
Efficient Formation of Auxiliary Markov Chains through
Determining Rules for Equivalent States

Donald E.K. Martin
Department of Statistics, North Carolina State University, 5116 SAS Hall, Raleigh, NC

27695

Abstract
When using an auxiliary Markov chain (AMC) to compute sampling distributions, the
computation complexity is directly related to the number of Markov chain states. For
certain complex pattern statistics, minimal deterministic finite automata (DFA) have been
used to facilitate efficient computation by reducing the number of AMC states to a minimal
set sufficient for computing the distribution. However, it can be the case that forming a
DFA before applying a minimization algorithm is computationally expensive. Examples
include situations where statistic updates for overlapping pattern occurrences are different
than for non-overlapping occurrences. To deal with these situations, we give a
characterization of equivalent states so that extra ones (and their offspring) are deleted
during the process of state space formation. The method is illustrated on computing the
distribution of coverage of spaced seeds. The computational speed-ups are highlighted.

Key Words: Active proper suffix, auxiliary Markov chain, computational efficiency,
minimal deterministic finite automaton, overlapping pattern occurrences, spaced seed
coverage

1. Introduction

A method that has proven fruitful for computing distributions associated with patterns and
more general statistics is to associate the statistic’s distribution with an auxiliary Markov
chain (AMC), and then use properties of the Markov chain to compute the desired
distributions. Fu and Koutras (1994) forwarded this approach with their finite Markov
chain imbedding (FMCI) method, and it has been used by many researchers since then (see,
e.g., Koutras and Alexandrou 1995; Ebneshahrashoob et al. 2005; Aston and Martin 2007;
Martin and Aston 2008). However, forming a Markov chain requires keeping sufficient
information so that the Markov property holds, and thus for certain complex patterns, the
state space of the AMC can be prohibitively large.

In recent years, several authors (e.g. Nuel 2008; Lladser et al. 2008; Marshall and Rahmann
2008; Ribeca and Raineri 2008; Martin and Aston 2013) have used the states of a minimal
deterministic finite automaton (DFA) as the AMC state space. In that approach, to obtain
a minimal DFA, an original AMC is first obtained. This can be a problem, since the original
DFA can be prohibitively large, causing excesses in terms of computation time and storage.
In this paper, we bypass this problem by using clues from DFA minimization algorithms
to delete states in the process of forming the original AMC.

The organization of the paper is as follows. The next section discusses background
information on computing a distribution through an AMC, and how minimizing an
associated DFA can be helpful in this regard. Section 3 has a characterization of equivalent

JSM2015 - Section on Statistical Computing

2226

states that allows states to be eliminated during the process of forming the state space. In
Section 4, this characterization is applied to setting up the state space of an AMC for
computing the distribution of coverage of a spaced seed. The reduction in the size of the
state space and computation time is highlighted. The final section is a summary.

2. Auxiliary Markov Chains and Minimal DFA

Consider an m th-order Markovian sequence 1, , nX X=X  with observed values

1, , nx x=x  , where each ix lies in a state space Σ . The problem under consideration is
computing the distribution of a statistic Z of a collection of patterns in X .

2.1 Computing Distributions of Pattern Statistics through Auxiliary Markov Chains
A pattern (also called a word or string) is a sequence of symbols from a state space (or
alphabet) Σ . For notation purposes, the length of a pattern u is denoted by u (B is also
used to denote the number of elements in a set B , with the meaning hopefully being clear
from the context). The concatenation of pattern v to the right of pattern u is denoted by
u v⋅ . The suffix and prefix of length d u≤ of pattern 1, , uu u u=  are respectively given

by () 1, ,u d udu u u− +≡  and () 1, , dd
u u u≡  . If d u< , ()du and ()d u are respectively a

proper suffix and proper prefix.

If one can form an auxiliary Markov chain { }tA with state space Q such that for z in the
range Zϒ of statistic Z , () ()n zP Z z P A Q= = ∈ (zQ is a partition of the states of Q),
then basic properties of Markov chains may be used to compute the distribution of Z . In
an efficient approach that does not duplicate pattern prefixes for the various values of the
statistic, Aston and Martin (2007) used probability matrices tΨ , , 1, ,t m m n= +  to hold
probabilities for the AMC lying in the various states of its state space, where the subscript
t indicates the time point. The matrices each have rows that correspond to the possible
values of the statistic, and columns that hold probabilities of the AMC lying in its various
states. (See also Koutras and Alexandrou 1995, where probability vectors are used for each
of the possible values of the statistic of interest.) In the approach of Aston and Martin
(2007), to update tΨ from time t to 1t + , after multiplying tΨ by the transition
probability matrix Ω for the AMC states, probabilities for transitions into states where the
statistic’s count is incremented are moved to the appropriate row. Obviously, it is important
for computation purposes that the size of the AMC state space is as small as possible.
Minimal DFA can be helpful in this regard.

2.2 AMC state minimization through DFA
Formally, a DFA D is a 5-tuple ()0, , , ,D Q q Fδ= Σ , where Q is a set of states, Σ is the
alphabet, δ is the transition function for states q Q∈ , i.e. :Q Qδ ×Σ→ , 0q Q∈ is a start
state, and F Q⊂ is a set of “final” or “accepting” states. For an input sequence
()1 2, , , nx x x (ix ∈Σ), the DFA begins in state 0q and transitions according to δ as
symbols ix are fed in. If jq F∈ for some ()1, ,j n∈  , then the string 1, , jx x is
“accepted,” otherwise it is “rejected.” The language of a DFA is the set of strings that it

JSM2015 - Section on Statistical Computing

2227

accepts. When a state of F is entered, an action is taken. For example, for a statistic of a
collection of patterns, F consists of the patterns, and the statistic is incremented when a
state of F is entered.

Useful for our purposes is that adding probabilities to the transitions of a DFA turns it into
a Markov chain. In fact, a DFA with states corresponding to pattern prefixes (an Aho-
Corasick automaton; see Aho and Corasick 1975) can be modified to obtain an m th-order
Markovian AMC by adding to the pattern prefixes any m -tuples that are not prefixes,
deleting all strings of length less than m , and then initializing the computation at time m .
Using DFA theory helps because we can apply a DFA minimization algorithm to reduce
the state space.

DFA states q and *q are equivalent if beginning in them and entering an arbitrary string,
the result is either a final state in both cases or a non-final state in both cases. A well-known
result from computer science that is useful in our framework is that beginning with any
DFA, one can find an equivalent DFA that recognizes the same language and has a minimal
number of states (see, e.g. Hopcroft 1971; Hopcroft et al. 2001).

Minimizing a DFA is a special case of the multi-function “coarsest partition” problem
(Tewari et al. 2002) where, given an initial partition 1, , rH H of a set Q and functions

1,f fγ over the states, one finds the partition 1, , sG G , s r≥ with the smallest number
of equivalence classes s such that (i) each iG is a subset of some class jH , and (ii) q

and *q in hG implies that ()af q and ()*bf q are both in some class kG for all a and
b . For minimizing a DFA we have 2r = , the initial partition is () ()1 2, , \H H F Q F= , and
the resulting partition is the equivalence classes of the DFA, which are the states of the
minimal DFA. The minimal DFA has the smallest number of states for any DFA that
recognizes the same language, and is also unique, up to a renaming of the states (see, e.g.
Hopcroft et al. 2001, pp. 154-162). Given any AMC, a DFA minimization algorithm can
be applied to its states/transition function to obtain a minimal version. If no states are
eliminated the AMC states are already in minimal form.

To add probabilities to DFA transitions, on symbol ix , pattern prefix q transitions to the
longest suffix of iq x⋅ that is in Q (Aho and Corasick 1975). The initial distribution over
AMC states is given by assigning probabilities for m -tuples of mΣ according to the initial
distribution of X , with initial probabilities for all other states being zero. Transition
probabilities of matrix Ω for transitions of AMC states are given by

() ()1 1Pr Prj j j jq q x x− −→ = →  , where ()r r m
x q= , 1,r j j= − . The states of the resulting

Markov chain can be minimized using an analog of the Hopcroft (1971) algorithm (with
the additional restriction that all states in an equivalence class must have the same m -tuple
as their suffix), to give an AMC with a minimal number of states for that particular model
order. An example of using DFA minimization to form a minimal AMC state space is given
next.

Consider computing the distribution of the number of overlapping occurrences of the chi
motif of H. influenza { }8 , , ,F W GATGGTGG GCTGGTGG GGTGGTGG GTTGGTGG= =
(Ledent and Robin 2005) in a first-order Markovian sequence X , with { }, , ,A C G TΣ = .

JSM2015 - Section on Statistical Computing

2228

In the Aho-Corasick automaton, Q consists of prefixes of the patterns of F (see Figure
1a). The modified DFA with 1-tuples added and the empty string ε deleted is shown in
Figure 1b. Final states F and \Q F form the initial state partition. States

{ }7 , , ,W GATGGTG GCTGGTG GGTGGTG GTTGGTG= can enter F on symbol G
whereas other states of \Q F cannot, and thus 7W is split off as a separate class in the
minimization process (these states transition the same on other symbols as well, and thus
they remain a single class throughout the minimization process). Then states 6W that enter

7W on symbol G can be split from those that don’t, forming another equivalence class. In
the end, states of length longer than two are equivalent if they differ only in their second
symbol, and thus four states can be combined in each of the equivalence classes 3 8, ,W W
(for length two, states 2aW GG= and { }2 , ,bW GA GC GT= are distinguishable because
they transition differently on symbols A , C , or G). The final partition for the chi-motif
is shown in Figure 1c, with numbered states j representing jW . Figure 1d shows the result
of deleting the final state from Figure 1c, while re-mapping the entering transition. Notice
that the number of AMC states has been reduced from 30 to 9.

In the context of computing pattern distributions, equivalent states q and q′ must have

exactly the same probabilities and statistic updates when concatenating an arbitrary string.
For the example above, this would hold for the equivalence classes as defined, as long as
the order of Markovian dependence 2m ≤ .

3. Minimal AMC through active proper suffixes and completion strings

Let W be a collection of patterns, and set mQ Q= Σ ∪  , where mΣ are the m -tuples that
are needed in the state space due to the Markov assumption, and Q is the set of the proper
prefixes of the patterns of W . Q admits the decomposition m mQ Q Q>= ∪   , where mQ are
prefixes of patterns of W of length exactly m , and mQ>

 are the prefixes of length greater
than m . The set ˆ ˆm

nosuf suf mQ Q QΣ = ∪ ∪  , where ˆ
sufQ consists of the m -tuples that have a

proper suffix that is a prefix of a pattern of W (though the string itself is not a pattern
prefix), and ˆ

nosufQ is the set of m -tuples that have no suffix that is a pattern prefix.

A direct occurrence associated with q Q∈  is the occurrence of a pattern ()jw W∈ with

()j
jw q v= ⋅ . Here jv is the completion string for q to reach pattern ()jw . The longest

proper suffix of a string q that is a proper prefix of a pattern of W is called the active
proper suffix of q , and is denoted by ()aps q . If () maps q Q>∈  , the failure state of q
(denoted by ()fl q) is defined by () ()fl q aps q≡ . Otherwise, () ()mfl q q≡ .

JSM2015 - Section on Statistical Computing

2229

 (a) (b)

 (c) (d)

Figure 1. (a) Aho-Corasick DFA for the Chi-motif of H. influenza,
{ }, , ,GATGGTGG GCTGGTGG GGTGGTGG GTTGGTGG ; (b) modified version for a
Markov chain, with 1-tuples replacing ε ; (c) minimized version; (d) minimal version with
state representing chi-motif eliminated and its transition (marked with a bold line) re-
mapped. In plots (a), (b), and (c), final states are marked with a bold outline. Also note that
in plots (a) and (b), some transitions are not shown for clarity).

When the transition of q on symbol x is to state q x⋅ , the transition is called a forward
transition. All other transitions are failure transitions that can be executed by first going to
()fl q , and then executing the transition on symbol x from there, as with an Aho-Corasick

automaton.

To illustrate these concepts, let { }0,1Σ = and { }1001,101,1101W = . The set of proper

prefixes of patterns is { }1,10,11,100,110Q = , and if 1m = , { }1 1Q = ,

{ }1 10,11,100,110Q> = and { }0,1,10,11,100,110Q = . For 1 1 210 ,q x x= = , the set of all
completion strings is{ } { }1 2, 01,1v v = . The string 1 4 1 1, , 1001x x q v= = ⋅ represents a direct
hit of q . With symbol 0x = , 1q transitions to 1q x⋅ , since 100 is a state of Q . On symbol

1x = , 1q transitions to the longest suffix of 1 101q x⋅ = that is in Q , i.e. to 1. That
transition could be executed by first going to ()1 0aps q = , where, on symbol 1x = , the
transition is to state 1. As 101 is a pattern occurrence, the statistic count would be
incremented on the transition. If 2m = , { }2 10,11 ,Q = { }ˆ 00nosufQ = , { }ˆ 01sufQ = , and

{ }2 100,110Q> = , so that { }00,01,10,11,100,110Q = .

JSM2015 - Section on Statistical Computing

2230

The failure sequence (denoted by qfs) associated with state q Q∈ consists of q , along
with its sequence of failure states, i.e.

() () () ()() ()1 , , , , , ,q q q q m
fs fs fs fs q fl q fl fl q q   = =     .

(Note that in some cases the AMC state may include more information than pattern prefix
q , to facilitate the formation of a Markov chain.) Since ()qfs j is a suffix of ()qfs l ,

ql j fs< ≤ , () ()q qfs l fs l′= implies that () ()q qfs j fs j′= . Setting up a failure sequence

may be handled sequentially. If ()aps q m≤ , then ()(),q m
fs q q= . Otherwise, simply

place q to the left of the failure sequence of ()aps q to obtain qfs .

Definition 1. Failure sequences qfs and qfs ′ are equivalent (denoted by q qfs fs ′) if

q qfs fs ′= , () ()m mq q′= , and for 1, , qj fs=  , the corresponding elements of the
sequences have the same set of completion strings and the same updates to the statistic’s
value on all direct occurrences of elements of the failure sequences.

Theorem 1 below indicates that equivalence of states q and q′ may be determined
through their failure sequences.

Theorem 1. States q and q′ are equivalent for the problem of computing the distribution
of a pattern statistic if and only if q qfs fs ′ .

Proof. Let states q and q′ have equivalent failure sequences. Then () ()m mq q′= , and thus
probabilities associated with transitions from q and q′ after observing an arbitrary string
v must be the same, by the Markov property. Since strings ()qfs j and ()qfs j′ have the
same set of completion strings, direct occurrences happen for the same strings. The
increment to the statistic’s value with direct occurrences from elements of the failure
sequence are the same, and thus the total increment to the statistic will be the same after
concatenating an arbitrary string. The failure sequences contain the only locations where
pattern occurrences involving symbols of q and q′ can begin, and pattern occurrences
that do not contain symbols of q and q′ must give the same statistic updates. Thus updates
to the statistic after concatenating v are the same, and q and q′ are equivalent.

Conversely, let q and q′ be equivalent. Then the increments to the statistic and the
probabilities associated with observing an arbitrary string v must be the same. Equal
probabilities for arbitrary strings implies that () ()m mq q′= . Now let v be a completion
string for q . It must also be a completion string for q′ or equivalency is violated, and thus
q and q′ must have the same set of completion strings. The updates for direct hits of q
and q′ must be the same, since we can always concatenate symbols such that none of the
other elements of qfs and qfs ′ are completed, and then the update for direct hits of q and
q′ are the total update. Now, inductively, let q equivalent to q′ imply equal updates for
direct occurrences beginning in the corresponding positions of (1), , ()q qfs fs l   and

JSM2015 - Section on Statistical Computing

2231

(1), , ()q qfs fs l′ ′   , ql fs< . Then choose a completion string for (1)qfs l + such that

none of the ()qfs j are completed, 1j l> + . Then q equivalent to q′ implies that the
updates when observing the completion strings of (1)qfs l + and (1)qfs l′ + must be the
same, whether or not longer string(s) of ()qfs j and ()qfs j′ , 1j l< + occur first. The
result follows inductively. ▄

Theorem 1 is key for obtaining a minimal AMC state space in the process of state space
formation, as it allows one to show equivalency of states by checking direct hits along their
failure sequences. Whereas verifying equivalency can still be a daunting task, in certain
situations the theorem can help immensely. This will be illustrated in the next section in
the context of computing the distribution of coverage of a spaced seed.

4. Application to coverage of a spaced seed

4.1 Spaced seeds and the coverage distribution
A heuristic method to locate similar segments in sequences is to initially search for
relatively short matching (or nearly matching) segments, and then look for alignments
around the match with similarity scores that are significantly high. Seeds give the shape of
the matching segments. Short seeds can occur many times even in sequences with non-
similar structure, but searching for long exact matches can result in missing segments
whose underlying structure is the same. Thus a trade-off is beneficial.

Spaced seeds (Ma et al. 2002; Keich et al. 2004; Buhler et al. 2005) provide a way to
increase the probability of observing at least one matching segment (or seed hit) without
simultaneously increasing the number of matches that occur at random. A spaced seed is a
pattern 1, , kS s s=  from { }1,* , with 1 1ks s= = . A “1” indicates a position where
sequence symbols must match, and “*” indicates a position where a match isn’t required.

Let 1, , nx x=X  be the binary sequence formed by aligning two DNA segments of length
n and assigning a value 1jx = if the j -th position of the segments match, and 0jx = for

a mismatch. Spaced seed S hits or occurs in X at position υ if for 1, ,j k=  , 1k jxυ− + =

whenever 1js = . A “1” at position k jυ − + of X ((, ,)k nυ∈  and (1, ,)j k∈ ) is
covered by a seed hit if S occurs at position υ and for that occurrence, 1js = . As an
example, for spaced seed 11*1S = and sequence segment

111100111011111
• • • • • • • • • •

=X

of length 15n = , there are seed hits at sequence positions 4, 11, 14 and 15, and the ten 1’s
with “•” underneath are covered.

One solution to the trade-off between the use of short and long seeds is to use short seeds
and require multiple seed hits clustered close together to trigger an alignment. A large value
of spaced seed coverage then seems reasonable as a criterion to trigger a full alignment.
Benson (1999) used this approach with the number of successes in success runs of length
at least k (a spaced seed of length k with 0r = stars) serving as the test statistic, and used
a normal approximation to the statistic’s distribution. Martin (2006) gave the exact

JSM2015 - Section on Statistical Computing

2232

distribution of that statistic for Markovian sequences of a general order. Benson and Mak
(2009) gave a method to compute the distribution of a spaced seed in the i.i.d. case, and
Martin and Noé (2015) extended that work to higher-order Markovian sequences, with the
efficiency of the method allowing computation for the longer seeds that are used in
practice. In that paper, the state space of an auxiliary Markov chain for computation was
formed in a sequential manner. The state space of their algorithm was not necessarily the
minimal one, but it nonetheless was small and facilitated fast computation. We show how
to set up a minimal state space for the coverage problem using Theorem 1, and answer the
question raised in the latter reference of whether it makes sense computationally to
continue the search for equivalent states beyond the procedure of that paper so that a
minimal state space is obtained. First we lay out the basic structure of the algorithm of
Martin and Noé (2015) to set up the AMC state space, without going into details on the
computation of the distribution using that state space.

4.2 AMC state space through sequential elimination of equivalent states
Now let W be the set of 2r possible seed words that are formed by replacing each of the
r stars by either 0 or 1. Martin and Noé (2015) defined the AMC states as having a string
q Q∈ (see Section 3) indicating progress toward a seed hit, as well as a coverage string c
that indicates positions of q that were previously covered. This is in contrast to the
formulation of Martin and Coleman (2013), who simply extended strings to overlapping
seed hits.

An important result of Martin and Noé (2015) is that strings q and q′ are equivalent if
they have the same length and coverage strings, and equivalent active proper suffixes.
Based on that result, a sequential method was used to set up the AMC state space, which
we denote by Λ . In the method, first the m -tuples are set up, and then sequentially over
lengths 1, , 1m k+ − , proper prefixes of seed words are generated, and equivalent states
are combined by discarding the one not already in Λ . The strings of Q are associated with
coverage strings that are empty to represent m - tuples and prefixes of non-overlapping
occurrences of strings of W .

For seed hits, i.e. when 1q k= − and the new symbol 1ix = , ()1q q aps q′→ = ⋅ , and the

new coverage string is () ()1tem aps qc c
⋅

′ = , where the coverage template (),1 ,, ,tem tem tem kc c c≡ 

has the symbol “  ” if 1js = , and a blank position otherwise. The number of new states η
that is added in this stage is recorded.

Now for each of the η new states just defined and input symbol { }0,1ix ∈ the transitions
of q and c are obtained. The string q transitions exactly as when there is no coverage.
To update c , if there is no seed hit, then c c′→ , where c′ is formed by concatenating a
zero to the end of c and then taking the suffix of the same length as the new prefix string
q′ . If there is a seed hit, c′ is the suffix of length q′ of the string of length k that has a
“1” in any position where at least one of 0c ⋅ or temc has a “1”, and zeroes elsewhere.

If, during any stage of the state generation process, a destination state
q
c
′ 

 ′ 
 already exists

in Λ , the transition is mapped there. Otherwise a new state is generated to receive the

JSM2015 - Section on Statistical Computing

2233

transition. At the beginning of each stage, η is reset to 0 and incremented by one as each
new state is generated. The procedure for generating states on state transitions is repeated
for the new strings at each stage while 0η > .

When attempting to enter a state
q
c
′ 

 ′ 
 into Λ and searching for a possible matching state,

if there is a state
*
*

q
c
 
 
 

 with *q q′= but *c c′≠ , the algorithm of Martin and Noé (2015)

checks to see if () ˆ
nosufaps q Q′ ∈ . In that case, none of the 1’s of q′ and *q can possibly

be involved in an overlapping seed hit that is not a direct one, and thus as long as the
updates to coverage on the direct hits of q′ and *q are the same, the two states are
combined, i.e. no new state is created. However, it could be that () ˆ

nosufaps q Q′ ∉ , yet the
strings are equivalent and would be combined by a minimization algorithm. The conjecture
of Martin and Noé (2015) was that searching for such strings would be more
computationally costly than the advantage in possibly finding a smaller state space, and
thus a minimal state space was not obtained in all cases. In the present paper, extend the
algorithm of Martin and Noé (2015) to obtain a minimal state space using Theorem 1, and
compare the computation time for obtaining the coverage distribution for a seed that is used
in practice.

4.3 Obtaining a Minimal AMC state space
The main difference between the present paper and the algorithm of Martin and Noé (2015)
is that in this work we continue to check for equivalency of strings in the case where

*q q′= , *c c′≠ , and () ˆ
nosufaps q Q′ ∉ , while Martin and Noé (2015) do not. Implied by

*q q′= is that the strings have the same length, active proper suffix, completion strings and
failure sequence. Thus Theorem 1 is satisfied if updates on direct hits beginning in the
various locations of the failure sequences are equal.

We then check for equality of coverage updates for direct hits from ()qfs j and ()*qfs j .

The check is carried out in a sequential manner for 1, , qj fs=  , beginning with 1j = and
continuing if all the previous checks were satisfied. At each stage we note the completion
strings, as the completion of a string could imply completion of a longer string, which
would render certain positions as covered, and thus could have a bearing on whether
coverage updates must be equal. If all the checks are true, the states are equivalent.

We use as an example the seed 1*111*11 with 1m = , where the algorithm of Martin and
Noé (2015) obtained a state space with 38 states, whereas the minimal state space has 35.
State 1111111

    

 is equivalent to 1111111
    

, and state 101110
  

 is equivalent to 101110
  

, so that

1011101
  

 and 1011101
  

 are also equivalent. However, since the respective active proper

suffixes of the strings are not in ˆ
nosufQ , the algorithm of the latter reference did not identify

the equivalencies. Here we show equivalency of states 1111111
q
c
′ 
= ′      

 and
*

1111111.
*

q
c
 

= 
      

The respective failure sequences are

JSM2015 - Section on Statistical Computing

2234

()1111111,111111,11111,1111,111,11,1qfs ′ =
 

 and ()* 1111111,111111,11111,1111,111,11,1qfs =
                

.

Strings q′ and *q are completed with the symbol 1, and the update to coverage is +3 in
both cases, leaving all positions covered. This implies that updates must be the same for
strings 111111, 1111, 111, and 11, as to complete those strings the first symbol must be 1,
so that q and *q hit. States 11111

   

 and 11111
  

 are completed with strings of the form *11

with coverage update +3 for 011, and with 111 implying that q and *q must hit,
rendering all positions as covered. For 1



 and 1, the completion strings begin with *11,

implying that 11111 hits, which covers the last 1 so that updates must be the same. Thus
the states are equivalent.

The algorithm was programmed in MATLAB (version R2010b), and applied to computing
the coverage distribution of the spaced seed 111*1**1*1**11*111 that was used in
Version 1 of the Patternhunter software (Ma et al. 2002). A Dell PC with an Intel Core i7
CPU 873 with 2.93 GHz and 8 GB RAM was used for the computations. The Patternhunter
seed is optimal in the sense that it has the highest single hit probability for Bernoulli trials
with match probability 0.7p = on alignment length 64n = (Ma et al. 2002). The size of
the state space using the algorithm of Martin and Noé (2015) was 4215 , whereas the
minimal state space that was obtained using the present algorithm is of size 3782 . The
computation using the current algorithm of took 72.0s (43.8s for setting up the state space
and 28.2s to compute the distribution), compared to 65.3s using the algorithm of Martin
and Noé (2015) (26.6s/38.7s). Thus, as expected, the new algorithm took more time to set
up the state space and less to do the computation. These times may be compared to the over
26 hours that were required to set up a “full” state space of 321,596 strings that are prefixes
of patterns extended to overlapping pattern occurrences (this type of state space was used
in the initial stage of AMC setup by Martin and Coleman (2011) in computing the
distribution of coverage of clumps, with the Hocroft algorithm then applied to minimize
the state space). Thus, whereas the present algorithm uses more total computation time than
the algorithm of Martin and Noé (2015), surprisingly the difference in times is small. This
shows that an extensive search to find a minimal state space for the spaced seeds coverage
problem is feasible, and leaves open the possibility that applications of the method of this
paper to other settings could yield favorable results.

5. Application to coverage of a spaced seed

This paper deals with computing distributions of statistics using an AMC. The paper
focuses on reducing the number of states in the AMC in situations where first forming an
AMC state space and then applying a minimization algorithm to reduce its size is not
feasible. A situation where this can occur is where overlapping pattern occurrences are
reckoned differently than non-overlapping occurrences, rendering a need for using prefixes
of patterns extended to overlapping pattern occurrences.

A result is given that characterizes equivalent states, and facilitates elimination of any extra
states during the process of state space formation. The method was applied to setting up a
minimal state space for computing the distribution of coverage of a spaced seed. It was
shown that a minimal state space may be obtained in computation time that is slightly more

JSM2015 - Section on Statistical Computing

2235

than the algorithm of Martin and Noé (2015). In future work, we would like to apply the
algorithm to the computation of other pattern distributions.

Acknowledgements

D.E.K. Martin was supported in this research by the National Science Foundation under
Grant DMS-1107084.

References

Aho, A.V. and Corasick, M.J. (1975). Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6), 333-340.

Aston, J.A.D. and Martin, D.E.K. (2007). Distributions associated with general runs and patterns in
hidden Markov models. Annals of Applied Statistics, 1(2), 585-611.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Research, 27, 573-580.

Benson, G. and Mak, D.Y.F. (2009). Exact distribution of a spaced seed statistic for DNA homology
detection. String Processing and Information Retrieval, Lecture Notes in Computer Science,
5280, 282-293.

Buhler, J., Keich, U., Sun, Y. (2005). Designing seeds for similarity search in genomic DNA.
Journal of Computer and System Sciences, 70, 342-363.

Ebneshahrashoob, M., Gao, T., Wu, M. (2005). An efficient algorithm for exact distribution of
discrete scan statistic. Methodology and Computing in Applied Probability, 7, 459-471.

Fu, J.C. and Koutras, M.V. (1994). Distribution theory of runs: a Markov chain approach. Journal
of the American Statistical Association, 89, 1050–1058.

Hopcroft, J.E. (1971). An n log n algorithm for minimizing states in a finite automaton. In: Z.
Kohavi and A. Paz (Ed.) Theory of Machines and Computations, (pp. 189-196). New York:
Academic Press.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001). Introduction to automata theory, languages,
and computation. New York: Addison-Wesley.

Keich, U., Li, M., Ma, B., Tromp, J. (2004). On spaced seeds for similarity search. Discrete applied
mathematics, 138(3), 253-263.

Koutras, M.V. and Alexandrou, V.A. (1995). Runs, scans and urn models: A unified Markov chain
approach. Annals of the Institute of Statistical Mathematics, 47, 743-766.

Lladser, M., Betterton, M.D., Knight, R. (2008). Multiple pattern matching: A Markov chain
approach. Journal of Mathematical Biology, 56(1-2), 51-92.

Ledent, S. and Robin, S. (2005). Checking homogeneity of motifs’ distribution in heterogenous
sequences. Journal of Computational Biology, 12, 672-685.

Ma, B., Tromp, J., Li, M. (2002). Patternhunter-faster and more sensitive homology search.
Bioinformatics, 18(3), 440-445.

Marshall, T. and Rahmann, S. (2008). Probabilistic arithmetic automata and their application to
pattern matching statistics. Lecture Notes In Computer Science; Vol. 5029, Proceedings of the
19th Annual Symposium on Combinatorial Pattern Matching (pp. 95-106).

Martin, D.E.K. (2006). The exact joint distribution of the sum of heads and apparent size statistics
of a “tandem repeats finder” algorithm. Bulletin of Mathematical Biology, 68, 2353-2364.

Martin, D.E.K. and Aston, J.A.D. (2008). Waiting time distribution of generalized later patterns.
Computational Statistics and Data Analysis, 52, 4879-4890.

Martin D.E.K. and Aston, J.A.D. (2013). Distributions of statistics of hidden state sequences
through the sum-product algorithm. Methodology and Computing in Applied Probability,
15(4), 897-918.

Martin D.E.K. and Coleman, D.A. (2011). Distributions of clump statistics for a collection of words.
Journal of Applied Probability, 48, 1049-1059.

JSM2015 - Section on Statistical Computing

2236

Martin D.E.K and L. Noe (2015). Faster exact probabilities for statistics of overlapping pattern
occurrences. (In press, Annals of the Institute of Statistical Mathematics, doi 10.1007/210463-
015-0540-y).

Nuel, G. (2008). Pattern Markov chains: Optimal Markov chain embedding through deterministic
finite automata. Journal of Applied Probability, 45(1), 226-243.

Ribeca, P. and Raineri, E. (2008). Faster exact Markovian probability functions for motif
occurrences: a DFA-only approach. Bioinformatics 24(24), 2839-2848.

Tewari, A., Srivastava, U., Gupta, P. (2002). A parallel DFA minimization algorithm. Lecture
Notes in Computer Science, Vol. 2552, (pp. 34-40).

JSM2015 - Section on Statistical Computing

2237

