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Abstract 
We present a Bayesian adaptive design for dose finding of a combination of two drugs in 
cancer phase I clinical trials. The goal is to estimate the maximum tolerated dose (MTD) 
as a curve for continuous dose levels of the two agents. Parametric models are used to 
describe the relationship between the doses and the probability of dose limiting toxicity 
(DLT). Trial design proceeds using the continual reassessment method, where at each 
stage of the trial, we seek the dose of one agent with estimated probability of DLT closest 
to a target probability of DLT given the current dose of the other agent. At the end of the 
trial, we estimate the MTD curve as a function of Bayes estimates of the model 
parameters. We evaluate design operating characteristics in terms of safety of the trial 
and percent of dose recommendation at dose combination neighbourhoods around the 
true MTD. We also examine the performance of the approach under model 
misspecifications for the true dose-toxicity relationship. 
 
KeyWords: Cancer phase I trials; Maximum tolerated dose; Continual reassessment 
method; Drug combination; Dose limiting toxicity; Continuous dose. 
 
 
 

1. Introduction 
 
The primary objective of cancer phase I clinical trials is to estimate a maximum tolerable 
dose (MTD) of a new drug or combinations of drugs for future efficacy evaluation in 
phase II/III trials. Single agent dose finding methods have been proposed and studied 
extensively in the past two decades, see [1-3] for a review. Combining several drugs can 
help reduce tumor resistance to chemotherapy by targeting different signaling pathways 
simultaneously [4]. Although the majority of phase I trials use drug combinations of 
several agents, most of them are designed to estimate the MTD of one drug for fixed dose 
levels of the other drugs. Trials where the dose levels of at least two agents are allowed to 
vary yield more than one MTD, or even an infinite number of MTDs in the case of 
continuous does levels. Estimating the resulting set of MTDs by designing a safe trial is 
the main goal of phase I trials with dose combinations of several agents. The general 
problem can be stated as follows. Let Ai, i = 1,…,k be k drugs and Si ϲ R+ be the set of all 
possible doses of drug Ai. Denote by x = (x1,…,xk) a dose combination of the k drugs and 
S = S1×…× Sk. Consider a dose-toxicity model 
 
 ( )Prob DLT | dose ( , ),F= =x x ξ  (1.1) 
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where F is a known link function and ξ ϵ Rd is an unknown parameter. The MTD is 
defined as the set C of dose combinations x such that the probability of DLT for a patient 
given dose x equals to a target probability of DLT θ: 
 
 { }: ( , ) .C S F θ= ∈ =x x ξ  (1.2) 
 
For k = 2, a number of designs for estimating C have been proposed in the past decade, 
see [5-15]. By design, these methods do not apply to the case of continuous dose levels of 
the two agents. Except for [5, 6, 15], these methods recommend a single dose 
combination as the MTD. Furthermore, it is not clear how these methods perform in the 
presence of a large number of dose combinations in relation to the sample size in the trial, 
especially if dose escalation by more than one level in either direction is not allowed. In 
this manuscript, we extend the design described by Tighiouart et al. [16] by allowing the 
true MTD curve to lie outside the range of doses available in the trial and introduce a new 
algorithm for dose escalation by treating cohorts of two patients receiving different dose 
combinations simultaneously. Doses are determined according to continual reassessment 
method (CRM) [17].  
 
 

2. Model 
 
2.1 Dose-Toxicity Model 
 
We consider the dose-toxicity model of the form 
 
 Prob( 1| , ) ( ),Z x y F x y xyµ β γ η= = + + +  (2.1) 
 
where Z is the indicator of DLT, Z = 1 if a patient given the dose combination (x,y) 
exhibits DLT within one cycle of therapy, and Z = 0 otherwise, x ϵ [Xmin, Xmax] is the dose 
level of agent A, y ϵ [Ymin, Ymax] is the dose level of agent B, and F is a known cumulative 
distribution function. Suppose that the doses of agents A and B are continuous and 
standardized to be in the interval [0, 1]. 
 
We will assume that that the probability of DLT increases with the dose of any one of the 
agents when the other one is held constant. A necessary and sufficient condition for this 
property to hold is to assume β > 0 and γ > 0 and the interaction term η is nonnegative. 
The MTD is defined as any dose combination (x*, y*) such that 
 
 * *Prob( 1| , ) .Z x y θ= =  (2.2) 
 

The target probability of DLT θ is set relatively high when the DLT is a reversible or 
non-fatal condition, and low when it is life threatening. Using (2.1) and (2.2), the MTD is 
 

 

1 *
* * 2 *

*

( )( , ) [0,1] : .F xC x y y
x

θ µ β
γ η

− − −
= ∈ = + 

 (2.3) 
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We reparameterize model (2.1) in terms of parameters clinicians can easily interpret. We 
describe two reparameterizations that accommodate prior or lack of knowledge about 
each drug when used as single agent. 
 
We reparameterize model (2.1) in terms of ρ10, the probability of DLT when the levels of 
drugs A and B are 1 and 0, respectively, ρ01, the probability of DLT when the levels of 
drugs A and B are 0 and 1, respectively, ρ00, the probability of DLT when the levels of 
drugs A and B are both 0, and the interaction parameter η. Unlike the reparameterization 
used in [18] restricting the MTD curve to be in the lower triangle {(x,y): x+y < 1}, this 
reparametrization allows the MTD curve to lie anywhere in the x-y Cartesian plane. It can 
be shown that 
 

 

1
00

1 1
10 00

1 1
01 00

( )

( ( ) ( )).

( ( ) ( ))

F
F F
F F

µ ρ

β ρ ρ

γ ρ ρ

−

− −

− −

 =


= −
 = −

 (2.4) 

 
The MTD (2.3) becomes 
 

 
( ) ( )

( )
1 1 1 1 *

00 10 00* * *
1 1 *

01 00

( ) ( ) ( ) ( )
( , ) : .

( ) ( )

F F F F x
C x y y

F F x

θ ρ ρ ρ

ρ ρ η

− − − −

− −

 − − − = = 
− +  

 (2.5) 

 
Figure 1shows MTD curves when ρ00 = 0.05, ρ01 = ρ10 = 3×10-6, and three values for the 
interaction coefficient η = 20, 40, 60.  
 

 
Figure 1.MTD curves for selected values of the interaction coefficient η. Target probability of 
DLT θ = 0.33 and logistic link F(u) = (1 + e–u)–1. 
 
The target probability of DLT is θ = 0.33 and the link function is the logistic F(u) = (1 + 
e–u)–1. Figure 1 illustrates cases where each drug when used as single agent is very safe 
within the range of doses available in the trial. Let Dn = {(xi,yi,zi), i = 1, …, n} be the data 
after enrolling n patients in the trial. The likelihood function is 
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where 
 

 ( ) ( )( )
00 01 10

1 1 1 1 1
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( , , , ; , )

( ) ( ) ( ) ( ) ( ) .
i i

i i i i

H x y
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ρ ρ ρ ρ ρ η− − − − −= + − + − +
 (2.7) 

 
2.2 Prior and Posterior Distributions 
 
We note that (2.4) implies that 0 < ρ00 < min(ρ01, ρ10) since β and γ are positive. We 
assume that ρ01, ρ10, η are independent a priori with ρ01 ~ beta(a1, b1), ρ10 ~ beta(a2, b2), 
and conditional on (ρ01, ρ10), ρ00 / min(ρ01, ρ10) ~ beta(a3, b3). Vague priors for these 
parameters are achieved by taking aj = bj = 1, j = 1, 2, 3. The prior for η is η ~ gamma(a, 
b) with mean E(η) = a / b and variance Var(η) = a / b2. Using Bayes rule, the posterior 
distribution of the model parameters is proportional to the product of the likelihood and 
prior distribution 
 
 
  (2.8) 
 
 
where  
 
 
 
Features of this posterior distribution are estimated using WinBUGS[19] and JAGS.  
 
2.3 Trial Design 
 
Tighiouart et al. [18] used escalation with overdose control (EWOC) [20-22] principle to 
determine the dose to be allocated to each subsequent patient. Here, we extend that 
algorithm by treating cohorts of two patients simultaneously and determine the next dose 
using CRM. The adaptive design proceeds as follows: 
 

1. Each patient in the first cohort of two patients receives the same dose 
combination (x1, y1) = (x2, y2) = (0, 0). Let D2  = {(x1, y1, δ1), (x2, y2, δ2)}. 

2. In the second cohort of two patients, patient 3 receives dose (x3, y1) and patient 4 
receives dose (x2, y4), where 

 

3. In the i-th cohort of two patients, if i is even, then patient 2i −1 receives dose (x2i-

1, y2i-3) and patient 2i receives dose (x2i-2, y2i), where  
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1
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ˆ ˆargmin rob( 1 | , )  and argmin rob( 1 | , ) .
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x P u y y P x vδ θ δ θ= = − = = −
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A similar expression is derived when i is old. Here                          is the 
estimated probability of DLT obtained by replacing the parameters ρ00, ρ01, ρ10, 
and η in H(ρ00, ρ01, ρ10,η;x,y) by their posterior medians given the data. 

4. Repeat step 3 until n patients are enrolled to the trial subject to the following 
stopping rule. 

 
Stopping rule: We stop enrollment to the trial if P(P(DLT|(x,y) = (0,0)) >θ+δ1 | data) >δ2, 
i.e. if the posterior probability that the probability of DLT at the minimum available dose 
combination in the trial exceeds the target probability of DLT is high. δ1 and δ2 are design 
parameters chosen to achieve desirable model operating characteristics. 

 
At the end of the trial, we estimate the MTD curve using Bayes estimates of the 
parameters defining this curve as 
 

 ( ) ( )
( )

1 1 1 1 *
00 10 00* * *

1 1 *
01 00

ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ( , ) : ,
ˆ ˆ ˆ( ) ( )

F F F F x
C x y y

F F x

θ ρ ρ ρ

ρ ρ η

− − − −

− −

 − − − = = 
− +  

 (2.9) 

where 00 01 10ˆ ˆ ˆ ˆ, , ,ρ ρ ρ η  are the posterior medians given the data Dn. 
 

3. Simulation Studies 
 
3.1 Simulation Set-up and Scenarios 
 
We evaluate design operating characteristics by assuming a logistic link function F(u) = 
(1 + exp(−u))–1 for the working model. DLT responses are generated assuming both a 
logistic link function and three other link functions to assess the performance of the 
method under model misspecification. These are (1) the probit link F(u) = Φ(u), where 
Φ(·) is the cdf of the standard normal distribution, (2) the normal link F(u) = Φ(u/σ), and 
(3) the complementary log-log link F(u) = 1 – exp(−exp(u)). We present three scenarios 
for the true MTD curve. In all cases, the target probability of DLT is fixed at θ = 0.33 and 
the trial sample size is n = 40 patients. The first scenario corresponds to ρ00 = 10-7, ρ01 = 
ρ10 =3×10-6, η = 10. The corresponding true MTD curve is shown by a solid line at the top 
left corner of Figure 2(a). This is a case where each agent is very safe within its range of 
doses. In the second scenario, ρ00 = 0.01, ρ01 = 0.2, ρ10 =0.9, η = 20, see Figure 3(a). This 
is a case where the MTD of agent A when agent B is at its minimum dose level is within 
the range of doses of drug A but the MTD of agent B when drug A is at its minimum 
dose level is above the maximum dose level of agent B. In the last scenario, we took  
ρ00 = 0.05, ρ01 = 0.9, ρ10 =0.9, η = 20, see Figure 4(a). This is a case where the MTDs of 
both agents A and B are within the range of their respective dose levels when the other 
agent is at its minimum dose level. Vague priors for ρ00, ρ01, ρ10 were selected as 
described in Section 2.2. In all 3 scenarios, a vague prior for η was selected by taking 
E(η) = 21 and Var(η) = 542. Many other scenarios were studied but are not included here 
due to space limitation. For each scenario, m = 1000 trials were simulated using the 
logistic link function for the working model and logistic, probit, normal with σ = 2, and 
complementary log-log link functions for the true model. The parameter values μ, β, γ, η 
of these models were selected in such a way that they all have the same true MTD curve. 
The extent of departure of the true model from the working model is illustrated in Figure 
5(a-c) in the case ρ00 = 0.05, ρ01 = ρ10 = 0.46 and η = 5. 
  

ˆrob( 1 | , )P x yδ =
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3.2 Design Operating Characteristics 
 
We evaluate the performance of the methods by assessing the safety of the trial designs 
and the efficiency of the estimate of the MTD curve. 
 
3.2.1 Safety 
We assess trial safety by reporting the average percent of DLTs across all m = 1000 trials 
and the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.05, 0.1. The 
threshold θ + 0.1 is usually considered to be an indication of an excessive DLT rate. 
 
3.2.2 Efficiency 
We present an estimate of the MTD curve using the average posterior medians of the 
model parameters. Under the reparameterization, the estimate is 
 
 
  (3.1) 
  
 
where F(·) is the logistic function and                          are the average posterior medians 
of the parameters ρ00, ρ01, ρ10 and η from all m = 1000 trials. The next measure of 
efficiency is the pointwise average relative minimum distance from the true MTD curve 
to the estimated MTD curve. For i = 1,…,m, let Ci be the estimated MTD curve and Ctrue 
be the true MTD curve. For every point (x,y) ϵ Ctrue, let 
 

             { }
( )1/2( ) 2 2

( , )
( , ):( , )

( ) ( ) ( )min
i

i
x y

x y x y C

d sign y y x x y y
∗ ∗ ∗ ∗

∗ ∗

∈

′= − × − + −  (3.2) 

 
where y΄ is such that (x, y΄) ϵ Ci. This is the minimum relative distance of the point (x,y) 
on the true MTD curve to the estimated MTD curve Ci. If the point (x,y) is below Ci, then 

( )
( , )

i
x yd is positive. Otherwise, it is negative. Let 

 

 1 ( )
( , ) ( , )

1

.
m

i
x y x y

i
d m d−

=

= ∑  (3.3) 

 
This is the pointwise average relative minimum distance from the true MTD curve to the 
estimated MTD curve and can be interpreted as the pointwise average bias in estimating 
the MTD. Let Δ(x,y) be the Euclidian distance between the minimum dose combination 
(0,0) and the point (x,y) on the true MTD curve and 0 < p < 1. The last measure of 
efficiency we consider is 
 

 ( )1 ( )
( , ) ( , )

1

| | ( , ) .
m

i
x y x y

i
p m I d p x y−

=

= ≤ ∆∑  (3.4) 

This is the pointwise percent of trials for which the minimum distance of the point (x,y) 
on the true MTD curve to the estimated MTD curve Ci is no more than  (100×p)% of the 
true MTD. This statistic is equivalent to drawing a circle with center (x,y) on the true 
MTD curve and radius pΔ(x,y) and calculating the percent of trials with MTD curve 
estimate Ci falling inside the circle. This will give us the percent of trials with MTD  

( ) ( )
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1 1 1 1 *
00 10 00* * *

1 1 *
01 00

ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ( , ) : ,
ˆ ˆ ˆ( ) ( )

F F F F x
C x y y

F F x
θ ρ ρ ρ

ρ ρ η

− − − −

− −

 − − − = = 
− +  

00 01 10ˆ ˆ ˆ ˆ, , ,ρ ρ ρ η
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recommendation within (100×p)% of the true MTD for a given tolerance p. Figure 5(d) 
illustrates the variability of the radius of the tolerance circles for various locations of dose 
combinations on the true MTD curve under two different scenarios ρ00 = 0.05, η = 5, ρ01 =  
ρ10 = 0.46, and ρ01 = ρ10 = 1. Here, p = 0.1. We can see that the farther the true MTD is 
from the minimum dose combination, the larger is the tolerance for estimating the percent 
of MTD recommendation.  
 
 
 

 
 
 

 
 
 
Figure 2.Summary statistics from m =1000 simulated trials under scenario 1. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
 
3.3 Results 
3.3.1 Trial Safety 

True model Average  
% DLT 

% w. DLT 
rate >θ + 0.05 

% w. DLT 
rate >θ + 0.10 

Logistic 16 0.0 0.0 
Probit 16 0.0 0.0 
Normal 16 0.0 0.0 
LogLog 16 0.0 0.0 
Table 1. Average percent of DLTs and percent of trials  
with DLT rate exceeding  θ + δ under scenario 1 for  
various true models. Working model is logistic. 

(a) 

(b) (c) 
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Tables 1-3 shows that the average percent of DLTs varies between 16% and 38% across 
the three scenarios. In general, the average DLT rate tends to be lower when the true 
MTD curve is farther away from the minimum dose combination. These tables also show 
that the percent of trials with an excessive number of DLTs as defined by a DLT rate 
exceeding θ + 0.1 is very small. Further simulations (results not shown) under scenarios 
where the true MTD curve is close to the minimum dose combination available in the 
trial show that this rate does not exceed 10%. Based on these findings, we conclude that 
the methodology is safe in general.  
 

 
 
 

 
 
 
Figure 3.Summary statistics from m =1000 simulated trials under scenario 2. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
 
3.3.1 Trial Efficiency 
 

True model Average  
% DLT 

% w. DLT 
rate >θ + 0.05 

% w. DLT 
rate >θ + 0.10 

Logistic 34 16 1.1 
Probit 33 8 0.3 
Normal 34 18 2.3 
LogLog 33 10 0.6 
Table 2.  Average percent of DLTs and percent of trials 
with DLT rate exceeding θ + δ under scenario 2 for 
various true models. Working model is logistic. 

(a) 

(b) (c) 
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Figures 2-4(a) show the plots of the true and estimated MTD curves. The estimated MTD 
curve shown by a dashed line was obtained using (3.1) and DLT responses were 
simulated using the true logistic model. In all cases, the estimated MTD curve is very 
close to the true MTD except at the edges of the curve. This is probably due to the fact 
that we are using uniform priors for ρ01 and ρ10. For each scenario, scatter plot of the last 
dose combinations from each of the m = 1000 simulated trials along with 90% confidence 
region is also included. These statistics are useful for clinicians who plan to use the last 
dose combination in a phase I trial as the recommended phase II dose combinations as in 
[9]. 
 

 
 

 
 
 
Figure 4.Summary statistics from m =1000 simulated trials under scenario 3. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
 
Figures 2-4(b) display the pointwise average relative minimum distance from the true 
MTD curve to the estimated MTD curve as defined by (3.3). This is a measure of 

True model Average  
% DLT 

% w. DLT 
rate >θ + 0.05 

% w. DLT 
rate >θ + 0.10 

Logistic 38 43 10 
Probit 37 35 5 
Normal 38 42 10 
LogLog 37 35 7 
Table 3.  Average percent of DLTs and percent of trials 
with DLT rate exceeding  θ + δ under scenario 3 for 
various true models. Working model is logistic. 

(a) 

(b) (c) 
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pointwise average bias of the estimate of the MTD. In scenario 3 (Figure 4(b)), the 
maximum average bias is about 0.03 when DLT responses are generated from the true 
logistic model. This corresponds to 6% of the distance from the minimum dose 
combination (0, 0) to the true MTD dose combination (0, 0.5). Scenarios 1 and 2 also 
show that the maximum average bias is no more than 10% of the distance from (0,0) to 
the corresponding true MTD dose combination. We conclude that the pointwise average 
bias is fairly small along the whole MTD curve. 
 

 
 
Figure 5.Contour plots from the logistic and probit (a), normal (b), and complementary log-log 
(c) dose-toxicity models. The probabilities of DLT corresponding to the logistic model are shown 
in bold italic. (d) shows the circles for calculating the percent of MTD recommendation for two 
scenarios when the tolerance p = 0.1. 
 
Figures 2-4(c) show the pointwise percent of trials for which the minimum distance from 
the true MTD curve to the estimated MTD curve is no more than  (100×p)% of the true 
MTD for p = 0.1 and p = 0.2. This can be interpreted as the percent of MTD 
recommendation for a given tolerance p. With a tolerance of p = 0.1, the percent of trials 
with correct MTD recommendation varies between 50% and 95% under all three 
scenarios and is above 90% with a tolerance p = 0.2. Based on these results and others 
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from scenarios not shown here, we conclude that the design is practically efficient in 
general in recommending the MTD curve estimate. 
 
3.3.1 Model Robustness 
 
The average DLT rates and percent of trials with DLT rate > θ + δ shown in Tables 1-3 
when the true model is misspecified are very close. Furthermore, differences in the 
pointwise average bias between the different models and the logistic model shown in 
Figures 2-4(b) are negligible relative to the dose range of both agents. Similar conclusion 
holds for the pointwise percent of MTD recommendation shown in Figures 2-4(c). The 
largest difference of about 15% is observed under scenario 3 (Figure 4(c)) when the true 
model is the normal or probit and the tolerance is p = 0.1. We conclude that our method is 
fairly robust to model misspecifications under the dose-toxicity family of models of the 
form Prob(DLT | x,y) = F(μ + β x + γ y + η x y) for some selected link functions F(∙). 
 

4. Discussion 
 
We described Bayesian adaptive designs for cancer phase I clinical trials using two drugs 
with continuous dose levels. The goal is to estimate the MTD curve in the two-
dimensional Cartesian plane. We introduce a new reparameterization that relaxes 
conditions that the MTD of both drugs are within the range of doses available in the trial. 
In each case, vague priors were used for quantifying the toxicity profile of each agent a 
priori. We also introduced another algorithm for dose escalation where cohorts of two 
patients are enrolled simultaneously and the patients receive different dose combinations 
using univariate CRM algorithm. We studied design operating characteristics of the 
method under a large number of practical scenarios (only three of them are included due 
to space limitation) and under several model misspecifications. In all simulations, we 
used a sample size of n = 40 patients. We found that in general, the methodology is safe 
in terms of the probability that a prospective trial will results in an excessively high 
number of DLTs. Under scenarios where the true MTD curve is near the minimum dose 
combination or below it, there is a high probability of stopping the trial. We used several 
measures to assess the efficiency of the estimate of the MTD and in the majority of 
scenarios, the percent of MTD recommendation is good and increases as the true MTD 
curve drifts away from the minimum dose combination. We recommend that clinicians 
select dose combinations around the middle of the MTD curve for efficacy evaluation 
since the percent of recommendation is high and dose combinations where the level of 
one of the agents is very low may not be of interest for efficacy studies. We also showed 
that the method is practically robust with respect to trial safety and efficiency under a 
reasonable class of model misspecification. We also plan to study the performance of the 
proposed design under a class of models which allow synergistic and antagonistic relation 
between the drugs as described in [23]. Finally, we plan to assess the performance of the 
method when the doses of the two agents are discretized using the method discussed in 
[20, 22] and compare the performance of the resulting design with the methods described 
in [7, 9, 10]. 
 

 
Acknowledgment 

 
This work is supported in part by the National Institute of Health Grant Number 1 
R01CA188480-01A1 (M.T, Q.L), the National Center for Research Resources, Grant 

JSM2015 - Biopharmaceutical Section

1952



UL1RR033176, and is now at the National Center for Advancing Translational Sciences, 
Grant UL1TR000124 (M.T), and 2 P01 CA098912 (M.T). 
 
References 
 
 
1. Ting N. Dose Finding in Drug Development. (First edn). Springer: (New York, 
2006. 
2. Chevret S. Statistical Methods for Dose-finding Experiments. Wiley: Chichester, 
2006. 
3. Le Tourneau C, Lee JJ, Siu LL. Dose Escalation Methods in Phase I Cancer 
Clinical Trials. Journal of the National Cancer Institute 2009; 101: 708-720. 
4. Frey E, III., Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, Selawry 
O, Holland JF, Hoogstraten B, Wolman IJ, Abir E, Sawitsky A, Lee S, Mills SD, Burgert 
EO, Spurr CL, Patterson RB, Ebaugh FG, James GWI, Moon JH. The Effectiveness of 
Combinations of Antileukemic Agents in Inducing and Maintaining Remission in 
Children with Acute Leukemia. Blood 1965; 26: 642-656. 
5. Thall PF, Millikan RE, Mueller P, Lee SJ. Dose-finding with two agents in phase 
I oncology trials. Biometrics 2003; 59: 487-496. 
6. Wang K, Ivanova A. Two-dimensional dose finding in discrete dose space. 
Biometrics 2005; 61: 217-222. 
7. Yin GS, Yuan Y. A Latent Contingency Table Approach to Dose Finding for 
Combinations of Two Agents. Biometrics 2009; 65: 866-875. 
8. Yin GS, Yuan Y. Bayesian dose finding in oncology for drug combinations by 
copula regression. Journal of the Royal Statistical Society Series C-Applied Statistics 
2009; 58: 211-224. 
9. Braun TM, Wang SF. A Hierarchical Bayesian Design for Phase I Trials of 
Novel Combinations of Cancer Therapeutic Agents. Biometrics 2010; 66: 805-812. 
10. Wages NA, Conaway MR, O'Quigley J. Continual Reassessment Method for 
Partial Ordering. Biometrics 2011; 67: 1555-1563. 
11. Wages NA, Conaway MR, O'Quigley J. Dose-finding design for multi-drug 
combinations. Clinical Trials 2011; 8: 380-389. 
12. Sweeting MJ, Mander AP. Escalation strategies for combination therapy Phase I 
trials. Pharm Stat 2012; 11: 258-266. 
13. Shi Y, Yin G. Escalation with overdose control for phase I drug-combination 
trials. Stat Med 2013: in press. 
14. Riviere MK, Yuan Y, Dubois F, Zohar S. A Bayesian dose-finding design for 
drug combination clinical trials based on the logistic model. Pharm Stat 2014; 13: 247-
257. 
15. Mander AP, Sweeting MJ. A product of independent beta probabilities dose 
escalation design for dual-agent phase I trials. Stat Med 2015; 34: 1261-1276. 
16. Tighiouart M, Piantadosi S, Rogatko A. Dose finding with drug combinations in 
cancer phase I clinical trials using conditional escalation with overdose control. Stat Med 
2014; 33: 3815-3829. 
17. O'Quigley J, Pepe M, Fisher L. Continual reassessment method: A practical 
design for phase I clinical trials in cancer. Biometrics 1990; 46: 33-48. 
18. Tighiouart M, Piantadosi S, Rogatko A. Dose finding for drug combination in 
early cancer phase I trials using conditional escalation with overdose control. In JSM 
Proceedings, Biopharmaceutical section, Alexandria, VA: American Statistical 
Association. 2014. 

JSM2015 - Biopharmaceutical Section

1953



19. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - A Bayesian 
modelling framework: Concepts, structure, and extensibility. Statistics and Computing 
2000; 10: 325-337. 
20. Babb J, Rogatko A, Zacks S. Cancer Phase I clinical Trials:  efficient dose 
escalation with overdose control. Stat Med 1998; 17: 1103-1120. 
21. Tighiouart M, Rogatko A, Babb JS. Flexible Bayesian methods for cancer phase 
I clinical trials. Dose escalation with overdose control. Stat Med 2005; 24: 2183-2196. 
22. Tighiouart M, Rogatko A. Dose Finding with Escalation with Overdose Control 
(EWOC) in Cancer Clinical Trials. Statistical Science 2010; 25: 217-226. 
23. Gasparini M. General classes of multiple binary regression models in dose 
finding problems for combination therapies. Journal of the Royal Statistical Society 
Series C-Applied Statistics 2013; 62: 115-133. 
 

JSM2015 - Biopharmaceutical Section

1954


