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Abstract
Two major issues of concern in microarray data analysis are violation of the assumption of normal-
ity and influence of outliers. Since usually a very large number of tests are simultaneously carried
out on microarray data, a serious concern is to control the familywise error rate (FWER), otherwise
researchers may wrongly claim dozens even hundreds of genes to be differentially expressed. An-
other difficulty to deal with is deriving the theoretical distribution of the test statistic and calculation
of the p-value. Resampling techniques such as permutation method and bootstrapping are used in
data analysis to achieve better approximation of the p-values. This article provides a brief review
of some permutation and bootstrap methods for the analysis of differentially expressed genes with
application to a real dataset.
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1. Introduction

The advances in microarray technology have enabled researchers to measure the intensity
of spotted cDNA’s on arrays simultaneously for thousands of genes. There has also been
a concerted effort to develop statistical methods to analyze the large data sets that result
from the microarray experiments one aspect of which is to detect the differentially ex-
pressed genes based on the spot intensity readings. The intensity readings often tend to
be non-normal and contain a large number of outliers. This could be problematic when
classical parametric methods are used. Rank-based methods are therefore recommended as
an alternative to analyze microarray gene expression data because of their robustness to the
violation of distributional assumptions and influence of outliers, Li and Mansouri (2015).

A large number of tests are often involved in the analysis of microarray data in order
to detect differentially expressed genes. As such, control of familywise error rate (FWER)
becomes of primary importance, otherwise researchers may wrongly claim dozens or even
hundreds of genes to be differentially expressed.

Important works in the analysis of differentially expressed genes include Dudoit et al.
(2002) who proposed Welch’s t-test Statistic Step-down Procedure. This procedure uses
a permutation method at each step of the step-down procedure. This procedure controls
FWER strongly. Tusher et al. (2001) proposed the method of significance analysis of
microarray (SAM). This method is based on a modified pooled t-test statistic. A graphical
method called SAM plot is constructed to identify the significantly expressed genes.

Kerr and Churchill (2000) developed the analysis of variance (ANOVA) models for
microarray gene expressions that take the ancillary sources of variation into consideration.
This allows researchers to develop simultaneous tests for gene expressions based on linear
models, Hsu et al. (2006) and Li and Mansouri (2015).

In this article, we provide a brief overview of the simultaneous testing procedures men-
tioned above and apply them to a well-known dataset and in the process we demonstrate
that not all of these methods identify exactly the same sets of genes as differentially ex-
pressed. Further investigations may be required to the reliability of each method.
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2. Methods of Simultaneous Testing for Gene Expression

In this section we provide a brief overview of the methods of simultaneous testing. The
methods in subsections 2.1 and 2.2 are based on a factorial ANOVA model and the remain-
ing methods are based on two-sample formulation of the data.

2.1 Simultaneous rank tests

Let Yijklm be the normalized observation of the i− th array, j − th dye, k − th treatment,
l− th gene, and m− th replicate for i = 1, · · · , a, j = 1, 2, k = 1, 2, l = 1, · · · , g, m =
1, · · · , nl. It is assumed that Yijklm follows a linear model. To detect whether the relative
expression of each gene θl differs from 0 or not, the hypotheses are:

H0l : θl = 0 vs. H1l : θl ̸= 0, l = 1, · · · , g. (1)

Li and Mansouri (2015) proposed simultaneous aligned rank tests (ART) for identifying
differentially expressed genes based on a linear model. Let Rijklm be the rank of the
ijklmth reduced model residual (aligned observations) among all such residuals, where
the least square (LS) estimates of the main effects and interactions based on the reduced
model are used to generate the residuals.

The ART simultaneous tests are formed by replacing Yijklm in the full model with
Rijklm. The ART test statistic is given by

tl,(ART ) =
θ̂l,(ART )√
ˆV ar[θ̂l,(ART )]

, l = 1, · · · , g (2)

Where θ̂l,(ART ) and ˆV ar[θ̂l,(ART )] are the aligned rank estimate of θl and the estimated
variance respectively, see Li and Mansouri (2015) for details.

The α−level simultaneous rank tests reject the null hypothesis H0l if

|θ̂l,(ART )|√
ˆV ar[θ̂l,(ART )]

≥ qα,(ART ), l = 1, · · · , g, (3)

where qα,(ART ) is the upper α − th quantile of the sampling distribution of the maximum
modulus statistics maxl=1,··· ,g |tl,(ART )|. Since the sampling distribution of
maxl=1,··· ,g |tl,(ART )| is unknown, the residual bootstrap technique of Efron and Tibshirani
(1993) is used to estimate qα,(ART ).

2.2 Simultaneous tests based on least square estimates

Note that if we replace the aligned ranks Rijklm to the normalized observations yijklm,
it becomes simultaneous tests based on LS estimates, which are proposed by Hsu et al.
(2006). As a brief overview, the simultaneous tests are carried out based on t-test statistics
tl = θ̂l√

ˆV ar[θ̂l]
, l = 1, · · · , g. Where θ̂l and ˆV ar[θ̂l] are the LS estimate of θl and the

estimated variance, respectively, see Hsu et al. (2006) and Li and Mansouri (2015) for
details. Hsu et al. (2006) recommended rejecting the null hypothesis H0l when |tl| =

|θ̂l|√
ˆV ar[θ̂l]

≥ qα, l = 1, · · · , g, where qα is the upper α-th quantile of maxl=1,··· ,g |tl|. If the

underlying distribution is normal, the quantiles qα can be obtained by Probmc() function in
SAS. Otherwise the quantiles qα are generated through residual bootstrap method of Efron
and Tibshirani (1993).

JSM2015 - Section on Nonparametric Statistics

2208



2.3 Welch’s t-test Statistic Step-down Procedure

This method is due to Dudoit et al. (2002). Let Y be the data matrix with l rows corre-
sponding to the genes being studied and n = n1 + n2 columns corresponding to the n1

normalized observations of treatment 1 and n2 normalized observations of treatment 2. Let
H0l denote the null hypothesis of no association between the expression level of gene l and
the treatment, l = 1, · · · , g. Let yklm be the normalized observation of k − th treatment,
l − th gene, and m− th replicate, k = 1, 2; l = 1, · · · , g;m = 1, · · · , nk, the test statistic
is

tl =
ȳ1l· − ȳ2l·√

s21
n1

+
s22
n2

The following permutation method is used to estimate the p−value for each gene. For
the b− th iteration, b=1,...,B:

1. Permute the n columns of the data matrix Y. The first (last) n1(n2) columns now
refer to the “fake” treatment 1 (treatment 2) group.

2. Compute the t-statistics t1(b), · · · , tg(b).

The unadjusted permutation p − values are obtained by: pl =

B∑
b=1

I(|tl(b)|>|tl|)

B , l =
1, · · · , g.

Westfall and Young step-down adjusted p− value (Westfall and Young, 1993) is given
by p̃rl = maxl′=1,··· ,l(Pr(maxl∗∈{rl′ ,··· ,rg}|Tl∗ | ≥ |trl′ ||H

C
0 ), l = 1, · · · , g where HC

0 is
the complete null hypotheses and |trl′ | is the l′ − th largest absolute value of test statistics
among |tl′ |, l′ = 1, · · · , l .

For the b− th permutation, b = 1, · · · , B,
1. Permute the n columns of data matrix Y.
2. Compute the test statistics t1(b), · · · , tg(b).
3. Compute successive maxima of the test statistics: ug(b) = |trg(b)|,

ul(b) = max(ul+1(b), |trl(b)|), l = 1, · · · , g−1, where |trl(b)| is the l−th largest absolute
value of test statistics.

4. The adjusted p − value is estimated by: p̃rl =

B∑
b=1

I(ul(b)>|trl |)

B with monotonicity
enforced by setting p̃r1 ← p̃r1 , p̃rl ← max(p̃rl , p̃rl−1

), l = 2, · · · , g.

2.4 Significance Analysis of Microarray (SAM)

This method is proposed by Tusher et al. (2001) uses a modified pooled t-test statistic:

tl =
ȳ1l· − ȳ2l·

Sp(l)
√

1
n1

+ 1
n2

+ S0

where Sp(l) =

√
1

n1+n2−2(
n1∑

m=1
(y1lm − ȳ1l·)2 +

n2∑
m=1

(y2lm − ȳ2l·)2); the coefficient of

variation of tl was computed as a function of Sp(l) in moving windows across the data.
The value for S0 was chosen to minimize the coefficient of variation; for details of the
computation see SAM “Significance Analysis of Microarrays” users guide and technical
document (Tibshirani et al., 2011).

Plot the observed values of tl versus the estimated expected value E(tl). The estimates
are obtained by the method of permutation. A regression line is fitted to the plot and
the confidence bands are constructed by setting a tuning parameter ∆ which is chosen
according to the desired false discovery rate (FDR). FDR is estimated as follows: The
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estimated number of falsely significant genes is the average of the number of genes called
significant from all permutations. For example, the permuted data sets generated an average
of 7.4 falsely significant genes, compared with 48 genes called significant, yielding an
estimated FDR of 0.15.

2.5 Benjamini and Hochberg’s step-up procedure

Benjamini and Hochberg (1995) proposed step-up testing procedures to control FDR. Let
pr1 ≤ pr2 ≤ ... ≤ prg be the ordered unadjusted p − values. The BH step-up adjusted
p− values are

p̃rl = min
l≤l′≤g

{min(
g

l′
prl′ , 1)}, l = 1, ...g.

3. Analysis of a real dataset

To illustrate the methods reviewed in the preceding section, we analyze the microarray data
of liver gene expressions in “NZO/HILt mice” treated with 0.001%CL316, 243 as com-
pared with the control. This data is from The Jackson Laboratory (http://churchill.jax.org).
The mRNA samples were extracted from mice liver cells. Dye-swap design is used in this
experiment, Kerr et al. (2000). Using a graphical analysis of the normalized data set, Li and
Mansouri (2015) demonstrated that the observations violate the assumption of normality in
addition to the presence of a large amount of outliers.

For detection of differentially expressed genes in “NZO/HILt mice” data, the nominal
significance level is set to α = 0.05. Using Welch’s t-test statistic step-down procedure
of section 2.3, 4 genes were found significantly expressed based on 10,000 permutations.
Using the unadjusted permutation p−values coupled with BH step-up procedure of section
2.5, 6 genes were found significantly expressed. By using SAM of section 2.4, 7 genes were
found significantly expressed. Using the parametric bootstrap simultaneous tests (BST)
of section 2.2 with bootstrap size B = 1, 000, 4 genes were found to be significantly
expressed. Finally, using the ART method of section 2.1 with bootstrap size B = 1, 000, 7
genes were found to be differentially expressed. The results are summarized in Table 1. An
important point to note is that these methods identify different sets of genes as differentially
expressed. However, all methods identified four genes with Clone ID 1, 46, 94, and 97.

Table 1: Significantly Expressed Genes (1: significant; 0: insignificant)
Clone ID Welch’s t step-down SAM BH step-up BST ART

1 1 1 1 1 1
18 0 1 1 0 1
2 0 1 0 0 1
46 1 1 1 1 1
88 0 1 1 0 0
94 1 1 1 1 1
97 1 1 1 1 1
98 0 0 0 0 1

Total 4 7 6 4 7
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