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Abstract 
 
This presentation deals with correlating two variables that have values that fall below the 
known limit of detection (LOD) of the measuring device; these values are known as non-
detects (NDs). We use simulation to compare several methods for estimating the 
association between two such variables. The most commonly used method, simple 
substitution, consists of replacing each ND with some representative value such as 
LOD/2. Spearman's correlation, in which all NDs are assumed to be tied at some value 
just smaller than the LOD, has also been used. We evaluate each method under several 
scenarios, including small to moderate sample size, moderate to large censoring 
proportions, extreme imbalance in censoring proportions, and non-bivariate normal 
(BVN) data. The methods are compared in terms of estimation bias, median absolute 
deviation, 95% confidence interval width, etc., but our primary focus is on coverage 
probability. A maximum likelihood approach based on the assumption of BVN data has 
acceptable performance under most scenarios, even with non-BVN data. Spearman's rho 
also performs well under many conditions. The methods are illustrated using real data 
taken from the biomarker literature. 
 
Keywords:  confidence interval; coverage probability; left censoring; limit of detection; 
maximum likelihood; Spearman correlation 
 

1. Introduction 
 

 In biomarker research studies, it is not uncommon for there to be specimens for 
which the concentration of the biomarker is below the limit of detection (LOD). In other 
words, any concentration below a certain value (the LOD) cannot be detected with the 
measuring device used to determine the levels of the analyte in the biological specimens. 
The only information available for such a specimen is that the analyte is present at some 
level greater than zero but less than the LOD. Such observations are most commonly 
referred to as non-detects (NDs), and are usually treated in statistical analyses of the 
biomarker data as being left-censored. 
 Applied researchers who work with biomarkers frequently encounter specimens   
with non-detectable concentrations of the analytes of interest. For example, NDs were a 
serious problem in the study by Amorim and Alvarez-Leite (1997), who examined the 
validity of urinary o-cresol as a biomarker of exposure to toluene.  Using urine samples 
of individuals exposed to toluene in shoe factories, painting sectors of metal industries, 
and printing shops, Amorim and Alvarez-Leite correlated the concentrations of urinary o-
cresol with urinary hippuric acid, which at the time of their study was the most 
commonly used biomarker for occupational toluene exposure. In 39 of the 54 urine 
samples in their study (72%), the o-cresol concentration was below its LOD (0.2 μg/ml).  
In 4 of the 39 urine samples with ND o-cresol (10%), the hippuric acid concentration was 
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below its LOD (0.1 mg/ml).  In other words, only 15 samples (28%) had "complete data" 
for both biomarkers. 
 In another example of a biomarker research study in which NDs were a concern, 
Atawodi et al. (1998) evaluated hemoglobin adducts as biomarkers of exposure to 
tobacco smoke. They compared the adduct levels of 18 smokers with those of 52 “never 
smokers.” In 7 of the 52 samples from the "never smokers" (13%), the hemoglobin 
adduct levels were below the LOD (9 fmol HPB/g Hb). 

From our perspective, the statistical methods that are most commonly used to 
analyze biomarker data that include NDs are flawed. One of the most frequently used 
methods is to remove the specimens with NDs from the statistical analysis and analyze 
only the "complete data." In their evaluation of the urinary concentration of trans, trans 
muconic acid (t,t-MA) as a biomarker for low-level benzene exposure, Lagorio et al. 
(1998) used this approach. Three different pre-analytical procedures (filtration, methanol 
dilution, ether extraction) were applied to urine samples from 10 Estonian shale oil 
workers, and Lagorio et al. examined the inter-correlations among the three procedures 
using only the samples with no NDs for any of the 3 methods.  Another commonly used 
approach for dealing with NDs is "simple substitution." In this approach, one simply 
replaces the missing biomarker levels with some substitute value and then performs the 
“usual” statistical analysis on the new sample of data that includes the substituted values 
in place of the NDs. The values that are most commonly substituted are the LOD 
(Amorim and Alvarez-Leite, 1997; Atawodi et al., 1998) and LOD/2 (Cook et al., 1993).  

Nonparametric methods have also been applied to biomarker data that includes 
NDs. In this approach, one treats all NDs as if they were tied at some value just below the 
LOD.  For example, if one wished to correlate two biomarkers X and Y, at least one of 
which was undetectable in one or more specimens, one could calculate Spearman’s rs 
using the ranks of the X and Y values based on the entire data set.  In this approach, all 
NDs for each variable would be assigned the smallest midrank. Alternatively, if one 
wished to compare two groups in terms of a biomarker that was subject to NDs, one 
could use the Mann-Whitney-Wilcoxon test after computing the ranks based on the 
combined sample of data from the two groups.  Again, each of the NDs would be 
assigned the smallest mid-rank. In their statistical evaluation of hemoglobin adducts as 
biomarkers of exposure to tobacco smoke, Atawodi et al. (1998) used this approach and 
found that the HPB-Hb adduct level was significantly higher in smokers than in never 
smokers (p = 0.02). 

2. Maximum Likelihood Approach 
 

 In this presentation, we focus on the problem of correlating two biomarkers that 
are both subject to left-censoring. Wang (2006) demonstrated via simulation that, for this 
analysis, none of the "standard" methods described above for dealing with NDs are 
satisfactory, especially if the two biomarkers are strongly positively correlated (  ≥ 0.5).  
 When X and Y follow a bivariate normal distribution and both X and Y have  
known LODs, the preferable approach is to use the maximum likelihood (ML) method 
proposed by Lyles et al. (2001) to estimate the Pearson correlation between X and Y. In 
this section, we briefly describe the statistical theory behind this method.  

Let X and Y denote the two biomarkers to be correlated and let Lx and Ly denote 
their known detection limits, respectively. Based on the assumption that the non-censored 
values of X and Y follow a bivariate normal distribution, Lyles et al. developed a method 

for estimating the population parameter vector θ 2 2, , , ,x y x y         using ML 

estimation. Let 1 1 2 2{( , ),( , ),...,( , )};n nx y x y x y  i = 1, …, n denote the observed sample of 
(x, y) values (including the NDs). Lyles et al. categorized the observed pairs of (x, y) 
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values as follows: (1) pairs where both x and y are observed (the "complete data"), (2) 
pairs where x is observed but y <  Ly, (3) pairs where y is observed but x < Lx, and (4) 
pairs where x < Lx and y < Ly. Following the same notation as that used by Lyles et al., the 
contribution of each Type 1 pair to the likelihood function of the entire sample is: 
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where Φ(·) denotes the standard normal distribution function.  Similarly, the contribution 
of each Type 3 pair is:             
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       Finally, the contribution of each Type 4 pair is: 
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Without loss of generality, suppose the (x, y) pairs are ordered and indexed by i so that all 
Type 1 pairs come first, followed by all Type 2, 3, and 4 pairs. In addition, assume that 

there are nj terms of type j (j = 1, 2, 3, 4) and define 


 
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jk nn

1

for k = 2, 3. Then, the 

likelihood for the entire sample (including the NDs) is:  
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where x is the vector of observed x-values, y is the vector of observed y-values, and ti1, 
ti2, ti3, t4  are given by Equations (1), (2), (3), and (4), respectively. 

Once the likelihood function in (5) has been maximized and the ML estimates 
and their estimated standard errors have been calculated, one can compute an 
approximate 100(1-α)%  Wald-type confidence interval (CI) for ρ:  

     
/2 ( ),ML MLz SE   

where zα/2 denotes the upper α/2-percentage point of the standard normal.  Because Wald-
type CIs are can be suspect when n is small, Lyles et al. also considered profile likelihood 
(PL) CIs. They found that, generally, the PL intervals performed better than the Wald-
type intervals. However, PL intervals are more difficult computationally since they 
usually do not have a closed-form expression. An alternative approach is to use a CI 

based on an improved Fisher z transformation of  ,ML as will be discussed in the 
following section. 
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3. Correlation Coefficient Confidence Interval Methods When 
Both Variables Are Subject to Limits of Detection 

 
 In her doctoral dissertation, McCracken (2013) compared the following methods 
for estimating the true correlation between X and Y when both X and Y are subject to 
limits of detection: 
(1) Maximum Likelihood [Lyles et al. (2001)] 
(2) Simple Substitution: replace each ND by  
 (a) LOD 
 (b) LOD/2  

 (c) / 2.LOD  
(3) Complex Substitution (Lynn 2001, McCracken 2013): Replace each ND among 
 the x-values by ( | )i i xE X X LOD  and each ND among the y-values by 

 ( | ).i i yE Y Y LOD  That is, replace each ND for each variable by the 

 conditional mean of that variable, given that it is known that the variable is less 
 than its LOD. See Lynn (2001) for computational details. 
(4) Random Imputation:  Replace each ND among the x-values by a value randomly 

selected from the interval [0, LODx], and replace each ND among the y-values by 
a value randomly selected from the interval [0, LODy]. 

(5) Spearman's correlation: Treat each ND among the x-values as being an 
 observation that is tied at some value just smaller than the smallest observed x-
 value, and treat each ND among the y-values as being tied at some value just 
 smaller  than the smallest observed y-value. 
 
 For estimation methods (1) - (4) described above, a 2nd-order Fisher z-
transformation, which provides a more accurate estimate of the variance of ˆ( )z  , was 
used to find an approximate 95% CI for the true value of the Pearson correlation between 
X and Y. Confidence intervals based on this method have improved coverage probabilities 
relative to those based on the usual Fisher z-transformation, and the improved 
transformation poses no computational difficulties. Details of this method are provided in 
Li, Wang, and Chan (2005) and McCracken (2013).  
 For Spearman's coefficient (method (5)), both the Jackknife and approximate 
bootstrap confidence interval (ABC) were considered for finding a 95% CI for the true 
value of the correlation. McCracken examined rs as a surrogate for r (to be used in place 
of r when X and Y do not follow a BVN distribution), as well as an estimate of the true 
population rank correlation, ρs.  Defining the true value of the Spearman coefficient is not 
straightforward (Gibbons and Chakraborti 2003); McCracken followed Newton and 
Rudel (2007) and used a simulation-based estimate of ρs as the true value. In other words, 
the true value of Spearman's coefficient was taken to be the mean of the 5,000 sr values 

calculated from the Monte Carlo samples before the censoring schemes were applied. In 
the Monte Carlo simulation study described below, McCracken found that the Jackknife 
method for finding a 95% CI for the true value of the Spearman correlation based on the 
sample value rs was generally as good as, if not better than, the ABC method in terms of 
coverage probability, and was much easier computationally. Thus, the results for 
Spearman's coefficient provided in the presentation are based on the Jackknife intervals. 
 Each of the confidence interval methods considered by McCracken (2013) is 
illustrated in the Example in Section 5, and R code for calculating each of the point 
estimates and corresponding CIs can be obtained from the second author.   
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4. Simulation Study Comparing the Various Confidence Interval Methods 
 

 McCracken (2013) performed extensive Monte Carlo simulations to compare 
95% CIs based on the 5 point estimation methods describe above. She examined multiple 
settings of several simulation parameters:  (1) Sample size (n = 20, 30, 50, 75, 100, 200, 
500); (2) True correlation between X and Y prior to censoring (ρ = -0.9, -0.6, -0.5, -0.25, 
0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9); and (3) Censoring proportions 
on X (denoted by p1) and Y (denoted by p2).  Fifty-five combinations of censoring 
proportions were examined, including 12 balanced and 43 unbalanced combinations.  The 
following balanced combinations were considered: (p1, p2) = (0,0), (10, 10), (20, 20), (25, 
25), (30, 30), (40, 40), (50, 50), (60, 60), (70, 70), (75, 75), (80, 80), and (90, 90).  
Examples of unbalanced combinations included: (p1, p2) =  (10, 0), (10, 5), (10, 50), (10, 
75), (20, 50), (25, 75), (30, 75), (90, 45), and (90, 0).  
 In addition to the various settings of n, ρ, and (p1, p2) considered by McCracken, 
three different distributions were considered for the true bivariate distribution of X and Y: 
bivariate normal (BVN), bivariate gamma (BVG), and bivariate beta (BVB). The non-
BVN distributions were chosen to represent varying degrees of departure from the BVN 
assumption, as measured by Mardia's measures of multivariate skewness and kurtosis 
(denoted by β1,p and β2,p, respectively).  For the BVN, β1,2 = 0 and β2,2 = 8.  For the BVG 
distribution used in the simulation study, β1,2 = 3.5 and β2,2 = 12, and, for the BVB, β1,2 = 
3 and β2,2 = 10. 
 In total, 18,480 different combinations of simulation parameter settings 
(including the 3 bivariate distributions) were examined. A total of 5,000 Monte Carlo 
samples were used to evaluate each combination of settings. 
 In the simulation study, each of the five estimation methods described above 
were evaluated in terms of: (1) bias (and absolute bias), (2) median absolute deviation, 
(3) confidence interval width, and (4) confidence interval coverage probability (CP).  
However, because of space limitations, this presentation is concerned only with the CP of 
the 95% confidence intervals based on the ML and Spearman methods. 
 The ML-based confidence intervals had the best overall performance in terms of 
CP and can generally be recommended even when the BVN assumption is suspect. This 
is somewhat surprising since the MLEs were derived under the assumption of BVN. For 
extreme negative values of ρ, small sample sizes and/or extremely heavy or imbalanced 
censoring, the ML method may not produce a valid point estimate (due to failure of the 
optimization routine to converge) and/or the corresponding ML-based CI may be 
unreliable.  This is especially true when the true joint distribution of X and Y differs 
substantially from the BVN. Under these circumstances, Spearman's coefficient and the 
corresponding Jackknife CI would be the best alternative for finding a 95% CI for the 
true correlation between X and Y.  

McCracken's simulated CP results are briefly summarized in Tables 1, 2, and 3 
for the 95% approximate CIs for ρ based on the ML method (using the improved Fisher z 
transformation) and the approximate CIs based on Spearman's coefficient (using the 
Jackknife), considered as an estimate of ρs.  Table 1 examines the effect of the X and Y 
censoring proportions on the CP of these intervals.  Because of space limitations, 
simulation results for only a subset of the censoring proportions considered by 
McCracken can be summarized here: (p1, p2) =  (0, 0) (0.1, 0.7) (0.25, 0.25) (0.25, 0.75) 
(0.5, 0.5) (0.75, 0.375) (0.9, 0) (0.9, 0.9).  For each of these values of (p1, p2) and each 
bivariate distribution, the median CP over all settings of the other simulation parameters 
(i.e., the true value of ρ or ρs, and n) was calculated. In the bottom half of Table 1, the 
"non-normal" simulated results were obtained by averaging the CPs for the two methods 
calculated using the simulated BVG and BVB data.  For example, for censoring 
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proportions (p1,  p2) = (0.1, 0.7), the median CP over all other simulation parameter 
settings was 94.8% for the ML method and 91.5% for Spearman's coefficient when the 
data were generated from the BVN.  When data were generated from the non-BVN 
distributions, the median CPs for the ML and Spearman's methods were 93.9% and 
92.9%, respectively.   

To determine if the CPs of the CI methods differed in any substantial way from 
the nominal 95% confidence level, McCracken (2013) used the “liberal” guideline 
proposed by Bradley (1978) for evaluating the robustness of a statistical test:  if the true 
significance level differs from the nominal value by no more than α /2, the test is robust. 
If the true significance level differs by more than α /2 from the nominal value (either 
above or below), the test is not robust.  In this presentation, we apply the Bradley 
criterion as follows: if the CP produced by the CI method differs from the 95% nominal 
confidence level by no more than 2.5%, the CP is deemed to be acceptable. If the CP 
differs by more than 2.5% from the 95% level (either above or below), the CP is deemed 
to be unacceptable.  Thus, for this presentation, the CP must be between 92.5% and 
97.5% for the CI procedure to be classified as "acceptable" for that combination of 
simulation parameter settings. 

In Table 1, the values in boldface indicate median CPs that were less than the 
lower acceptability limit of 92.5%. Note that the ML-based CIs yielded acceptable CP for 
all censoring proportions except (0.9, 0.9) with BVN data and (0, 0) and (0.9, 0.9) for 
non-BVN data. The Spearman-based CIs performed as well as the ML-based intervals for 
many combinations of censoring proportions, but failed to maintain the 92.5% level in 
several instances, especially for BVN data.   

Table 2 examines the effect that the true value of the association parameter 
(either Pearson's correlation or Spearman's coefficient) had on the median CP of the CIs 
based on the ML and Spearman methods. Values in boldface again indicate median CPs 
that did not exceed the lower acceptability limit of 92.5%. Note that the ML-based CIs 
maintained an acceptable CP value for all values of ρ except -0.9 with BVN data; 
however, they did not perform as well with non-BVN data.  The Spearman-based CIs 
generally performed as well as the ML intervals with non-BVN data, but failed to achieve 
the 92.5% acceptability limit for several values of ρ with BVN data.  

Table 3 examines the effect of n on the median CP of the ML- and Spearman-
based CIs.  As in Tables 1 and 2, the values in boldface indicate median CPs that did not 
achieve the lower acceptability limit of 92.5%. Surprisingly, the ML method maintained 
an acceptable value of CP for all sample sizes except n = 500 when the data were non-
BVN.  Spearman's performed almost as well as the ML method with non-BVN data, but 
failed to achieve the 92.5% limit for several sample sizes with BVN data. 

To summarize the simulation results presented here, McCracken's study showed 
that, as expected, with BVN data, the ML method was superior to the Spearman method 
under all conditions considered and had median CP above 92.5% except when p1 = p2 = 
0.9. With non-BVN data, the performance of the ML-based intervals was still superior to 
the Spearman-based intervals except under some scenarios involving moderate to large n, 
small |ρ| and very light censoring combinations.  The Jackknife CIs based on Spearman’s 
rs (as an estimate of ρs) performed acceptably as long as |ρs| was small or moderate, the 
sample size was not too large (i.e., less than 500), and the censoring proportion for X was 
small to moderate and there was little or no censoring on Y.  The CIs based on rs 
generally performed better for non-BVN data than for BVN data.  
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Table 1  Comparison of Median Coverage Probability of 3 CI Methods, 
by Censoring Proportions 

 
                                      
                            Method 
 

 
 
 
Distribution 

 
 
 

Censoring 
Proportions 

(p1, p2) 

 
Maximum 
Likelihood 

 

 
Spearman's rs 

(Jackknife Interval) 
 

 
Normal 

 
(0, 0) 

 
94.8 

 
93.8 

 
Normal 

 
(0.1, 0.7) 

 
94.8 

 
91.5 

 
Normal 

 
(0.25, 0.25) 

 
94.8 

 
94.1 

 
Normal 

 
(0.25, 0.75) 

 
94.8 

 
89.9 

 
Normal 

 
(0.5, 0.5) 

 
94.7 

 
92.5 

 
Normal 

 
(0.75, 0.375) 

 
94.9 

 
88.4 

 
Normal 

 
(0.9, 0) 

 
94.9 

 
33.8 

 
Normal 

 
(0.9, 0.9) 

 
90.0 

 
61.8 

---------------------------------------------------------------------------------------------- 
 
Non-Normal 

 
(0, 0) 

 
91.0 

 
93.9 

 
Non-Normal 

 
(0.1, 0.7) 

 
93.9 

 
92.9 

 
Non-Normal 

 
(0.25, 0.25) 

 
93.4 

 
94.1 

 
Non-Normal 

 
(0.25, 0.75) 

 
94.0 

 
91.8 

 
Non-Normal 

 
(0.5, 0.5) 

 
93.8 

 
93.7 

 
Non-Normal 

 
(0.75, 0.375) 

 
94.0 

 
92.5 

 
Non-Normal 

 
(0.9, 0) 

 
93.2 

 
69.7 

 
Non-Normal 
 

 
(0.9, 0.9) 

 
85.8 

 
74.3 
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Table 2  Comparison of Median Coverage Probability of 3 CI Methods, 
by True Parameter Value 

 
                                      
                          Method 
 

 
 
 
Distribution 

 
 
 

True Value  
of *  

 

 
Maximum 
Likelihood 

 

 
Spearman's rs 

(Jackknife Interval) 
 

 
Normal 

 
-0.9 

 
90.8 

 
15.8 

 
Normal 

 
-0.5 

 
94.6 

 
91.6 

 
Normal 

 
-0.25 

 
94.9 

 
93.3 

 
Normal 

 
0.0 

 
95.0 

 
94.4 

 
Normal 

 
0.25 

 
95.0 

 
93.0 

 
Normal 

 
0.5 

 
94.9 

 
91.9 

 
Normal 

 
0.75 

 
94.7 

 
89.0 

 
Normal 

 
0.9 

 
94.4 

 
76.7 

------------------------------------------------------------------------------------------------ 
 
Non-Normal 

 
-0.9 

 
87.6 

 
15.4 

 
Non-Normal 

 
-0.5 

 
91.7 

 
92.0 

 
Non-Normal 

 
-0.25 

 
92.9 

 
93.3 

 
Non-Normal 

 
0.0 

 
89.3 

 
94.2 

 
Non-Normal 

 
0.25 

 
94.0 

 
94.2 

 
Non-Normal 

 
0.5 

 
93.5 

 
93.4 

 
Non-Normal 

 
0.75 

 
93.4 

 
91.1 

 
Non-Normal 

 
0.9 

 
91.4 

 
79.8 

 
 

*  ρ for Pearson correlation,   ρs for Spearman's coefficient
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Table 3  Comparison of Median Coverage Probability of 3 CI Methods, 
by Sample Size 

 
                                      
                              Method 
 

 
 
 
Distribution 

 
 
 

Sample 
Size 

 
Maximum Likelihood 

 

 
Spearman's rs 

(Jackknife Interval) 
 

 
Normal 

 
20 

 
94.1 

 
92.3 

 
Normal 

 
30 

 
94.4 

 
93.3 

 
Normal 

 
50 

 
94.5 

 
93.0 

 
Normal 

 
75 

 
95.2 

 
93.1 

 
Normal 

 
100 

 
95.0 

 
92.2 

 
Normal 

 
200 

 
94.8 

 
88.0 

 
Normal 

 
500 

 
95.2 

 
73.3 

----------------------------------------------------------------------------------------------------- 
 
Non-Normal 

 
20 

 
93.3 

 
92.4 

 
Non-Normal 

 
30 

 
93.7 

 
93.4 

 
Non-Normal 

 
50 

 
93.8 

 
93.7 

 
Non-Normal 

 
75 

 
93.8 

 
93.8 

 
Non-Normal 

 
100 

 
93.7 

 
93.9 

 
Non-Normal 

 
200 

 
93.2 

 
93.7 

 
Non-Normal 

 
500 

 

 
91.7 

 
90.6 
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5. Example 
 
 In the Introduction, we described the study by Amorim and Alvarez-Leite (1997), 
who examined the validity of urinary o-cresol as a biomarker of exposure to toluene by 
correlating it with urinary concentrations of hippuric acid in 54 individuals with 
occupational exposure to toluene. A scatterplot of the data provided in their article is 
given in Figure 1. In the plot, a zero value is used to represent each ND. The bivariate 
normality assumption is rejected using the complete cases (Shapiro-Wilk p < 0.0001 for 
both the 15 o-cresol values and the 15 corresponding hippuric acid values). The ML 
method for estimating the Pearson correlation in the presence of NDs yields 
 0.79, ML with a 95% modified Fisher z CI(ρ) of (0.66, 0.87). Applying the standard 
approach for Pearson's correlation based on the traditional Fisher z-transform to the 15 
cases with complete data (the "complete case" analysis) yields r = 0.76 with a 95% CI(ρ) 
of (0.40, 0.92).  Using simple substitution (replacing the NDs by LOD/2, as was done by 

Amorim and Alvarez-Leite) yields  /2 0.79,LOD  with a 95% modified Fisher z CI(ρ) of 
(0.65, 0.87).  
 A summary of the results obtained using each of the methods examined by 
McCracken (2013) in her simulation study is provided in Table 4. In this table, we also 
provide results for two methods that were not included in the simulation study: Kendall's 
concordance coefficient and simple substitution with 0 in place of each of the NDs. Both 
of these methods have been employed in published biomarker studies in which NDs were 
present. The table indicates that the results for the ML-based CI method differ very little 
from those produced by the various substitution methods, with the exception of random 
substitution.  However, there is quite a discrepancy between the results for the MI-based 
CI and the CIs obtained using the either the Spearman or Kendall coefficients.   
 How does one decide which confidence interval method is most appropriate for 
this set of data? We recommend using the summary results presented in Tables 1-3 to 
help make this decision. With regard to Table 1, the censoring proportions in this 
example are p1 = 7% (4/54) for hippuric acid and p2 = 72% (39/54) for o-cresol.  The 
closest censoring proportions in Table 1 are (p1, p2) = (0.1, 0.7).  For (X, Y) data that do 
not appear to satisfy the BVN assumption (as in this example), CIs based on either the 
MLE or Spearman's rs maintain acceptable CP under (p1, p2) = (0.1, 0.7): 93.9% for ML 
and 92.9% for rs. With regard to Table 2 (non-BVN section), CIs based on the MLE 
achieve acceptable CP (93.4%) when the true value of ρ is approximately 0.75, which is a 

reasonable assumption based on the results in Table 4 (  0.79 ML ). Similarly, CIs based 
on Spearman's rs (as an estimate of ρs) achieve acceptable CP (93.4%) when the true 
value of ρs is approximately 0.5, which appears to be a reasonable assumption based on 
the results in Table 4 (rs = 0.58).  Finally, with regard to Table 3 (non-BVN section), we 
see that CIs based on either the MLE (93.8%) or Spearman's rs (93.7%) achieve 
acceptable CP when n is approximately 50, which it is in this example (n = 54).  Thus, 
McCracken's simulation results (as summarized in Tables 1 - 3) give no indication that 
we should doubt the validity of either the ML-based CI or the rs -based CI (rs considered 
as an estimate of ρs).  Given the apparent strong departure from BVN for these data, and 
that the authors were evaluating the validity of o-cresol by examining its association with 
hippuric acid (not necessarily its linear association), we conclude that Spearman's 
coefficient is preferable to Pearson's as a measure of the association between X and Y for 
this biomarker study. The choice of Spearman's as the measure of association for this 
study is also consistent with Amorim and Alvarez-Leite's use of the nonparametric 
Kruskal-Wallis test in their comparison of the o-cresol concentrations among the three 

JSM2015 - Section on Statistical Computing

2101



 

groups of toluene-exposed individuals included in their study: workers in shoe factories, 
painting sectors of metal industries, and printing shops. Thus, if we were analyzing these 

data, we would report the results for Spearman's coefficient:  0.58 s , 95% CI (0.34, 
0.82). These results suggest that the true association between the urinary concentrations 
of o-cresol and hippuric acid among workers exposed to toluene appears to be quite a bit 
weaker than that reported by Amorim and Alvarez-Leite (r = 0.777).   
 In general, if the investigators are primarily interested in the linear association 
between two biomarkers, we would recommend that the ML-based CI be used instead of 
the one based on rs.  Even if there is evidence that the (X, Y) data do not follow a BVN 
distribution, McCracken's simulation results show that CIs based on the MLE are still 
generally preferable to all of the other methods for finding a CI for ρ when NDs are 
present in both X and Y, regardless of the true bivariate distribution. Unless there is 
reason to doubt the validity of the ML-based CI (as indicated in Tables 1-3), it would 
generally be acceptable to use the ML-based CI for the Pearson correlation if the primary 
goal of the analysis is to determine the degree of linear relationship between the two 
biomarkers. 
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Figure 1. Scatterplot of o-cresol vs. hippuric acid concentrations in urine samples of 54 
individuals exposed to toluene in shoe factories, painting sectors of metal industries, and 
printing shops. Observations below the detectable limit of either assay are plotted as zero 
for purposes of illustration only. 
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Table 4.  Summary of Results for Data from Amorim and Alvarez-Leite (1997) 
 
 
Method 

 
n 

 
Estimate 

 
p-value 

 
95% CI 

 
Complete cases 

 
15 

 
0.76 

 
< 0.001 

 
(0.40, 0.92) 

 
 

Substitute zero 54 0.79 < 0.001 (0.67,0.88) 

Substitute LOD 54 0.77 < 0.001 (0.63, 0.85) 

Substitute LOD/2 54 0.79 < 0.001 (0.65, 0.87) 

Substitute / 2LOD  54 0.78 < 0.001 (0.64, 0.86) 

Random Substitution 54 0.43 < 0.001 (0.17, 0.61) 

Complex Substitution 54 0.78 < 0.001 (0.65, 0.86) 

Spearman 54 0.58 < 0.001 (0.34, 0.82) 

Kendall 54 0.49 < 0.001 (0.12, 00.74) 

Maximum Likelihood  54 0.79 < 0.001 (0.66, 0.87) 

 
The R code used to produce the above results for all of the methods except "substitute 
zero" and Kendall's coefficient can be obtained from the second author. These results for 
"substitute zero" and Kendall's coefficient were obtained using the CORR procedure in 
SAS.  

JSM2015 - Section on Statistical Computing

2103



 

References 
 
1. Amorin, L., and Alvarez-Leite, E. (1997), "Determination of o-cresol by Gas 
Chromatography and Comparison with Hippuric Acid Levels in Urine Samples of 
Individuals Exposed to Toluene," Journal of Toxicology Environmental Health, 50, 401-
407. 
2. Atawodi, S.E., Lea, S., Nyberg, F., Mukeria, A., Constantinescu, V., Ahrens, W., 
Brueske-Hohlfeld, I., Fortes, C., Boffetta, P., and Friesen, M.D. (1998), “4-Hydroxyl-1-
(3-pyridyl)-1-Butanone-Hemoglobin Adducts as Biomarkers of Exposure to Tobacco 
Smoke: Validation of a Method to be Used in Multicenter Studies,” Cancer 
Epidemiology Biomarkers and Prevention, 7, 817–821. 
3. Bradley, J.V. (1978), “Robustness?” British Journal of Mathematical and Statistical 
Psychology, 31, 144-152. 
4. Cook, D.G., Whincup, P.H. , Papacosta, O., Strachan,  D.P., Jarvis, M.J., and Bryant, 
A. (1993), “Relation of Passive Smoking as Assessed by Salivary Cotinine Concentration 
and Questionnaire to Spirometric Indices in Children,” Thorax, 48, 14-20. 
5. Gibbons, J., and Chakraborti, S. (2003). Nonparametric Statistical Inference (4th 
Edition ed.). New York: Marcel Dekker Inc. 
6. Lagorio, S., Crebelli, R., Ricciarello, R., Conti, L., Iavarone, I., Zona, A., Ghittori, S., 
and Carere, A. (1998), "Methodological Issues in Biomonitoring of Low Level Exposure 
to Benzene," Occupational Medicine, 8, 497-504. 
7. Li, L., Wang, W., and Chan, I. (2004), "Correlation Coefficient Inference on Censored 
Bioassay Data," Journal of Biopharmaceutical Statistics, 15, 501-512. 
8. Lyles, R.H., Williams, J.K. and Chuachoowong, R. (2001), “Correlating Two Viral 
Load Assays With Known Detection Limits,” Biometrics, 57, 1238-1244. 
9. Lynn, H. (2001), “Maximum Likelihood Inference for Left-Censored HIV RNA Data,” 
Statistics in Medicine, 20, 33-45. 
10. McCracken, C.E., (2013), “Correlation Coefficient Inference for Left-Censored 
Biomarker Data with Known Detection Limits,” unpublished Ph.D. dissertation, Georgia 
Regents University, Dept. of Biostatistics. 
11. Newton, E., and Rudel, R. (2007), “Estimating Correlation With Multiply Censored 
Data Arising From the Adjustment of Singly Censored Data,” Environmental Science and 
Technology, 41, 221-228. 
12. Wang, H. (2006), “Correlation Analysis for Left-Censored Biomarker Data With 
Known Detection Limits,” unpublished Masters thesis, Louisiana State University Health 
Sciences Center, School of Public Health, Biostatistics Program. 
 

JSM2015 - Section on Statistical Computing

2104


