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Abstract 
For many clinical trials in the respiratory area, the primary response is based on 
potentially recurrent exacerbations observed during a treatment period.  Conventionally, 
logrank tests and Cox proportional hazards models have been used to compare treatments 
with regard to the time to the first exacerbation and a parametric time-homogeneous 
negative binomial model has been used to estimate the exacerbation rate. These analyses 
do not make use of potentially important information, namely the times of event 
occurrence, which can improve understanding of the exacerbation process and enhance 
understanding of the treatment benefits; one can also base analyses on methods which are 
robust to model misspecification. In this paper, we review a number of approaches 
reflecting recent advances in recurrent event methodology, including the marginal Cox 
model, rate-based models and the semiparametric negative binomial model.  We 
demonstrate the application of these methods to the pivotal SPARK study conducted for 
approval of a drug for COPD. We discuss the strengths and limitations of the competing 
methods and the interpretation of the findings from the various analyses before making 
recommendations on approaches for the design and analysis of future trials in COPD. 
 
Key Words: Recurrent event data analysis, marginal Cox model, rate-based model, 
semiparametric negative binomial model 
  

1. Introduction 
 
In many therapeutic areas and disease conditions, the outcome of interest that we hope to 
alleviate using a novel therapy may occur more than once within individual patients. An 
important example in the respiratory area involves exacerbation studies in treatments for 
COPD (Chronic Obstructive Pulmonary Disease) or asthma, where the main outcome is 
an exacerbation event which may occur multiple times during the study for individual 
patients. Conventionally, logrank tests or Cox proportional hazards (PH) models have 
been used to compare treatments with regard to the time to the first exacerbation event 
and a parametric negative binomial model has been used with regard to the exacerbation 
rate.  However, these analyses do not make use of potentially important information, 
namely the total number and/or times of occurrence of repeat exacerbations, which might 
potentially be used to improve the power of the analysis and the ability to most accurately 
characterize treatment benefits and be more robust to model misspecification. More 
sophisticated analysis methods have been developed to analyze recurrent event data, and 
these are slowly gaining increased credibility with regulators. In this paper, we describe 
and review a number of approaches reflecting recent advances in recurrent event 
methodology, including methods based on marginal Cox models (Wei, Lin, and 
Weissfeld, 1989), models based on rate or mean functions (Anderson and Gill, 1982; 
Lawless and Nadeau, 1995; Lin et al, 2000) and the semiparametric negative binomial 
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model (Therneau and Grambsch, 2000).  We apply these methods to a pivotal study 
SPARK conducted for approval of a new drug for COPD and discuss the advantages and 
limitations of the various methods. 
 
Ultibro® Breezhaler® (QVA) is a fixed-dose combination of indacaterol maleate (a long 
acting beta-2 agonist) and glycopyrronium bromide (NVA, a long acting muscarinic 
antagonist) and was developed for the once-daily treatment of COPD. The SPARK study 
was a 64-week, multi-center, randomized, double-blind parallel-group, active controlled 
study to evaluate the effect of QVA vs NVA and open-label tiotropium (Tio, 18 μg o.d.) 
on COPD exacerbations in patients with severe to very severe COPD. The study involved 
three arms, QVA, NVA, and Tio with sample sizes of around 730 patients per arm. The 
primary analysis variable of the study was the rate (time-adjusted numbers) of 
adjudicated moderate or severe COPD exacerbations during the treatment period (period 
between the first day of the study drug administration to the last day of the study drug 
administration). Out of 2205 patients in the modified full analysis set, 1247 had 
exacerbations and more than 50% of patients experiencing exacerbation had multiple 
exacerbations (up to 11 events); see Figure 1.  
 

 
Figure 1: Histogram of the number of exacerbations per patient by treatment arm 
 

The administrative censoring time was after last study drug administration if the patient 
remained in the study without early withdrawal. Even though there were some early 
dropouts, the overall censoring rate was very low (approximately 4.2%, 6.4% and 4.3% 
in groups QVA, NVA and Tio, respectively), as shown by the Kaplan-Meier plot in 
Figure 2. 
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Figure 2: Kaplan-Meier estimates of the time on study  

 
We plot the log of the Nelson-Aalen estimates of the cumulative mean functions (CMF) 
for each arm of the trial to help assess the suitability of the proportional means model; 
these estimates should be roughly parallel if the proportionality assumption is correct for 
the rate or mean functions. Figure 3 does not suggest any violations of this assumption.  

 
Figure 3: Log of cumulative mean functions for exacerbations versus time 

  
When mortality rates are high, a model that addresses both the recurrent event and the 
mortality processes might be needed. However in this study, the death rate is very low at 
about 3% during the treatment period. So death is not formally dealt with as a terminal 
event. This paper focuses on the application of the recurrent event methods to the 
exacerbation data. 
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2. Recurrent Event Models  
 
2.1 Notation 
Following the general notation used in Cook and Lawless (2007), let ...21  ii tt  denote 

a sequence of recurrence times for subject i, )()( ttItN ikik  indicate that the kth event 

occurred over (0, t], and 





1

)()(
k

iki ttItN count the total number of events over (0, 

t], for individual i in a sample of size n, i=1,…, n. Let Hi (t) Ni (s), 0  s  t, xi  

denote the history of the recurrent event process up to time t and 
 iikik xtssNtH ,0),()(    the history of the event-specific process up to time t.  

 
The Cox PH model for the 1st exacerbation is  
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where we specify )exp()()|( 1011 xthxth  and estimate the hazard ratio exp(1) . 

                               
2.2 Methods for Recurrent Event Data 
In exacerbation studies, traditionally two types of endpoints are of clinical interest. One is 
time to event endpoint, for example the time to the first exacerbation, which provides 
information on the delay of the event via the hazard ratio. For the time to event endpoint, 
when multiple events are to be considered we focused on the Wei, Lin, and Weissfeld 
(1989) marginal Cox PH model; we discuss this further in the next section. The other 
approach is to consider the recurrent event endpoints which are usually summarized in 
terms of an annualized rate and its reduction in the form of the rate ratio. More 
sophisticated semiparametric analyses are based on the Anderson-Gill method and its 
robust versions (Lawless and Nadeau, 1995; Lin et al., 2000) or the semiparametric 
negative binomial model.  
 
The gap time analysis is not discussed here, as this is generally not recommended for 
randomized trials where causal inference is a priority. For instance, the Prentice et al. 
(1981) gap time model is a stratified Cox regression model based on the prior number of 
events. Typically in a randomized clinical trial, after experiencing the kth (k=1,…,K-1) 
exacerbation the treatment groups may not necessarily be balanced anymore with regard 
to baseline characteristics; therefore the comparison among treatment arms may be 
questionable. In addition, the treatment effects may confound with the prior event history, 
which also makes the interpretation of treatment effect more difficult.  
  
2.2.1 The robust Wei, Lin and Weissfeld approach  
For time to event endpoints, traditionally the Cox PH model and logrank test have been 
used. Wei, Lin and Weissfeld (1989) extended this approach by simultaneously 
modelling the marginal distribution of the time to each of several different clinical events 
with a Cox PH model. In the present setting these events represent the successive 
exacerbations up to a final exacerbation to be modelled.  
    
The hazard for the kth (k=1…K) exacerbation is  
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and )exp()()|( 0 kkk xthxth  .  

 
The Wei, Lin and Weissfeld (WLW) approach does not impose a particular structure of 
dependence among distinct exacerbation times on each subject, but uses the robust 
variance estimation to take care of the within-patient dependence in the event times. 
Asymptotically the resulting estimators of k (k=1…K) are jointly normally distributed. 

This approach offers the opportunity to study the treatment effects over time and 
treatment effects averaged over the events. Implementation through a single model is 
available in the SAS PROC PHREG procedure via the STRATA statement.  In this 
formulation, subjects are considered “at risk” for their kth event irrespective of whether 
they have experienced their (k −1)st event; this neglects the natural ordering of the 
recurrence times, and has been criticized by reviewers and practitioners (Rejoinders, 
1992; Cook and Lawless, 1997; Tuli et al., 2000; Metcalfe and Thompson, 2007). 
 
To perform this analysis, with K=4, each patient should have 4 records in the data file of 
the counting process format (Therneau and Grambsch, 2000). For a patient with fewer 
than 4 events, dummy records need to be created for the remaining events. For example, 
for a patient with only 2 events as shown in Table 1, the 3rd and 4th dummy records are 
created as in Table 2 so that this patient will be in the “risk set” for these events.  
 

Table 1: Patient with two events 
Patient 

ID 
Exacerbation 

number Start Stop Status 
0003 1 1 83 1 
0003 2 98 502 1 

 
Table 2: Augmented records created for the third and fourth event times 

Patient 
ID 

Exacerbation 
number Start Stop Status 

0003 1 1 83 1 
0003 2 98 502 1 
0003 3 509 533 0 
0003 4 533 533 0 

 
In this study the value of K was set to 4, since only 7% of the patients who experienced 
exacerbations had 5+ events.  
 
2.2.2 Anderson-Gill model 
Anderson and Gill (1982) introduced a counting process model based on the Poisson 
distribution where the intensity function ))(|( tHt i has the same Cox-type form, 
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where )(0 t is the baseline intensity function.  

 
Lawless and Nadeau (1995) and Lin et al (2000) extended the utility of this model by 
developing robust variance estimates to adjust for extra-Poisson variation, or equivalently 
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the dependencies among multiple events within patients. These are also called rate and 
mean function models, and are most suitable when dealing with fixed or external time-
varying covariates.  
 
As discussed by Cook and Lawless (2007, Chap. 3 and Sec. 8.4), the use of rate and mean 
functions and the Anderson-Gill (AG) model offers the most broadly appealing and 
applicable approach for the comparison of treatment arms in randomized trials, provided 
censoring is independent of event occurrence and that there are no terminating events.  
 
2.2.3 Semiparametric negative binomial model 
For the analysis of exacerbation rates, traditionally a parametric negative binomial 
analysis has been performed based on event counts. The total number of events over the 
treatment period is assumed to follow a negative binomial distribution and the log of the 
treatment duration (exposure time) is included in the model as the offset along with other 
covariates. These models fully specify but ignore the information regarding when the 
recurrent events occur.  
 
A semiparametric negative binomial model can also be used to address the heterogeneity 
among patients while the events within the same patient follow a Poisson distribution. In 
this case one can define a “subject-specific” intensity function as 

)()),(|( ttHt iiii   , 

where i is a random effect with 1)( iE  and  )( iVar giving 

)()|)(( txtNE iii  and  2)()()|)(( ttxtNVar iiii  where 
t

ii duut
0

)()(   

(Lawless, 1987; Therneau and Grambsch, 2000). The model is called semiparametric 
since )(0 t  is not assumed to have any parametric form. If 0 , then this model 

reduces to a Poisson process, but generally it is a more flexible model. If
),1(~  Gammai , then this becomes a Gamma-Poisson mixture, i.e., a negative 

binomial process. In this case maximum likelihood estimates can be obtained even for the 
semiparametric model via SAS 9.3 or above (with STAT 13.2) using PROC PHREG with 
the RANDOM statement with DIST=gamma.  
 

3. Assessment of Independent Censoring 
 
The marginal analysis based on the Anderson-Gill model with robust variance estimates 
is valid under independent censoring as mentioned above. When there is a concern about 
dependent censoring (i.e., when individuals experiencing high rates of events are at 
higher risk of withdrawal), biases may arise in the AG analysis and analyses based on 
fully specified distributional assumptions, such as parametric negative binomial and 
semiparametric negative binomial models, may be preferred.  
  
Here we focus on two types of dependent censoring: covariate-dependent censoring and 
event-dependent censoring.  
 
3.1 Covariate-dependent censoring 
Covariate-dependent censoring arises if there are covariates that are associated with both 
the recurrent event process and the censoring process, but are not controlled for in the 
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recurrent event analysis.  In that case we have to model the covariate effect on the 
censoring process and weight the AG estimating equations by the inverse of the 
probability of remaining on study conditional on the covariate that is associated with both 
the recurrent event process and the censoring process. 
  
If we are just looking at a simple treatment comparison and only adjust for treatment in 
the rate model, then anything else associated with the risk of recurrent events that is also 
associated with the risk of censoring would qualify as a covariate that induces covariate-
dependent censoring.  For example, baseline FEV1 is associated with risk of 
exacerbations as well as risk of censoring, since sicker patients might be more likely to be 
withdrawn from the study. If we only control for the randomized treatment in the rate 
function analysis then the omission of baseline FEV1 induces dependent censoring. If we 
include baseline FEV1 in the rate function model then it is no longer omitted and we are 
fine. But if we omit it, we would model the hazard for censoring given baseline FEV1 and 
compute the censoring weight conditional on baseline FEV1. This, if it is 
modelled correctly, deals with the dependent censoring and will ensure consistent 
estimation of the mean functions and the treatment effect.  
 
3.2 Event-dependent censoring 
For event-dependent censoring, the “covariate” mentioned above is time-dependent and 
is in fact the recurrent event process itself.  If events predict more events, and events 
predict censoring, then we have this same issue. The models for assessing event-
dependent censoring are typically fitted by creating time-dependent covariates based on 
an evolving collection of information on a response along with fixed baseline data. 
 
When accessing the covariate-dependent censoring, a Cox regression model is utilized 
where the dependent variable is the censoring time with status event=1 indicating 
censoring and 0 otherwise. The model includes fixed covariates which are considered to 
be associated with the exacerbations: treatment, smoking history, COPD exacerbation 
history, total daily symptom score at baseline, inhaled corticosteroids, and FEV1 before 
inhalation. Out of the 6 covariates, three covariates - COPD exacerbation history, total 
daily symptom score at baseline, and inhaled corticosteroids - turn out to have a 
significant association with the time of patient withdrawal (p <0.0001), which suggests 
that there is some degree of covariate-dependent censoring. However since these 
covariates are all included in the pre-specified response model and no additional variables 
are identified to have potential association with the exacerbation occurring or the 
censoring process, the model is considered fine.  
 
When accessing the event-dependent censoring, two models have been performed. One 
includes the number of events as a continuous variable; and the other includes indicator 
variables )5...1( izi with )4...1( izi indicating the ith event and 5z the 5+ events, i.e., 

treats the event numbers as discrete variables. Both models include the fixed covariates as 
mentioned above.  Both models show that censoring time depends on the number of 
events or the indicator variables )5...1( izi with p<0.0001. However the overall 

censoring rate is so low that later analysis shows that there is a negligible impact on the 
estimates from the recurrent event analyses, as shown in Table 4.  
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4. Application to the SPARK COPD study 
 
The results provided below are based on the moderate/severe exacerbations originating 
from the eCRF (electronic Case Report Form), not based on the adjudicated 
moderate/severe exacerbations dataset since data were not available for counting type of 
data analyses.  
 
For the time-to-event analyses, the WLW model analyses the time to 1st, 2nd, 3rd, and 4th 
exacerbations instead of using the 1st exacerbation only. It confirms the result for the time 
to the 1st exacerbation using the regular Cox PH model, as shown in Table 3.  Even 
though QVA and NVA show similar treatment effect with a hazard ratio of 0.94 for the 
time to the 1st exacerbation, for subsequent events, there is a clear trend that QVA delays 
the time to exacerbation more positively for later events, with the hazard ratio of QVA 
vs. NVA varying from 0.85 to 0.54 for the time to the 2nd exacerbation to the time to the 
4th exacerbation. The overall treatment effect, averaged across 4 events, failed to 
demonstrate a significant effect.  
 

Table 3: Time to first and first four event analyses via the WLW approach 
 Hazard Ratio (p-value) of QVA vs. NVA 

1st Exac. 2nd Exac. 3rd Exac. 4th Exac. Global 
Cox PH model 0.94(0.351) NA NA NA NA 
WLW method  0.94(0.352) 0.85(0.136) 0.72(0.030) 0.54(0.005) 0.93(0.271) 

 
For the exacerbation rate analyses, all three methods provide similar estimates for the rate 
ratio and confidence intervals as shown in Table 4. Semiparametric negative binomial 
model provides the smallest p-value with the narrowest CI among the three methods.  
The reasons for this could be many fold, for instance, some degree of dependent 
censoring, non-constant risk from patient to patient, the gap times being quite large for 
some exacerbations, or other unknown reasons. To determine if this result is driven by 
the data or there is systematic reason in the respiratory exacerbation data so that 
semiparametric negative binomial model consistently provides smaller standard deviation 
compared to the other two models, further work is needed. However the consistent 
estimates of the rate ratio from the three methods indicate that the event-dependent 
censoring noticed earlier is negligible, primarily due to the low censoring rate.  
 

Table 4: Recurrent event analyses based on rate function model for QVA vs. NVA 
 Rate Ratio (95% CI) p-value 
Parametric negative binomial model 0.88 (0.777, 0.997) 0.045 
Semiparametric negative binomial model 0.87 (0.792, 0.961) 0.006 
AG model with robust variance estimate 0.87 (0.771, 0.989) 0.033 

 
In general, the semiparametric negative binomial model provides some protection for 
event-dependent censoring and does not require constant rate across patients, thus is 
recommended when event-dependent censoring is a concern. The AG approach does not 
require the counts to follow any specific underlying distribution as compared to the 
parametric negative binomial model, nor require any specification for the random effect 
distribution as compared to the semiparametric model, and therefore is more robust. Thus 
AG model is recommended when it is reasonable to assume independent censoring or if 
censoring rates are very low.  
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5. Concluding Remarks 
 

The WLW approach needs pre-specification of the maximum number of events K 
(usually small) to be analyzed. In this study, the 5th and above recurrent events are 
therefore ignored in the WLW analysis. This truncation represents a loss of 7% of the 
recurrent event data, which means the treatment effect averaged across 4 events does not 
exploit the entire recurrent event process. We also note that the patients are considered 
“at risk” for their kth event irrespective of whether they have experienced their (k −1)th 
event, which may raise concern regarding interpretation.  
 
In clinical trials it is particularly important that models most accurately characterize 
treatment benefits, and that treatment effects are easily interpreted and understood. In 
settings involving very few events per subject it may be reasonable to focus simply on the 
time to the first event. However when events occur more frequently, as in the SPARK 
trial, the preferred approach is to utilize data from the full event processes and base 
analyses on the rate of exacerbations.  
 
Estimates of the rate reduction via the AG model are easily interpreted and understood 
and robust variance estimates, which does not require any particular underlying 
distribution for the event rate, generally offer protection against extra-Poisson variation 
and other general departure from the Poisson model. It therefore is the most appealing 
and the simplest specification of treatment effects for recurrent events under the 
independent censoring assumption. The semiparametric negative binomial model 
provides some protection for event-dependent censoring and is recommended when this 
is a concern.  
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