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Abstract 
A new approach of constructing a triple-category ordinal outcome model in one binary 

logistic regression is presented. Various applied problems are formulated with a 

dependent variable of three ordinal categorical levels, for instance, positive-neutral-

negative segments of meaning. It is commonly considered in a multinomial model for a 

categorical variable of three possible outcomes. This work shows that the problem can be 

reduced to a much more simple and convenient binomial logit model. It can be done in 

the approach developed in the area of marketing research and known in terms of Best-

Worst scaling or MaxDiff modeling. In this approach the positive-neutral data subset is 

stacked with the negative-neutral subset. In the latter one the predictor signs are changed 

to opposite. The binary dependent variable is kept equal one for both positive-negative 

outcomes and equals zero for neutral outcomes, respectively. In the constructed logit 

regression the positive category predictions are close to 1, negative close to 0, and neutral 

are in the middle of its continuous 0-1 scale. Theoretical features and practical 

application of the model are discussed and a numerical example is given. 
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1. Introduction 
 

In many applied problems the response variable can be presented in three categorical 

levels. For instance, in marketing research, a dependent variable of overall satisfaction is  

commonly measured in the ordinal Likert scale, say, from 1 as the worst to 10 as the best 

value. Let several upper levels of it correspond to the satisfaction, and some bottom 

levels to the dissatisfaction. Then we have a scale of satisfaction-neutral-dissatisfaction or 

positive-neutral-negative segments. Modeling for such a scale can be performed in 

different regression and non-regression approaches (Conklin et al., 2004; Lipovetsky and 

Conklin, 2005; Lipovetsky, 2012). Double sigmoid functions with three levels are 

described in (Madhavan et al., 1995; Lipovetsky, 2010). Outcome of three levels can be 

considered in a general multinomial model setup, but it requires special software for 

modeling. It is interesting to note that division of data to three groups has been studied 

for linear pair regression modeling in many works, for instance, see (Leser, 1971; 

Gelman and Park, 2009, and references within). The last of these papers considers also 

the discrete outcomes. Triple outcome can be convenient for election modeling with 

undecided voters who can switch from neutral to one of the margins. 

 

The current work shows that the problem of three level modeling can be reduced to a 

much simpler and convenient binomial logit model. It can be done in the approach 

developed in the area of marketing research and known in terms of Best-Worst scaling or 

MaxDiff modeling. It is a contemporary method for the prioritization of items proposed 
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by Jordan Louviere (1991, 1993), and developed and applied in numerous works (for 

instance, Marley and Louviere, 2005; Marley et al., 2008; Bacon et al., 2007, 2008). In 

MaxDiff approach the positive-neutral data subset is stacked with the negative-neutral 

subset in which the signs of predictors are changed to opposite. The binary dependent 

variable equals one for positive-negative outcomes and zero for neutral outcomes, 

respectively. Logit regression model is constructed, where the positive category 

predictions are close to 1, negative close to 0, and neutral in the middle of its continuous 

0-1 scale. More detail on MaxDiff data see, for instance in (Lipovetsky and Conklin, 

2014 a, b; Lipovetsky et al., 2015). 

 

2. MaxDiff and Trinomial Modeling 
 

Consider an example of a dataset with 3062 respondents and Max-Diff exercise to 

prioritize 17 items. Respondents went through 10 tasks each where, in each task, they 

chose the best and worst item from a set of 4 of the 17 items. Design was balanced so that 

each item was seen an average of 2.35 times by each respondent. There were three 

different versions of the design so that for the overall sample the number of exposures of 

each item and each pair of items was balanced. In MaxDiff data pre-processing, we stack 

the data by task so that we have a final dataset with 3062*10 = 30,620 rows. Each row 

contains information on which items were shown in the task as well as which item was 

“best” and which was “worst”.A general multinomial logit (MNL) defines choice among 

several outcomes and can be described by the probability of choice model: 
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where xj are predictor variables, the parameters ak define the probability of each k-th 

choice among all m of them (m=3 in trinomial outcome). For the sake of identification, 

one share’s parameters (1) are taken as reference, or put to zero. Finding parameters of 

MNL is a complex numerical problem of nonlinear estimation. 

For the binomial dependent variable the common tool for modeling is logistic regression  
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where p is the binary outcome, xj are predictor variables, and ak are parameters estimated 

by data. In discrete choice modeling (DCM), for instance, with MaxDiff data, the binary 

outcome of the Best one versus non-best items (1 vs. 0) can be modeled by (2). After 

finding parameters, the choice probabilities can be estimated by (2) as the continuous 

values in the 0-1 interval. 

Choice of the Worst item in MaxDiff can be considered in a similar DCM model (2). For 

a simultaneous estimation by all best and worst choices in one combined dataset the 

following property is applied: if to change signs of all predictor variables then the 

probability estimated by the logit model (2) equals 1-p which defines the absence of a 

binary event. Indeed, consider the transformation of sign change: 
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The design matrix for modeling of the worst item can contain all predictors with opposite 

sign, and the binary output is defined as the Worst versus non-worst items (also 1 vs. 0). 

In practical MaxDiff modeling, two DCM design matrices with the rows defined by Best-

Neutral segment and by Worst-Neutral segment (with opposite signs of predictors) are 

combined into one total matrix of choices (Louviere et al., 2008). 

This approach can be applied to any data with trinomial positive-neutral-negative 

segments. In the combined matrix, the positive segment has the original values of 

predictors and the value 1 in the binary outcome, the negative segment has the opposite 

sign of the original values of predictors and the value 1 in the binary outcome, and the 

neutral segment has doubled rows of original neutral segment and the same with opposite 

signs of predictors and 0 value of the binary outcome. 

For more explicit presentation, let us express the positive-neutral segment and the 

negative-neutral segment of data as: 
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Then total stacked segments for the binary logit model can be written as follows: 
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Such a stacked data can be modeled in one logistic regression (2) which defines choice of 

positive or negative outcomes versus non-chosen cases. With this design (5) the positive 

and negative values of the binary predictors push the outcomes with the values 1 to the 

sides of maximum and minimum (2) probability, respectively, while zero values tend to 

the middle part of the logit curve. Thus, a trinomial outcome can be considered via binary 

logit model. It is also useful to mention that logit models can be constructed in analytical 

closed-form solution as described in (Lipovetsky, 2014). 

 

3. Numerical Example 

A data from a marketing research project is taken with about nineteen hundred 

observations, two dozen predictors, and a dependent variable transformed by some 

thresholds to the trinomial outcome (within it 320 negative, 926 neutral, and 681 positive 

cases). The outcome can be seen as an ordinal categorical variable, so we can try to apply 

ordinary least squares. Another approach consists in using three regular binary logit 

models of each outcome versus the other values. Obtaining three logit models (2) and 

predictions by them, we additionally normalize the predicted values within each response 

to one. The third technique corresponds to direct modeling of the MNL regression (1). 

And the fourth approach is the newly suggested trinomial outcome considered via 

MaxDiff data transformation and binary logit modeling.  
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Having one scale of logistic probability for all three classes we can identify the best 

threshold values to classify observations using Receiver Operating Characteristic, or 

ROC curve. An example of it is shown in Fig.1. With sliding thresholds we identify the 

cut-off for neutral class, and the other two classes, respectively. 

 

 

Figure 1: ROC for Negative class: Sensitivity vs. Specificity, or True vs. False Positive 

Rate. 

 
Table 1 presents results of the described four approaches in cross-tables of the observed 

and predicted three classes. The bottom row in Table 1 shows the hit rate, or proportion 

of the total correct prediction on diagonal of cross-tables to the total number of 

observations. We see that the hit rate is very similar by all models, with a slightly better 

value for MNL which uses twice more parameters for data fitting. Interesting to note that 

the trinomial binary model yields the best prediction of the negative values of the 

smallest count in the data. 

Table 1: Prediction of trinomial outcome by several models. 

 

linear model logit models MNL model  MaxDiff logit 

class neg neut pos neg neut pos neg neut pos neg neut pos 

neg 152 161 7 99 210 11 155 153 12 166 147 7 

neut 124 615 187 51 693 182 79 675 172 123 620 183 

pos 4 109 568 6 119 556 5 130 546 4 116 561 

hit rate 

 

0.693 

  

0.699 

  

0.714 

  

0.699 

 
In opposite cases, of RR<1 or t-statistics negative, we have B as the inhibitors for the 

choice of the product A. More analysis can be performed on this data. We can create a 

heat map to identify key pairs of items that have high synergy. Finding hotspots (white) 

where t-values are high is easy, however, note that the matrix is not symmetric, thus, the 

items may not be mutually synergistic.  

 

4. Summary 

The work describes a convenient approach to modeling a trinomial ordinal categorical 

outcome via binary logit regression. Theoretical features and practical application of this 
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model are discussed. The described technique is presented in more detail in (Lipovetsky, 

2015) and can be useful in various problems and help researchers in practical data fit and 

analysis. 
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