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Abstract

The Monthly Wholesale Trade Survey (MWTS) provides estimates of change in inventories and
sales for wholesale businesses in the United States. In previous work, we developed a new procedure
for multiply imputing values of sales and inventories for nonrespondents based on a multivariate
linear mixed model. We conducted a simulation study, generating an artificial population with
frame data and two years of monthly sales and inventory figures, and we observed how the current
MWTS Horvitz-Thompson and random group estimators performed over repeated samples with
and without missing data. We discovered that the complete-data point estimates, variance estimates
and interval estimates did not behave as large-sample normal theory suggests they should. Over
repeated samples, point estimates were highly skewed and interval estimates had poor confidence
coverage. In this paper, we review our findings to date and describe ongoing research into new
estimation procedures for Bayesian finite-population inference with stratified samples from highly
skewed populations.

Key Words: Business survey, confidence interval coverage, estimation, longitudinal survey, mod-
eling, simulation

1. Background

The Monthly Wholesale Trade Survey (MWTS), conducted by the U.S. Census Bureau,
produces estimates of economic activity for merchant wholesalers in the United States (ex-
cluding manufacturing sales branches and offices). Estimates are released in the Monthly
Wholesale Trade Report, published at www.census.gov/wholesale/ six weeks after
the close of each month. Results are tabulated by kind of business, corresponding to major
categories of durable and nondurable goods defined by the North American Industry Clas-
sification System (NAICS). For each kind-of-business classification, three key estimates
are reported: the percent change in sales relative to the previous month, the percent change
in inventories relative to the previous month, and the inventories-to-sales ratio.

Several years ago, we began a research project to examine statistical methods used in
the MWTS. At first, we focused on the imputation procedure used to fill in approximately
30% of the sales and inventories figures that are missing in any given month due to non-
response. We developed an alternative model-based multiple-imputation procedure and
compared its performance to the current method in a large simulation study. We discov-
ered that, even apart from missing data, the current Horvitz-Thompson based estimation
methodology has room for substantial improvement.

In this article, we review our findings to date and describe ongoing research to develop
new methods for the MWTS. At this time, we are not proposing any specific changes to the
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survey. Rather, we envision possibilities for a new integrated methodology that leverages
frame information and the power of statistical models to estimate total sales and inventories
from the respondent data alone, bypassing the need for imputation entirely. In Section 2, we
review key aspects of the current MWTS design and estimation procedures. In Sections 3
and 4, we describe our findings from our imputation research and simulation study. In Sec-
tions 5 and 6, we describe some possible alternatives to the current estimation techniques
using model-based Bayesian finite-population inference.

2. Sample Design and Estimation

The MWTS is part of an elaborate data collection system for U.S. businesses, and its design
is typical of many establishment surveys throughout the world (Smith, 2013). The system is
built on the Business Register, a relational database continuously maintained by the Census
Bureau with information for business entities at various levels of aggregation. Every five
years, the Business Register is supplemented by data from the Economic Census. From
these sources, a sample frame is generated. The largest companies in each industry class
are selected with certainty, and smaller business units are sampled within strata defined
by industry class and size. Approximately 8,700 units are selected to participate in the
Annual Wholesale Trade Survey (AWTS), which collects detailed information each year.
All certainty units and half of the noncertainty units from the AWTS are included in the
MWTS, which has a total sample size of about 4,200.

Keeping the MWTS sample representative of its target population is challenging, be-
cause the economy is continually evolving. New businesses are created; others cease to
exist; others change through mergers, acquisitions, and other types of restructuring; and
new kinds of businesses emerge. Each quarter year, dead businesses are phased out of the
MWTS and replaced by a sample of new businesses. Every five years, when new data from
the Economic Census become available, the frame is recreated and new samples for the
AWTS and MWTS are drawn.

Estimated sales and inventories within NAICS categories are based on the classical
Horvitz-Thompson (HT) method. Each sampled unit’s contribution to the estimated popu-
lation total is weighted by the unit’s inverse probability of selection into the sample. Stan-
dard errors are computed by the method of random groups (Wolter, 2007). Figures pub-
lished in the Monthly Wholesale Trade Report are not strictly HT, however, because the
data are heavily processed before and after the HT procedure. Many units fail to provide
usable sales and/or inventories in a given month. On average, item nonresponse is approxi-
mately 30%, with inventories seeing higher rates of nonresponse than sales. These missing
values are filled in by a ratio-imputation method described below. Moreover, the monthly
estimates from the MWTS are revised to sum to corresponding total estimates from AWTS,
a procedure known as benchmarking. Monthly estimates are also adjusted using the Cen-
sus Bureau’s X-13ARIMA-SEATS software, using a time series model that is periodically
reviewed and updated.

3. Imputation Study Using 25 Months of MWTS Data

In current practice, missing values of sales and inventories in the MWTS are imputed sep-
arately but in a similar fashion by a ratio-based procedure. The sample units are classified
into imputation cells defined by company size and industry class. Within an imputation
cell, the imputed value for a unit’s inventories (sales) in the current month equals that unit’s
inventories (sales) in the prior month, multiplied by the ratio of the weighted total current
month’s inventories (sales) to the weighted total previous month’s inventories (sales). The
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totals used to construct the ratio are taken over those units within the imputation cell having
reported inventories (sales) in both the current and previous month.

Lineback and Schafer (2013) identified several concerns with this ratio imputation
method: it implicitly assumes a linear model with zero intercept; the only predictor is
the value from the previous month; some imputation cells contain very few cases; relation-
ships between sales and inventories may not be preserved; uncertainty due to imputation
is not taken into account; and it does not make use of other information available from the
Economic Census and sampling frame.

Because of these concerns, we devised an alternative procedure to handle missing data
and applied the current and new methods to 25 months of MWTS data from December 2008
to December 2010. The total sample size was n = 4, 468. Our alternative involved multi-
ple imputation under a multivariate linear mixed-effects model (Schafer and Yucel, 2002).
This model was designed to preserve the non-normal marginal distributions of sales and in-
ventories, to reflect multivariate relationships between sales and inventories within months,
to allow flexible trends for inventories and sales within industry groups over time, and to
make efficient use of information from the Economic Census. To handle the non-normal
marginal distributions of sales and inventories, we transformed them to approximate nor-
mality using smoothed empirical distribution functions and the Gaussian-quantile function
(Lineback and Schafer, 2013). We used four predictors from the 2007 Economic Census:
receipts, payroll, employment, and operating expenses. Some units have missing values of
the Economic Census predictors which poses an additional modeling challenge. We multi-
ply imputed the missing predictors using a method of Gelman and Hill (2007, p. 541); we
refer to Lineback and Schafer (2013) for more details. To model flexible trends of inven-
tories and sales within industry groups, and within individual companies, we used natural
cubic splines.

Suppose that Yijk is the (transformed) response for unit i, during month j, to survey
item k (sales and inventories), i = 1, . . . , 4468, j = 1, . . . , 25, k = 1, 2. Let

Yi =


Yi11 Yi12
Yi21 Yi22

...
...

Yi,25,1 Yi,25,2


denote the 25× 2 dimensional matrix of responses for unit i. The model is

Yi =Xiβ +Zibi + εi,

where vec(bi) ∼ N(0,Ψ), vec(εi) ∼ N(0,Σ ⊗ I), independently over i. Xi is a matrix
having 25 rows because there are 25 months of data, and 4 + 6 × 19 = 118 columns
because there are four Economic Census variables, 6 basis functions used in the natural
cubic splines, and 19 non-overlapping industry classes. β is a 118× 2 dimensional matrix
representing the fixed effects in the model. Zi is a matrix having 25 rows (again because
there are 25 months of data) and 6 columns because there are 6 basis functions used in the
natural cubic splines. bi is a 6 × 2 dimensional matrix representing the random effects in
the model. The splines in the fixed-effects part preserve industry level trends, whereas the
splines in the random-effects part preserve unit-level trends. Missing values are assumed
to be missing at random (MAR), and diffuse Bayesian prior distributions were applied to
the unknown parameters (β,Ψ,Σ). Multiple imputations were generated using a Markov
Chain Monte Carlo (MCMC) approach (Schafer and Yucel, 2002).

Under the current ratio method, we imputed missing values as discussed above, and
then computed Horvitz-Thompson estimates of total inventories (sales) and percent relative
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change in inventories (sales) between a current and previous month, each within 22 indus-
try classifications for each of 25 months. The standard error of each estimate was computed
using the method of random groups. Under the new multiple imputation method, we cre-
ated m = 15 imputed datasets. For each imputed dataset we computed Horvitz-Thompson
estimates of total inventories (sales) and percent relative change in inventories (sales) be-
tween a current and previous month, within each of 22 industry classifications for each
of 25 months, along with corresponding standard errors using the random group method.
Finally we combined the results using Rubin’s (1987) rules to get the final estimates and
standard errors.

Figure 1: Total estimates and standard errors under current and proposed imputation

The scatter plots in Figure 1 compare the estimated total sales and inventories, and
corresponding standard errors, obtained when imputing under the current ratio method (x-
axis) versus the proposed multiple imputation based method (y-axis). The 45-degree line
is also shown. Under the new method, the estimated totals are consistently larger, and the
standard errors are much larger. Figure 2 shows results when the estimand is the percent
relative change in inventories (sales) between a current month and previous month. We
observe that under the new method the change estimates are smaller in magnitude and the
standard errors are larger. The new multiple-imputation method yields larger standard er-
rors because it accounts for uncertainty in predicting the missing values. The current ratio
method imputes values along a straight line with no dispersion, ignoring the natural vari-
ability that would appear if the value had in fact been observed. The multiple-imputation
method simulates draws from the posterior predictive distribution of the missing observa-
tions given the observed data, preserving the natural variability and reflecting uncertainty
in model parameters.
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Figure 2: Change estimates and standard errors under current and proposed imputation

4. Simulation Study

Because it is impossible to draw firm conclusions based on one sample, we designed a sim-
ulation study to see how these imputation methods behave over repetitions of the MWTS
sampling procedure (Klein, Lineback, and Schafer, 2014). The basic design of the simula-
tion study was as follows.

1. Using data from the actual MWTS sampling frame, 2007 Economic Census, and 25
months of MWTS data (December 2008 to December 2010), construct an artificial
population of values. The goal was to create an artificial population that could rea-
sonably represent the target population of the MWTS during the December 2008 to
December 2010 time frame.

2. Draw samples using a stratified sampling design that mimics the actual design of the
MWTS.

3. For each unit in the sample, impose a pattern of missing values (a vector of length
50, containing 0’s and 1’s) of the MWTS sales and inventories variables over the 25
months using a hot deck within cells defined by industry class and size. The donors
in each cell were the units actually in the MWTS.

4. Impute missing values.

5. Compute estimates of population totals and overall percent relative change (based
on the Horvitz-Thompson estimator) and corresponding standard errors (based on
random group variance estimator).

6. Repeat steps 2-5 a total of 1,000 times to study the properties of the estimators.

JSM2015 - Government Statistics Section

2001



4.1 The Artificial Population

Details on the construction of the artificial population are given by Klein, Lineback, and
Schafer (2014) To summarize, we used the actual MWTS sampling frame to obtain a list
of approximately 286,000 units representing the population of merchant wholesale compa-
nies in the United States in the last quarter of 2008. The previous 2007 Economic Census
contained variables for most of these units. Whenever available, we merged four variables
from the 2007 Economic Census (number of employees, annual payroll, first quarter pay-
roll, and revenue) into our population. After the merge, any of the four Economic Census
variables that were missing in the population were imputed using a sequential-regression
random-forest procedure, for details we refer to Klein, Lineback and Schafer (2014). Ap-
proximately 3,200 units in the population were present in the MWTS between December
2008 and December 2010. For each of these months, we merged any non-imputed sales
and inventories figures that were available from the MWTS into the population. At this
point, the population still contained a high proportion of missing values for each MWTS
variable. We used a sequential-regression plus hot-decked-residual procedure to impute the
MWTS variables, in conjunction with distributional raking; refer to Klein, Lineback, and
Schafer (2014) for details.

We do not claim that the simulations are a highly realistic representation of the MWTS
because, like most national surveys, the MWTS has many complicated features. In our
simulation study we made three major simplifications. First, we did not attempt to mimic
births and deaths, but kept the population units constant for 25 months. Second, we ig-
nored the fact that some companies operate in multiple industry groups, and we assigned
each company’s economic activity to only one group. Third, we did not try to replicate
the benchmarking and seasonal adjustment procedures used in the MWTS, but took the
post-imputation HT estimate for each industry group as the final answer. Despite these
simplifications, we believe the simulation was realistic enough to uncover major strengths
and weaknesses of the MWTS imputation and estimation procedures.

4.2 Simulation Results

Our simulation results indicate that the most crucial methodological concern for the MWTS
is not imputation but the performance of the estimation procedure apart from missing data.
To see what would happen if there were no missing data, we generated 1,000 samples and
computed HT estimates before imposing any missing values. First we consider U.S. to-
tal sales. For each of the 24 months (January 2009 to December 2010), we have 1,000
sample estimates of the total sales. Boxplots of those 1,000 estimates are shown in Figure
3, omitting some extreme outliers at the high end. The black center line of each boxplot
represents the median of the 1,000 estimates, the edges of each box represents the 25th and
75th percentiles. Superimposed over each of the boxplots is a large blue dot indicating the
average of the 1,000 sample estimates, and superimposed over the entire graph is a thick
black line representing the known total U.S. sales in the artificial population. Figure 3 in-
dicates that the Horvitz-Thompson estimates of U.S. total sales are unbiased (as expected),
but the sampling distributions of the estimators are highly skewed.

Figure 4 shows what happens with point and variance estimators for total sales, not
just for the entire U.S., but within the 22 industry classes for which the MWTS results are
published. There are 22× 24 = 528 population totals to estimate (22 industry classes and
24 months). The left plot in Figure 4 shows the true population value (x-axis) versus the
average of the 1,000 sample estimates (y-axis), along with a 45-degree line through the
origin. The sample estimates are unbiased because the points lie along the 45-degree line.
The right plot in the figure shows the sample variance of the 1,000 point estimates (x-axis)
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versus the average of the random group variance estimate (y-axis). Again we see that the
points lie along the 45-degree line, indicating that the random group variance estimate is
unbiased for the actual sampling variance of the estimate.

We combine the estimates and standard errors to form a nominal 95% confidence in-
terval based on the t distribution with 15 degrees of freedom. (The random group variance
is based on 16 random groups, which gives 15 degrees of freedom for estimating the vari-
ance.) Figure 5 shows a histogram of the actual coverage rates of the nominal 95% intervals
(as observed in the simulation) for each of the 22 × 24 = 528 estimands. The histogram
shows that the coverage rates are well below the 95% nominal level. The low coverage
occurs because the sampling distributions of the estimates are highly skewed, they are not
approximately normal. The Central Limit Theorem (under stratified random sampling)
does guarantee that these estimates would have approximate normal sampling distributions
if the sample size is large enough. But in this case, the underlying population is highly
skewed, and the sample sizes are not sufficiently large for the Central Limit Theorem to
take hold.

Figure 3: Complete data simulated distribution of U.S. total sales with no missing data

Figure 4: Complete data average sample estimates (average variance estimates) for total
sales, plotted against known population values (variance of point estimates) for 22 industry
classes across 24 months

If we look at estimates of percent change instead of totals, we again find that even when
there are no missing data, the normal and t based confidence intervals do not cover at the
nominal rate. We refer to Klein, Lineback, and Schafer (2014) for more discussion and
results. The key finding is that even when there are no missing data, the estimation proce-
dures are not performing as expected, due to the highly skewed population distributions of
sales and inventories. Taking this finding as our motivation, we will explore alternatives to
the Horvitz-Thompson/large-sample normal approximation inferential procedure.
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Figure 5: Histogram of simulated coverage rates of nominal 95% confidence intervals for
total sales in 22 industry classes across 24 months

5. Bayesian Inference for Surveys

Using a highly simplified notation for a sample survey, let Y = (Y1, . . . , YN ) denote a
characteristic of interest (e.g., sales or inventories) for units in a population of size N .
The goal is to use sample data to draw inferences about a population quantity Q that is a
function of Y , for example, the population totalQ =

∑N
i=1 Yi. Define the sample inclusion

indicators I = (I1, . . . , IN ), where Ii = 1 if unit i is included in the sample, and Ii = 0
otherwise. Methods of traditional design-based inference (e.g., Cochran, 1977) treat the
elements of Y as fixed constants, and they evaluate the distribution of an estimator for Q
over repeated realizations of I from hypothetical repetitions of the sampling procedure.
The HT estimator for a population total, which is currently used in MWTS, is perhaps the
best known example of a classical design-based method.

In recent decades, alternatives to design-based procedures have been emerging based
on the idea of superpopulation modeling (Valliant, Dorfman and Royall, 2000). In this
paradigm, a probability distribution F is assumed for the values in the finite population,
Y1, . . . , YN ∼ F (Yi|Xi,θ), where Xi denotes variables for unit i from the sample frame,
and θ is a vector of unknown parameters from the regression of Yi onXi. Superpopulation
inference can be carried out using frequentist or Bayesian methods. Let inc = {i : Ii = 1}
denote the indices of population units that are included in the sample, and let exc = {i :
Ii = 0} denote the units that are excluded, so that the finite population total is

Q =
∑
i∈ inc

Yi +
∑
i∈ exc

Yi.

If the parameters θ were known, we could predict an unsampled Yi by its expected value
Ŷi(θ) = E(Yi |Xi,θ). A frequentist estimate of Q could be constructed as

Q̂ =
∑
i∈ inc

Yi +
∑
i∈ exc

Ŷi(θ̂),

where θ̂ is an estimate of the parameters computed from the sample data. The Bayesian
approach places a prior probability distribution on θ and conditions on the sampled values
Yinc = {Yi : i ∈ inc} and frame variables X = (X1, . . . ,XN ) to generate a joint
posterior distribution for θ and the unsampled values Yexc = {Yi : i ∈ exc}. The posterior
distribution for θ and Yexc induces a posterior distribution for the quantity of interest Q.
For a formalization of the Bayesian argument and discussion of inclusion indicators and
the role of nonresponse, see Chapter 2 of Rubin (1987).

In the 2007 Morris Hansen lecture, Joseph Sedransk called for the increased use of
Bayesian methods in certain types of superpopulation inference (Sedransk, 2007). His first
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example of an area of application where a switch to Bayesian methods would be bene-
ficial was establishment surveys. In a typical establishment survey, there is a close and
approximately linear relationship between the survey variable of interest Yi and one or
more measure-of-size (MOS) variables in the sample frame. The skewed distribution for
Yi suggests a stratified design where the largest units are selected with certainty.

Using the example of the Federal Reserve Board’s program for estimating weekly mon-
etary aggregates, Sedransk (2007) described an early Bayesian model that was implemented
during the 1970’s. For any given week t, let Yhi denote the value of monetary aggregate for
bank i in stratum h, and let Xhi denote the measure of size for bank i in stratum h taken
from the sample frame. The model was

Yhi = βhXhi + εhi,

where the εhi’s are independently distributed as N(0, σ2hXhi). The within-stratum vari-
ances σ2h were replaced by point estimates and treated as known. A prior distribution
was placed on the regression slopes, β1, β2, . . . βH | ν ∼ N(ν, σ2β), with a hyperprior
ν ∼ N(β0, σ

2
ν). The hyperparameters (σ2β, σ

2
β, σ

2
ν) were estimated by time-series analy-

sis using five years of historical microdata. Under this model, posterior means for within-
stratum finite-population totals were available in closed form using formulas given by Scott
and Smith (1969) and Sedransk (1977).

With the advent of modern Bayesian methods and MCMC, compromises and simplifi-
cations in this model that were made for computational tractability in the 1970’s would not
be required today. For example, rather than substituting point estimates for the unknown
σ2h’s, it is now possible to give a fully Bayesian treatment by applying a two-stage hier-
archical prior to these variance components. The pooling of information across time that
was done informally by plugging in time-series estimates of hyperparameters can now be
accomplished by building an explicit longitudinal model for the unit-level responses Yhi
across time. And it is now possible to handle arbitrary rates and patterns of missing values
due to nonresponse, an issue that was not discussed at length by Sedransk (1977).

6. Envisioning Bayesian Estimation Procedures for the MWTS

We believe that Bayesian methods are worth pursuing for the MWTS for several reasons.
First, Bayesian estimates are likely to be more precise than the current HT-based proce-
dures. It can be shown that the HT estimator for a finite-population total is in fact a Bayes
estimator under a certain superpopulation model whose assumptions are restrictive and typ-
ically unrealistic (Ghosh and Meeden, 1997, Chap. 5). When the assumptions are violated,
a Bayes procedure under a more plausible model will tend to be more efficient, because it
is able to make better use of information contained in covariates from the sample frame.
Second, with a Bayesian procedure, there is no need to invoke problematic large-sample
normal approximations; estimates and intervals for any quantity of interest may be ob-
tained directly from simulated draws from a posterior distribution. Third, there is no need
to impute missing values for nonrespondents prior to estimation. In the Bayesian paradigm,
inferences are based on data only from the respondents; data values that are missing due
to nonresponse and data values for unsampled units are handled in the same conceptual
manner, provided that the sampling and nonresponse mechanisms are both ignorable in the
sense defined by Rubin (1987). Finally, a Bayesian approach can eventually be extended
to a unified system of estimation that combines results from MWTS and AWTS (currently
handled by benchmarking) and performs seasonal adjustment when desired.

A model for Bayesian inference in the MWTS ought to reflect important features of
the distributions of sales and inventories in the population. The model should be attentive

JSM2015 - Government Statistics Section

2005



to major features of the sample design, so that inferences will be design-consistent and
well calibrated (Little, 2006). Finally, the model should describe or condition on important
correlates of missingness, to make the assumption of ignorable nonresponse more plausible
(Rubin, 1976, 1987).

The multivariate linear mixed model we described in Section 3, which we developed
for multiple imputation of missing values, provides a useful starting point for a system of
Bayesian estimation. We found that the normal model is an effective tool for preserving
relationships between sales and inventories, and for pooling information and preserving
trends within companies and within industry groups across time. Covariates from the sam-
ple frame and indicators for sampling strata are readily incorporated into the model as
predictors.

A major difficulty with this model, however, is that it assumes the survey outcomes
are normally distributed. In reality, sales and inventories are semicontinuous, a mixture of
zeros (which are occasionally seen for small companies) and positive values that are highly
skewed. Model-based inferences about finite-population totals in skewed populations may
be sensitive to distributional shape, especially to assumptions about tail behavior. In our
previous work, we transformed sales and inventories to approximate normality using their
empirical cumulative distribution functions (cdf’s) and the normal quantile function (in-
verse cdf). This ad hoc method performed well enough for imputing missing values for
nonrespondents, but we are reluctant to apply it in a model for Bayesian finite-population
inference, where we would effectively be imputing data for all unsampled units in the
population. A general rule for missing-data problems is that, as rates of missing informa-
tion increase, inferences become more sensitive to the specification of the model for the
complete-data population. Our ad hoc procedure treated the transformations (which were
highly dependent on the sample data) as a priori fixed and known, and thus failed to rep-
resent uncertainty about the shapes of the marginal distributions of sales and inventories in
the population.

In the next phase of our research, we are seeking ways to combine the power of the nor-
mal model for preserving relationships and trends with flexible, nonparametric techniques
for capturing the shapes of marginal distributions. At present, we are experimenting with
the use of copulas (Sklar, 1959; Smith, 2011). A copula is a joint density function for
a vector of random variables in which each random variable is marginally distributed as
uniform on the unit interval (0,1). One of the simplest types is a Gaussian copula, which
can be constructed from a multivariate normal by centering and scaling each coordinate to
have mean zero and variance one, and then transforming each centered and scaled variate
by the standard normal cdf. With copulas, we can effectively separate the modeling of
marginal distributions from the modeling of intervariable relationships. MCMC algorithms
for Bayesian inference have been developed for copula models combined with marginal
distributions that are continuous, discrete, and mixed type (Pitt, Chan and Kohn, 2006;
Smith and Khaled, 2012). Our near-term goal is to adapt copula methods to link the multi-
variate linear mixed model described in Section 3 with a nonparametric Bayesian methods
for estimating the marginal densities for sales and inventories.

To illustrate how this density estimation might work in practice, Figure 6 shows a his-
togram of simulated inventories from the artificial population. A small but non-negligible
percentage of the values are zero. The positive part of the distribution is displayed on a log
scale, but tick labels for the x-axis correspond to the original scale. The dashed line rep-
resents the density from a lognormal fit. The lognormal model fails to capture the heaping
of observations and minor mode seen at the left-hand side of distribution, and it assigns
too much density to the tail on the right. Understating or overstating the right-hand tail can
wreak havoc on an estimate for a finite population total (we are estimating total dollars, not
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total log-dollars). None of the standard power transformations within the Box-Cox family
can effectively normalize this distribution.

In contrast, a nonparametric density estimate, shown by the solid line, captures the
shape of this distribution extremely well. We estimated this function by fitting a loglin-
ear penalized B-spline to binned histogram frequencies (Eilers and Marx, 1996). This
method transforms the problem of density estimation into a Poisson regression with fixed
and random effects. Many other methods for nonparametric Bayesian density estimation
are available: Dirichlet process modeling, Gaussian mixtures, and Gaussian process mod-
els, to name a few. Selecting an appropriate and feasible method for density estimation, and
linking it to a copula version of our multivariate linear mixed model, is a topic of ongoing
research.

Figure 6: Histogram of simulated inventories from artificial population, positive values
logarithmically transformed, with densities estimated by a lognormal fit (dashed line) and
penalized B-spline (solid line)
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