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Abstract
Chromosomal level alterations in the genome are a hallmark of cancer, and methods to probe

copy number alterations (CNAs) have revealed a number of important drivers of oncogenesis and
tumor progression. This work is motivated by our research questions in urothelial bladder carcinoma
(BLCA), investigating the interconnections between smoking status/history and immune response in
BLCA progression. In this work, copy number profiles are characterized using Bayesian functional
data methods employing wavelet basis functions. These basis functions are well suited for the
types of profiles that appear in copy number studies using array CGH and SNP arrays. We propose
methods using these profiles for functional regression to examine the relationship to smoking and
to look at whether the altered genomic regions preferentially include genes indicative of immune
response. We apply our methods to publicly available bladder cancer data from a group of patients
with metastatic disease.
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ations

1. Introduction and Motivating Problem

This applied work focuses on making use of functional data analysis methods applied to
high dimensional copy number data to address questions in urothelial bladder carcinoma
(BLCA). While copy number alterations (CNAs) have been implicated in cancer, it remains
unclear whether the observed alterations represent general genomic instability that is char-
acteristic of tumor progression, or if the alterations signal key driver events (amplification
of oncogenes or deletion of tumor suppressor genes), or even have a role in the process
of tumorigenesis itself [5, 18, 2, 20]. As such, appropriately characterizing copy number
alteration events is an important step in both delineating the role of large-scale structural
genomic alterations in cancer, and in highlighting novel tumor suppressors and oncogenes.
The goal of the present work is to develop methods specific to the nature of copy num-
ber measurement data, working in a regression context in order to address questions about
patient characteristics associated with certain copy number patterns. While most CNA
analyses have focused on locating and cataloguing genomic loci of CNA, this work focuses
on using functional data regression methods to compare how patient traits associate with
different CN profile patterns. In particular, in the arena of urothelial bladder carcinoma,
we are interested in comparing copy number profiles in patients with muscle-invasive blad-
der cancer (MIBC) versus non-MIBC patients, and to correlate whether CN losses/gains
associate with given immune response genes. To this end, here we develop functional
data regression methods using wavelet basis functions that address common modes of copy
number measurement.
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Figure 1: Schematic depiction of different mechanisms and a listing of some of the tech-
niques used to detect chromosome-level aberrations. Adapted from [2].

1.1 Copy number data

The area of application for the functional data regression methods under consideration is
copy number data. CNAs are large, structural genomic alterations, typically ranging in
size from ∼100 kb to several mega-bases (Mbs), and can include very large events such
as deletion/amplification of whole chromosome arms, and duplication or deletion of entire
chromosomes. In the context of cancer biology, CNAs typically refer to somatic genomic
alterations, as opposed to germline variants. CNAs are detected as regional deviations
from the normal diploid condition of genomic material. A schematic of types of genomic
alteration, and listing of which CN measurement modalities are capable of detecting the
different types of variants, appears in Figure 1, adapted from Albertson, 2003 [2].

Several technical platforms have emerged for detecting large scale structural genomic
alterations in cancer tumor samples (reviewed in [3]). These include methods for whole-
chromosome visualization (such as FISH, flourescence in situ hybridization), hybridization
methods that query locations along the entire length of the genome, including SNP arrays
and array comparative genomic hybridization (CGH) methods, and sequencing-based char-
acterization of genomic content (such as RNA-seq) [9]. In this work, we focus on the data
structure arising from array CGH methods.

Array CGH is a popular method for examining CNAs, available on many commercial
platforms. In CGH methods, DNA isolated from the tissue of interest (eg tumor tissue) is
differentially labeled relative to a reference sample (eg normal tissue), and then the genomic
DNAs are cohybridized to oligonucleotide probes attached to an array surface. Hybridized
arrays are then scanned to detect the relative DNA quantities at each probe location, giving
a ratio measurement between test and reference signal [3, 13]. Measurements are reported
as log2 ratios. A schematic of the experimental set-up is given in Figure 2.

In this work, we demonstrate the functional data methods using the publicly available
dataset GSE39281 [17], available from the Gene Expression Omnibus database [4]. These
data consist of Agilent-022060 SurePrint G3 Human CGH Microarray 4x180K measure-
ments on 93 patients with metastatic urothelial carcinoma, and include 78 patients with
MIBC, and 15 patients with non-MIBC.
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Figure 2: Schematic depiction of the array CGH method. The depiction of the log2 ratio
data on the right is a representative illustration from one chromosome from one patient in
the dataset used in this work (GSE39281 [17]).

1.2 Main motivation for fitting via functional data methods

Copy number measurements obtained via the measurement modalities described above give
information about regional deviations from the normal diploid genomic condition. The ba-
sic idea in many CNA studies is to measure the level of genomic loci along the entire
chromosome (and for all chromosomes), using a high-density method for assessing the
DNA copy number such as hybridization-based SNP arrays and CGH arrays, as well as
next-generation sequencing modalities that provide read counts for genomic loci. These
measurements can be linearly displayed on chromosome maps, and as such when plotted
versus chromosome position, form a (noisy) profile of the DNA content across the chro-
mosome. Deviations from the ‘normal’ diploid condition (representing gains or losses of
regions of genetic material) can be detected as shifts in these profiles. Segments of the
chromosome that preserve the ‘normal’ condition should have consistent mean levels of
CN representing the diploid condition; altered regions will have mean levels of CN along
their segment that differs from normal. An example of a full genome scan for one patient in
the BLCA dataset is given in the upper portion of Figure 3, showing the centering of much
of the profile around zero (ie where ratio between tumor and normal reference is equal to
one), with CNAs visible as regions of varying width of displacement from the ‘normal’
condition. A focus on just one chromosome is given in the bottom portion of Figure 3.

This type of representation naturally lends itself to functional data methods, in which
the DNA copy number profiles are viewed as functions along the chromosome length, and
segmentation methods can be used to define the breakpoints where copy number shifts
occur. Functional data methods can be employed to characterize the genomic profiles and
explore them via functional data regression methods.
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Figure 3: Top: Array CGH scan (log2 ratios) for one patient across 22 chromosomes.
Bottom: Zoom in on chromosome six for the representative patient.
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2. Wavelet-based Methods for Fitting Copy Number Data

A primary focus of CN studies has been to carry out some form of segmentation of CN data
in order to locate the abrupt shifts in the genomic profile, and a variety of methods (includ-
ing functional data methods) have been proposed to pinpoint and catalog CNAs (reviewed
in [12, 19]). These methods have included wavelet-based curve estimation, proposed for
CN data by Hsu in 2005 [8], mainly as a method for denoising CN data for downstream
analyses. Much less work has been done examining CN data via wavelet basis functions
in a Bayesian framework, or employing the machinery of functional regression to explore
covariate effects on the genomic profiles viewed as functional outcomes. Wavelets have
proven useful for nonparametric function estimation problems because they are capable of
handling functions with discontinuities and other inhomogeneities, as is characteristic of
CN data in which CNAs appear as ‘breaks’ in the continuous genomic profile. In addi-
tion, wavelet methods often yield sparse representations of functions. Piecewise smooth
functions (such as the piecewise constant model for CN data) are well represented sparsely,
with larger coefficients associated only with the disjunctions in the functional profile. A
brief review of wavelets is given in the following subsection.

2.1 Brief introduction to wavelets

It is typical in nonparametric function estimation to carry out curve representation via some
form of basis expansion, often employing smooth basis functions such as splines. Wavelets
are a class of functions that possess oscillatory behavior and compact support (or have
the property of rapidly decaying to zero if not compactly supported), and allow multiscale
representation of underlying functions. Curve fitting using wavelets estimate the unknown
profile function with a linear combination of wavelet basis functions, requiring estimation
of the regression coefficients from the linear combination. So, for an unknown function
f(x), we can decompose it as:

f(x) = β0 +

J−1∑
j=1

n(j)∑
i=1

βjiBji(x),

with the double summation characterizing the multiple resolution levels of the wavelet
bases, and Bji generically representing the wavelet basis functions.

Given a mother wavelet function, wavelets are generated via dilation and translation of
the mother wavelet functions. The wavelet basis set employed in this work for CN data is
the Haar basis, with the mother wavelet function given by:

ψ(x) =


1 x ∈ [0, 12)
−1 x ∈ [12 , 1)
0 otherwise

(1)

For given integers j, k, the functions formed by:

ψj,k(x) = 2
j
2ψ(2jx− k) (2)

form an orthonormal set; in fact, {ψj,k(x)}j,k∈Z can be a complete orthonormal basis for
L2(R).

A function f(x) ∈ L2(R) can be represented into the following generalized Fourier
series:
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f(x) =
∞∑

j=−∞

∞∑
k=−∞

dj,kψj,k(x), (3)

where dj,k are wavelet coefficients derived according to:

dj,k =

∫ ∞

−∞
f(x)ψj,k(x) = ⟨f, ψj,k⟩ .

The Haar father wavelet (scaling function) is given by:

ϕ(x) =

{
1 x ∈ [0, 1]

0 otherwise
,

with finest-level (scale 2J ) father wavelet coefficient given by

cJ,k =

∫ 1

0
f(x)2J/2ϕ(2Jx− k)dx =

∫ 1

0
f(x)ϕJ,k(x)dx.

The associated Haar father wavelets are given by:

ϕJ,k(x) =

{
2J/2 x ∈ [2−Jk, 2−J(k + 1)]

0 otherwise

The set of coefficients {cJ,k}2
J−1

k=0 and the associated Haar father wavelets at scale J
give an approximation to a function f(x) given by:

fJ(x) =

2J−1∑
k=0

cJ,kϕJ,k(x).

For the approximation to a function at adjacent scale levels, the finer approximation at
level J is equal to the courser approximation given at level J − 1, plus the additional detail
encapsulated in the detail coefficients at the coarser level; so,

fj+1(x) = fj(x) +
2j−1∑
k=0

dj,kψj,k(x)

=
2j−1∑
k=0

cj,kϕj,k(x) +
2j−1∑
k=0

dj,kψj,k(x).

So the Haar father wavelet approximation at finer scale j +1 is equivalent to the father
wavelet approximation at scale j, plus the details stored in the coefficients {dj,k}2

j−1
k=0 .

These ideas characterize the multiresolution nature of wavelets, with representations at
progressively finer levels of detail, enabling capture of information both in a frequency
domain and a location domain.

This characterization effectively means that a general function f(x) can be represented
as a sum of a ‘smooth’ or ‘kernel-like’ part involving the father wavelet ϕj0,k and a set of
detail representations involving the mother wavelet

∑
k∈Z dj,kψj,k(x). The ϕj0,k represents

the ‘average’ or ‘overall’ level of the function, and the rest represents detail of the function.
Wavelet coefficients represent differences in averages that can be used to represent

mean copy number of adjacent chromosomal segments, so are well suited to determining
the boundary locations of shifts in copy number.
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2.2 Wavelet shrinkage

In wavelet shrinkage, a function is observed contaminated with additive noise. A vector of
observations y = (y1, . . . , yn) of a function are assumed to arise from the following model:

yi = g(xi) + ϵi, (4)

for unknown ‘true’ function g(x). The function is transformed to wavelet domain via a dis-
crete wavelet transform (DWT), where the noisy function’s wavelet coefficients undergo
shrinkage or thresholding. Note that the DWT can be characterized as an orthogonal ma-
trix multiplication, but actual computational implementation proceeds via much faster and
efficient algorithms that do not employ matrix manipulations. The key ideas underpin-
ning wavelet shrinkage were introduced in [7]. Subsequently, an inverse wavelet trans-
formation allows estimation of the function. It is typically assumed that observation of
the function occurs at equal intervals, and that the ϵi ∼ N(0, σ2) and are independent. As
hybridization-based CN data is not usually measured at equally spaced genomic loci, appli-
cation of wavelet methods to CN data require some adjustment to accomodate the uneven
measurement grid (see [8] and references therein and [15]).

The DWT is applied to model (4) above, moving from the data space to the wavelet
space. Let W represent the matrix of the transform, and let y, g, and e be vectors of obser-
vations, the true unknown function, and noise, respectively. Then let d∗ = Wy, d = Wg, and
ϵ = We. Then we have the wavelet-transformed model:

d∗ = d+ ϵ. (5)

For functions that are smooth or smooth with discontinuities, the vector d is sparse. Since
W is orthogonal, the wavelet transform ϵ of the white noise error is also white noise. The
main idea of shrinkage is that large values of coefficients in the wavelet domain most likely
contain signal and noise, where smaller coefficients are mostly just noise. So thresholding
these coefficients forms an estimate d̂, by removing coefficients in d∗ below the threshold.

2.3 Bayesian wavelet shrinkage

In a Bayesian framework, knowledge that the vector of wavelet coefficients form a sparse
set can be leveraged into specification of a prior distribution on the ‘true’ wavelet coef-
ficients, dj,k. Following transforming observed genomic profile data from data domain to
wavelet domain via wavelet transform, the posterior distribuition of the wavelet coefficients
d∗j,k can be computed using the sparsity prior. Then the inverse wavelet transform is used on
the wavelet coefficients posterior distribution (or some value like posterior mean or median
of coefficients), to get a Bayesian estimate of the ‘true’ function.

As in the frequentist setting, denoising of functions or smoothing in the wavelet domain
in a Bayesian framework proceeds via some version of thresholding of wavelet coefficients
after transforming from data space to wavelet space. This involves prior specification on the
wavelet coefficients to enforce sparsity assumption. Several sparsity-inducing priors have
been proposed, including a mixture of Gaussians [6], which sets certain coefficients to be
very small (but not identically zero). A function that has a truly sparse wavelet transform
(such as one that is piecewise smooth with jump discontinuities) can be handled with a
sparsity inducing prior that allows for exact zero coefficients to be produced. To achieve
this, Abromowich (1998) proposed a mixture of a Gaussian distribution with degenerate
point mass at zero to allow some coeffiencts to be forced fully to zero [1]. This idea was
extended to a mixture of point mass at zero with a heavy-tailed distribution by Johnstone
and Silverman [10], to allow for some true zero coefficients, as well as some (much) larger
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Figure 4: Examples of fitted profiles for chromosome 17 for three patients (solid black line
indicates wavelet-based fitted curve).

coefficient values. Empirical Bayes estimates are often used to determine hyperparameters
for carrying out shrinkage.

The Johnstone and Silverman prior for wavelet coefficient d uses mixture of heavy-
tailed distribution and point mass:

π(d) = ωτ(d) + (1− ω)δ0(d),

for mixing weight ω, and τ a heavy tailed distribution that is symmetric, unimodal, and
with heaviness not greater than Cauchy distribution.

Mixing weights are estimated by marginal maximum likelihood then plugged in to prior
to produce posterior distribution of the coefficients.

Examples of fitted profiles for several patients in the GSE39281 dataset are given in
Figure 4. In this figure, chromosome 17 is shown from three patients, with wavelet-based
fitted curves for each profile overlaid in the solid black line. Datapoints represent log2 ratio
measurements of tumor versus normal probe reading for that probe locus, and both ’wider’
events of CNA, as well as the ability of the estimation procedures to capture narrow, focal
events, are apparent.

3. Wavelet-based Functional Data Regression for Copy Number Data

Functional data regression methods have received much recent attention and methodologi-
cal development, as they allow for characterizing covariate effects on functional outcomes,
treating the entire function as the object of analysis, or allowing for covariates themselves
that are functional in nature (see [14] for a recent review). The methods received huge im-
petus via their discussion in one of the key resources on functional data analysis, Ramsay
and Silverman’s 2006 monograph on the topic ([16].
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In the present work, we examine functional response regression for CNA data, viewing
the genomic copy number profiles as functional outcomes, and attempting to assess whether
mean CN profiles differ between MIBC and non-MIBC patients. In bladder cancer, CNAs
are thought to be more frequently associated with MIBC as opposed to non-MIBC cases
[11]. Some alterations, such as alterations in Chromosome 9, can be quite common in
BLCA (>50% prevalence, in both MIBC and non-MIBC patients), while other alterations
can be more common in one group compared to another [11]. Delineating what patient
characteristics (including muscle-invasiveness) are associated with CNA patterns can lead
to important clues into the mechanistic process of cancer progression and large-scale ge-
nomic instability, and functional data regression methods can provide a valuable tool in
identifying possible drivers of progression pathways (see discussion in [11]).

The general question in this case is whether the shape of the overall profile (function)
depends on to which categorical class the profile belongs. For the CN data, for instance,
each patient has a copy number profile along the genome (or along a given chromosome),
and it might be of interest whether those profiles differ between categorical groups of pa-
tients (eg treated versus untreated, MIBC versus non-MIBC, etc).

The general model is given by:

fik(t) = µ(t) + αk(t) + ϵik(t),

where fik(t) is the profile for the ith individual in the kth categorical group, µ(t) is the
overall mean response across all individuals, and the αk(t) functions are the effect functions
for each categorical group, representing departures from the overall profile that are group-
specific. The residual functions ϵik(t) capture residual variation left over after explaining
the outcome function using the information contained in the group categories. For scalar
predictors, the design matrixX containing values of the p predictor variables uses the scalar
values of the predictors rather than the (0, 1) coding used for categorical predictors.

The inferential goal here is to estimate the functional parameters µ and αk using the
data from the profiles, and to determine if differences exist between profile groups based
on group membership.

In matrix notation, with information on the p predictors in design matrix X, with obser-
vations of function fik(t) given by vector yi(tj) for individual i at time j, j = 1, . . ., Ni, we
have:

Yi(tj) =

p∑
a=1

XiaBa(tj) + Ei(tj), (6)

where coefficient Ba(t) is the effect of predictor Xa on the functional response at t.
Functional data regression using wavelet bases is especially challenging given the inho-

mogeneous nature of the profiles. Ideally, the goal is to be able to examine the CN profiles,
where individuals have discontinuities at different locations, over different portions of the
support space, and of differing amplitude, and be able to connect the patterns of response
to underlying clinical features that define the patient groups.

A key limitation to carrying out wavelet based function-on-scalar regression models is
the availability of software to implement the procedures described above. We have carried
out analyses of the public dataset GSE39281 using the WFMM software made available by
Morris, et al, and described in [15]. This software implements Bayesian estimation of the
functional wavelet mixed effects models for replicated functional data, and can be modified
to handle a variety of regression models. Implementation was in Matlab2015a.
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3.1 Application to urothelial bladder carcinoma patient data

Functional response regression methods allow us to use the information in genomic profiles
of multiple individuals who have either muscle invasive or non-muscle invasive bladder
carcinoma. A goal of the analysis is characterization of whether overall mean genomic
response profiles differ between the groups, either in terms of location of key features or
their amplitude.

Results for model fitting procedures for chromosome 6 appear in Figure 5, with non-
MIBC mean profile shown in red and MIBC profile shown in blue. As is apparent, there is
substantial overlap between the profiles for the different groups, including where they are
deviating from the normal diploid condition, indicating that, for this chromosome at least,
the nature of large scale structural genomic alterations do not strongly differentiate muscle
invasive from non-muscle invasive disease. It is interesting to note that there are some
noticable differences in amplitude for certain focal events, however, which are noted in
Figure 5. Intriguingly, several of these highlighted narrow scale events are associated with
genes known from other types of studies to be associated specifically with bladder cancer
or that are connected to immune response, which is of particular interest in our study.

3.2 Ongoing work

Work using functional data regression methods to fully characterize these structural ge-
nomic events, differentiating MIBC and non-MIBC patients, continues to proceed, with
special emphasis on developing formal inference. We are also continuing our development
of novel data-adaptive shrinkage prior specifications, geared towards incorporating prior
knowledge specific to the copy number setting. In particular, we are developing novel pri-
ors for use in wavelet shrinkage that allow capturing of information about event width.
Inferential procedures employed with CN profiles have focused on event amplitude and
overlap between individiuals, but have failed to address event width (and the concommi-
tent issues of non-independence of genes within broad regions). This is an exciting area to
be applying functional data regression methods and they provide an important tool capable
of addressing key questions in copy number biology that have been inaccesible to previous
methods.
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Figure 5: Wavelet regression fits of MIBC (blue) and non-MIBC (red) BLCA data for
Chromosome 6.
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