.01 λ2,Deg, γ4,Cls, τ5,Deg, τ3,Btw, γ5,Btw 0.984

4096/0.105 γ5,Cls, σ2Btw, λ2,Deg 0.530

4096/0.2 γ3,Cls, γ4,Btw, γ3,Deg, λ2,Deg, τ4,Deg 0.964

NOTE: Deg=Degree; Btw=Betweenness; Cls=Closeness

and not all independent moments and L-moments are significant for a given network. Al-
though the means are significant in some cases, other upper moments and L-moments pro-
vide additional information and also account for greater variability within the network. At
least one statistic of Betweenness is included in the set of significant moments for each
of the network while no moment or L-moment of Degree is significant for (2048/0.105).
Additionally, none of the networks require all six independent moments and L-moments.
The Area Under the Curve (AUC) scores in Table 4 suggest that most of the models have
very high predictive ability with AUC of 0.9 or greater. However, there are the exceptions
of graphs (2048/0.105) and (4096/0.105) where the AUCs are only slightly above 0.5.

Although γ3 and λ2 are shown to be significant more often than the other moments
and L-moments as shown in Table 5, results from contingency table analyses by treating p
as a category, size as a category, and moments and L-moments as one combined category
showed that there are no relationships between the instances of significant moments and
L-moments with respect to p or size. And even though there were only two instances of
significant σ2, the L-moment equivalent, λ2, was shown to be significant almost 6 times
as often which suggests that the L-moment might be able to capture some information that
the conventional moments could not. On the other hand, the number of significant mo-
ments and L-moments are distributed evenly between Degree, Betweenness, and Closeness
indicating that there was no single graph measure that is more useful than the other two
selected measures.

4. Result Summary

Based on moments and L-moments from select network measures used on simulated Erdös-
Rényi and Watts-Strogatz networks, it was concluded that the Erdös-Rényi network only
provided trivial results since the mean of the measures alone are sufficient in characterizing
the different network parameters. The Watts-Strogatz network on the other hand, produced
some useful patterns that suggest the feasibility of using upper moments and L-moments
as a more descriptive measure of the networks.

Discriminant Analysis was used to show that the networks can be separable based on
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Table 5: Significant moments and L-moments by network measure

Degree Betweenness Closeness Total
µ 0 2 1 3
σ2 0 2 0 2
γ3 5 4 5 14
γ4 1 4 4 9
γ5 1 1 3 5
λ2 7 1 3 11
τ3 0 1 2 3
τ4 2 0 0 2
τ5 1 0 0 1

Total 17 15 18 50

µ, σ2, γ3, γ4, γ5, λ2, τ3, τ4, and τ5 of the Degree, Betweenness, and Closeness of the nodes,
and separability also becomes prominent as the size of the network increases. Factor Anal-
ysis suggests that the set of moments and L-moments that capture the majority of the vari-
ance is dependent on the size and parameter of the network. Almost 90% of the variability
within the moments and L-moments are captured by the first six factors alone, and the mean
does not necessarily correlate with the highest loading factor.

Lastly, Logistic Regression showed that certain moments and L-moments were more
prominent than others. Although there was emphasis on the upper classical moments, λ2
was shown to be more informative than its classical counterpart, σ2, which indicates the
usefulness of L-moments. Regardless, these results show that the upper moments are more
prominent with respect to the significant effects than the mean and variance alone. These
findings support the hypothesis that the networks can be characterized using the upper
moments and L-moments of the network measures and will help guide the formation of
future research objectives.

5. Discussion

Since only two network models were considered for this research, the feasibility of using
moments and L-moments of network measures should be studied for other network models
such as the Barabási-Albert model (Barabási and Albert 1999) which models the scale-free
phenomena inherent in some real world networks. Nevertheless, the findings from this
study suggest that, for some networks, using the average of well known graph measures
may not be enough in characterizing the network.

Considering that most graphical measures comprise nodal measures, then one can cre-
ate distributions of measures and compute various statistics that may characterize the par-
ticular network. Consequently, if the deriviation of the theoretical distribution of a network
measure for a given network model is feasible, then it follows that the distribution of the
moments and L-moments can also be derived if they exist. From there, a test of hypoth-
esis can be formulated for a collection of moments to compare whether two probability
distributions are the same which is a novel idea that has yet to be fully matured. This
would have implications for examining similarity and dissimilarity in identifiable network
characteristics.
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