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Abstract
An asymptotic behavior of CCA is studied when dimension d grows and the sample size n is fixed (i.e., under the

HDLSS situation). In particular, we are interested in the conditions for which CCA works or fails in the HDLSS
situation. This paper presents a conjecture about those conditions, which is supported by extensitve simulation study.
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1. Introduction

Canonical correlation analysis (CCA) introduced in [4] is a standard statistical tool to explore the relation-
ship between two sets of random variables. Consider dX - and dY -dimensional random vectors X(dX) and
Y (dY ), (

X(dX)
)T

=
[
X1, X2, . . . , XdX

]
,
(
Y (dY )

)T
=
[
Y1, Y2, . . . , YdY

]
.

CCA first seeks a pair of dX - and dY -dimensional weights vectors ψ(dX)
X1 and ψ(dY )

Y 1 such that two random
variables, one being the linear combination of X1, X2, . . . , XdX weighted by the elements of ψ(dX)

X1 and the
other being that of Y1, Y2, . . . , YdX weighted by the elements of ψ(dY )

Y 1 , have a maximal correlation,

(ψ
(dX)
X1 , ψ

(dY )
Y 1 ) = argmax

Var(〈ψ(dX )

X1 ,X(dX )〉)=Var(〈ψ(dY )

Y 1 ,Y (dY )〉)=1

Cov(〈ψ(dX)
X1 , X(dX)〉, 〈ψ(dY )

Y 1 , Y (dY )〉). (1)

Requiring the norms of the weight vectors ψ(dX)
X1 and ψ(dY )

Y 1 to be one, the equation (1) can be written as an
equivalent form of,

(ψ
(dX)
X1 , ψ

(dY )
Y 1 ) = argmax

‖ψ(dX )

X1 ‖2=‖ψ
(dY )

Y 1 ‖2=1

Cov(〈ψ(dX)
X1 , X(dX)〉, 〈ψ(dY )

Y 1 , Y (dY )〉)√
Var(〈ψ(dX)

X1 , X(dX)〉)
√

Var(〈ψ(dY )
Y 1 , Y (dY )〉)

. (2)

For convenience, denote the objective function in the right hand side of (2) by ρP (ψ(dX), ψ(dY )),

ρ : RdX ×RdY 7→ R

ρP (ψ
(dX), ψ(dY )) =

Cov(〈ψ(dX), X(dX)〉, 〈ψ(dY ), Y (dY )〉)√
Var(〈ψ(dX), X(dX)〉)

√
Var(〈ψ(dY ), Y (dY )〉)

.

Subsequent weights vectors ψ(dX)
Xi and ψ(dY )

Y i , for i = 1, 2, . . . ,min(dX , dY ), are found by maximizing the
objective function ρP (ψ(dX), ψ(dY )),

(ψ
(dX)
Xi , ψ

(dY )
Y i ) = argmax

‖ψ(dX )

Xi ‖2=‖ψ
(dY )

Y i ‖2=1

ρP (ψ
(dX)
Xi , ψ

(dY )
Y i ), i = 1, 2, . . . ,min(dX , dY ),
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under the constraint that,

Cov(〈ψ(dX)
Xi , X(dX)〉, 〈ψ(dX)

Xj , X(dX)〉) = Cov(〈ψ(dY )
Y i , Y (dY )〉, 〈ψ(dY )

Y j , Y (dY )〉)

= Cov(〈ψ(dX)
Xi , X(dX)〉, 〈ψ(dY )

Y j , Y (dY )〉)

= Cov(〈ψ(dY )
Y i , Y (dY )〉, 〈ψ(dX)

Xj , X(dX)〉)
= 0, i = 1, 2, . . . ,min(dX , dY ), j = 1, 2, .., i− 1 for each i.

The ith pair of weight vectors ψ(dX)
Xi and ψ(dY )

Y i are usually called the ith pair of canonical weight vectors
(or canonical loadings). The correlation ρ evaluated at the ith pair ψ(dX)

Xi and ψ(dY )
Y i , denoted by ρ(dX ,dY )

i , is
called the ith canonical correlation coefficient, that is, ρ(dX ,dY )

i = ρP (ψ
(dX)
Xi , ψ

(dY )
Y i ).

In practice, we collect two sets of obervations of dX - and dY -dimensional random vectors X(dX) and
Y (dY ) on a common set of samples in a dX × n matrix X(dX) and a dY × n matrix Y(dY ), respectively.
We row-center X(dX) and X(dX) and let Σ̂

(dX)
X , Σ̂

(dY )
Y and Σ̂

(dX ,dY )
XY be a covariance matrix of X(dX), a

covariance matrix of Y (dY ) and a cross-covariance matrix of X(dX) and Y (dY ),

Σ̂
(dX)
X =

1

n
X(dX)

(
X(dX)

)T
, Σ̂

(dY )
Y =

1

n
Y(dY )

(
Y(dY )

)T
, Σ̂

(dX ,dY )
XY =

1

n
X(dX)

(
Y(dY )

)T
.

For the case where the sample size n is greater than dX and dY , the estimation of sample canonical weight
vectors (ψ̂

(dX)
Xi , ψ̂

(dY )
Y i ) and sample canonical correlation coefficients ρ̂(dX ,dY )

i are done through singular
value decomposition of the matrix R̂(dX ,dY ),

R̂(dX ,dY ) =
(
Σ̂

(dX)
X

)− 1
2

Σ̂
(dX ,dY )
XY

(
Σ̂

(dY )
Y

)− 1
2
,

SVD(R̂(dX ,dY )) =

min(dX ,dY )∑
i=1

λ̂
(dX ,dY )
Ri η̂

(dX)
RXi

(
η̂
(dY )
RY i

)T
,

(3)

where λ̂(d)Ri is a sample singular value with λ̂(d)R1 ≥ λ̂
(d)
R2 ≥ · · · ≥ λ̂

(d)
Rmin(dX ,dY ) ≥ 0, and (η̂

(dX)
RXi , η̂

(dY )
RY i )

is a pair of left and right sample singular vectors corresponding to λ̂(d)Ri . Then, the ith sample canonical
correlation coefficient ρ̂(d)i is found to be,

ρ̂
(dX ,dY )
i = λ̂

(dX ,dY )
Ri .

The ith pair of canonical weight vectors ψ̂(dX)
Xi and ψ̂(dY )

Y i are obtained by unscaling and normalzing the ith
pair of sample singular vectors η̂(dX)

RXi and η̂(dY )
RY i ,

ψ̂
(dX)
Xi =

(
Σ̂

(dX)
X

)− 1
2
η̂
(dX)
RXi∥∥∥∥(Σ̂

(dX)
X

)− 1
2
η̂
(dX)
RXi

∥∥∥∥
2

, ψ̂
(dY )
Y i =

(
Σ̂

(dY )
Y

)− 1
2
η̂
(dY )
RY i∥∥∥∥(Σ̂

(dY )
Y

)− 1
2
η̂
(dY )
RY i

∥∥∥∥
2

. (4)

The projection of the data matrix X(dX) onto the ith sample canonical weight vector ψ̂(dX)
Xi gives the canoni-

cal scores (or canonical variables) of X(dX) with respect to ψ̂(dX)
Xi and similarly for X(dX). Although power-

ful, CCA has several disadvantages. first, use of CCA is practically restricted to the case of two sets of data
even if there is an attempt to generalize it to more than two sets of data [11]. Second, CCA components are
estimable only if the sample size n is greater than dX and dY . It is well know that, when n < max(dX , dY ),
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one can construct an infinite number of sample canonical weight vector pairs with their correlation of one.
Moreover, overfitting is often a problem even when n > dX and dY . Hence, CCA is often considered not
relible in high-dimensional data sets. We, however, will show that, even in the case where sample size n is
less than dX or dY , some sample canonical weight vectors is estimable and furthremore consistent under a
certain condition.

As high-dimensional data are increasingly common these days, where a large number of variables are
measured for each object, there is a strong need to investigate the behavior of estimates resulting from
the application of standard statistical tools such as CCA to a high-dimensional case (that is, scalability of
those tools). In studies in which dimension d is allowed to go to infinity, three scenarios are typically
considered [10],

• Low Dimension High Sample Size (LDHSS): Both dimension d and sample size n go to infinity but
n increases much faster than d, which can be summarized as d/n→ 0. These problems are similar to
conventional asymptotics where n→∞ with n being fixed.

• High Dimension High Sample Size (HDHSS): In this case, sample size and dimension grow together
in the sense that d/n → c for some constant c. The bahavior of eigenvalues of a sample covariance
matrix under this high-dimensional situation were studied in [2, 5, 9] primarily using random matrix
theories.

• High Dimension Low Sample Size (HDLSS): In this setting, the sample size is fixed and the dimension
grows in the sense that d/n→∞. An important finding in this high-dimensional setting was studied
in [1]. They showed that the first eigenvector of the sample covariance matrix converges consistently
to its population counterpart in the spiked model, where the leading eigenvalue is considerably larger
than the remaining eigenvalues. An intesting geometric structure of HDLSS data were revealed in [3].

In this chapter, we are going to study the asymptotic behavior of the sample canonical weight vectors and
canonical correlation coefficients of CCA under the HDLSS setting, where dimension d is allowed to grow
with sample size n being fixed.

Literature in the HDLSS asymptotic study of CCA is very limited, while the behavior of PCA compo-
nents under the similar high-dimensional condition is well-studied in [6, 7]. This might be in part because
CCA is not as widely used as PCA, which is almost an indispensible tool for dimension reduction of high-
dimensional data prevalent these days, and in part due to the complicated estimation steps involving an
inverse operator as in (3), which makes the analysis not straightforward. A relevant work is first addressed
in [8], where the asymptotic behavior of sample singular vectors and singular values are analysed under a
HDLSS setting. In [10], the similar study of CCA is elaborated on, but their proof should have consid-
ered the fact that an infinite sum of quantities converging to zero does not neccessarily approach to zero.
The HDLSS asymptotic behavior of CCA components in this chapter will be studied in relatively a simple
population structure and serves as a groundwork for further analysis.

2. Assumptions and Definitions

Without loss of generality for the case where the dimensions of two random vectors X(dX) and Y (dY ) grow
in a sense that dX/dY → 1, we set dX = dY and consider two random vectors X(d) and Y (d) of a same
dimension with mean zero. We assume that covariance structure of X(d) and Y (d) follows a simple spiked
model as in [1], where the leading eigenvalues of their covariance matrix is considerably larger than the rest.
In specific, let Σ

(d)
X and Σ

(d)
Y be the covariance matrices of X(d) and Y (d). Then, a spiked model can be
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easily understood via eigendecomposition of Σ
(d)
X and Σ

(d)
Y ,

Σ
(d)
X =

d∑
i=1

λ
(d)
Xiξ

(d)
Xi

(
ξ
(d)
Xi

)T
, Σ

(d)
Y =

d∑
j=1

λ
(d)
Y jξ

(d)
Y j

(
ξ
(d)
Y j

)T
, (5)

where λ(d)Xi is an polpulation eigenvalue (or population PC variance) with λ(d)X1 ≥ λ
(d)
X2 ≥ · · · ≥ λ

(d)
Xd ≥ 0,

ξ
(d)
Xi is an population eigenvector (or population PC direction) with ‖ξ(d)Xi‖2 = 1 and 〈ξ(d)Xi , ξ

(d)
Xj〉 = 0 for

i 6= j and similarly for λ(d)Y j and ξ(d)Y j . Here, we set,

λ
(d)
X1 = σ2Xd

α and λ(d)Xi = τ2X for i = 2, 3, . . . , d,

λ
(d)
Y 1 = σ2Y d

α and λ(d)Y j = τ2Y for j = 2, 3, . . . , d,
(6)

where one sees that the leading eigenvalues λ(d)X1 and λ(d)Y 1 become dominating the rest as d → ∞. We
now set up the population canonical components. We assume that the two random vector is related by a
pair of canonical weight vectors with its canonical correlation coefficient of ρ. The population canonical
weight vector ψ(d)

X in the X(d) part is a linear combination of two eigenvectors ξ(d)X1 and ξ(d)X2 without loss of
generality (ξ(d)X2 can be replaced with ξ(d)Xi for any i) and similarly for the other population canonical weight
vector ψ(d)

Y in the Y (d) part,

ψ
(d)
X = cos θXξ

(d)
X1 + sin θXξ

(d)
X2, ψ

(d)
Y = cos θY ξ

(d)
Y 1 + sin θY ξ

(d)
Y 2 . (7)

Note that the angle betweenψ(d)
X and ξ(d)X1 is θX and that the angle betweenψ(d)

Y and ξ(d)Y 1 is θY as 〈ψ(d)
X , ξ

(d)
X1〉 =

cosθX and 〈ψ(d)
Y , ξ

(d)
Y 1〉 = cosθY . At this point, we apply the change of basis to the spaces of X(d) and Y (d)

so that the eigenvectors {ξ(d)Xi}di=1 and {ξ(d)Y i }dj=1 are represented by the standard basis {e(d)i }dk=1. Then, the

canonical weight vectors (ψ(d)
X , ψ

(d)
Y ) given in (7) is rewritten as,

ψ
(d)
X = cos θXe

(d)
1 + sin θXe

(d)
2 , ψ

(d)
Y = cos θY e

(d)
1 + sin θY e

(d)
2 ,

and the covariance structures given in (5) and (6) are described as,

Σ
(d)
X = diag

d×d
(σ2Xd

α, τ2X , τ
2
X , . . . , τ

2
X), Σ

(d)
Y = diag

d×d
(σ2Y d

α, τ2Y , τ
2
Y , . . . , τ

2
Y ), (8)

where diag(•) is a square matrix with entries of • in the main diagonal and 0 off of it. With these population
covariance structures and canonical components, the multivariate version of the corallory ?? gives the cross-
covariance structure of X(d) and Y (d) as follows,

Σ
(d)
XY =


ρσ2
Xσ

2
Y d

2αcosθXcosθY
AB

ρσ2
Xd

ατ2Y cosθX sinθY
AB 0

1×(d−2)
ρτ2Xσ

2
Y d

αsinθXcosθY
AB

ρτ2Xτ
2
Y sinθX sinθY
AB 0

1×(d−2)
0

(d−2)×1
0

(d−2)×1
0

(d−2)×(d−2)

 , (9)

where

A =
√
σ2Xd

αcos2θX + τ2Xsin2θX , B =
√
σ2Y d

αcos2θY + τ2Y sin2θY .
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Then the covariance and cross-covariance structure of X(d) and Y (d) is succintly described by the co-
variance structure of the concatenated random vector T (2d),

T (2d) =

[
X(d)

Y (d)

]
, Σ

(2d)
T =

 Σ
(d)
X Σ

(d)
XY(

Σ
(d)
XY

)T
Σ

(d)
Y

 . (10)

To make the analysis a bit easy, we are going to work with a different representation of X(d) and Y (d). Let
Z(d) be the 2d-dimensional standard normal random vector. Then, T (2d) can be expressed as,

T (2d) =

[
X(d)

Y (d)

]
=
(
Σ

(2d)
T

) 1
2
Z(2d), Z(2d) ∼ N

(
0

2d×1
, I
2d×2d

)
. (11)

We state some definitions used in the estimation. Since the dimensionality d is much larger than the
sample size n in the HDLSS setting, the estimation step (3) of canonical components is problematic as
the sample covariance matrices Σ̂

(d)
X and Σ̂

(d)
Y are singular. There are two ways to handle this singularity

situation. The first one is to add a minute perturbation of εI for a small ε > 0 to Σ̂
(d)
X and Σ̂

(d)
Y and the

second is to use a pseudoinverse such as Moore-Penrose pseudoinverse. We use the pseudoinverse obtained
from the eigendecomposition of the sample covariance matrices,

Σ̂
(d)
X =

n∑
i=1

λ̂
(d)
Xi ξ̂

(d)
Xi

(
ξ̂
(d)
Xi

)T
, Σ̂

(d)
Y =

n∑
j=1

λ̂
(d)
Y j ξ̂

(d)
Y j

(
ξ̂
(d)
Y j

)T
, (12)

where λ̂(d)Xi is an sample eigenvalue (or sample PC variance) with λ̂(d)X1 ≥ λ̂
(d)
X2 ≥ · · · ≥ λ̂

(n)
Xd ≥ 0, ξ̂(d)Xi is an

sample eigenvector (or sample PC direction) with ‖ξ̂(d)Xi‖2 = 1 and 〈ξ̂(d)Xi , ξ̂
(d)
Xj〉 = 0 for i 6= j and similarly

for λ̂(d)Y j and ξ̂(d)Y j . The pseudoinverse we employ is defined as,

(
Σ̂

(d)
X

)−1
=

n∑
i=1

(
λ̂
(d)
Xi

)−1
ξ̂
(d)
Xi

(
ξ̂
(d)
Xi

)T
,
(
Σ̂

(d)
Y

)−1
=

d∑
j=1

(
λ̂
(d)
Y j

)−1
ξ̂
(d)
Y j

(
ξ̂
(d)
Y j

)T
. (13)

Then, the sample canonical correlation coefficient ρ̂(d)i is found as an ith sample singular value from the
SVD of the matrix R̂(d) defined in (4). The sample canonical weight vectors ψ̂(d)

Xi and ψ̂(d)
Y i corresponding to

ρ̂
(d)
i are obtained from (4) using the pseudoinverses (13).

The success and failure of CCA can be described by the consistency of the sample canonical weight
vectors ψ̂(d)

X and ψ̂(d)
Y with their population counterpart ψ(d)

X and ψ(d)
Y under the limiting operation of d→∞

and n fixed. Using the angle as a measure of consistency, we say that ψ̂(d)
X (similarly ψ̂(d)

Y ) is,

• Consistent with ψ(d)
X if angle(ψ̂(d)

X , ψ(d)
X )→ 0 as d→∞,

• Inonsistent with ψ(d)
X if angle(ψ̂(d)

X , ψ(d)
X )→ a, for 0 < a < π/2, as d→∞,

• Strongly inonsistent with ψ(d)
X if angle(ψ̂(d)

X , ψ(d)
X )→ π/2 as d→∞.

Strong inconsistency implies that the estimate ψ̂(d)
X and ψ̂(d)

Y become completely oblivious of its population
structure and reduce to arbitrary quantities, as indicated in the fact that pi/2 is indeed a largest angle possible
between two vectors.
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3. Conjecture and Interpretation

3.1 Conjecture

Let X(d) and Y (d) be the d-dimensional random vectors from the multivariate Gaussian distributions with
mean 0 and the simple spiked covariance matrices Σ

(d)
X and Σ

(d)
Y described in (5) and (6). With the popula-

tion canonical correlation coefficient ρ for 0 ≤ ρ ≤ 1, define the population canonical weight vectors ψ(d)
X

and ψ(d)
Y as,

ψ
(d)
X = cos θXξ

(d)
X1 + sin θXξ

(d)
X2, ψ

(d)
Y = cos θY ξ

(d)
Y 1 + sin θY ξ

(d)
Y 2

so that the angle between ψ(d)
X and ξ(d)X1 is θX , and the angle between ψ(d)

Y and ξ(d)Y 1 is θY . Then, the cross-
covariance matrix Σ

(d)
XY of X(d) and Y (d) is found as in 9. The two random variables X(d) and Y (d) can be

written in a equivalent form, [
X(d)

Y (d)

]
=

 Σ
(d)
X Σ

(d)
XY(

Σ
(d)
XY

)T
Σ

(d)
Y

Z(2d), (14)

where Z(2d) is a 2d-dimensional standard normal random vector. The data matrix whose columns consist of
n i.i.d. samples from the distribution 14 is written as,

[
X(d)

Y(d)

]
=

 Σ
(d)
X Σ

(d)
XY(

Σ
(d)
XY

)T
Σ

(d)
Y

Z(2d), (15)

where the columns of Z(2d) consist of n i.i.d. samples from 2d-dimensional standard normal ditribution.
Denote by z1 and z2 the first and (d + 1)th rows of Z(2d) corresponding to the first rows of X(d) and Y(d)

respectively. Then, as d → ∞ with the sample size n being fixed, the limiting behaviors of the sample
canonical correlation coefficient ρ̂(d)i and its corresponding sample canonical weight vectors ψ̂(d)

Xi and ψ̂(d)
Y i

obtained from the data 15 are as follows,

Conjecture 1. (i) α > 1

angle
(
ψ̂
(d)
X1, ψ

(d)
X

)
P−→

d→∞
θX , angle

(
ψ̂
(dY )
Y 1 , ψ

(d)
Y

)
P−→

d→∞
θY , ρ̂

(d)
1

D−→
d→∞

〈m1,m2〉
‖m1‖2‖m2‖2

,

angle
(
ψ̂
(d)
Xi , ψ

(d)
X

)
P−→

d→∞
0, angle

(
ψ̂
(d)
Y i , ψ

(d)
Y

)
P−→

d→∞
0, ρ̂

(d)
i

P−→
d→∞

0, i = 2, 3, . . . , n,

where

m1 = (
√
C1A

2
1 +

√
C2B

2
1)z1 + (

√
C1A1A2 +

√
C2B1B2)z2,

m2 = (
√
C1A1A2 +

√
C2B1B2)z1 + (

√
C1A

2
1 +

√
C2B

2
1)z2,

where

z1, z2
i.i.d.∼ N

(
0
n×1

, I
n×n

)
,

C1 =
σ2X + σ2Y +

√(
σ2X
)2 − 2σ2Xσ

2
Y + 4σ2Xσ

2
Y ρ

2 +
(
σ2Y
)2

2
,

JSM2015 - Section on Statistical Learning and Data Mining

1881



C2 =
σ2X + σ2Y −

√(
σ2X
)2 − 2σ2Xσ

2
Y + 4σ2Xσ

2
Y ρ

2 +
(
σ2Y
)2

2
,

A1 =
C1 − σ2Y
ρσXσY

/

√(
C1 − σ2Y
ρσXσY

)2

+ 1, A2 = 1/

√(
C1 − σ2Y
ρσXσY

)2

+ 1,

B1 =
C2 − σ2Y
ρσXσY

/

√(
C2 − σ2Y
ρσXσY

)2

+ 1, B2 = 1/

√(
C2 − σ2Y
ρσXσY

)2

+ 1.

(ii) α < 1

angle
(
ψ̂
(d)
Xi , ψ

(d)
X

)
P−→

d→∞
0, angle

(
ψ̂
(d)
Y i , ψ

(d)
Y

)
P−→

d→∞
0, ρ̂

(d)
i

P−→
d→∞

1, i = 1, 2, . . . , n.

3.2 Interpretation

The conjecture 1 implies that where ψ̂(d)
X1 and ψ̂(d)

Y 1 converge to depend heavily on the size of the variance
dα of the population eigenvector ξ(d)X1 and ξ(d)Y 1 . That is, the estimates ψ̂(d)

X1 and ψ̂(d)
Y 1 tend to converge to

the eigenvectors ξ(d)X1 and ξ(d)Y 1 when their eigenvalues σ2Xd
α and σ2Y d

α become strong enough (α > 1) as
d→∞. Briefly, we summarize results. The sample canonical weight vector ψ̂(d)

X1 (similarly ψ̂(d)
Y 1) is,

• Consistent with ψ(d)
X if α > 1 and angle(ψ(d)

X , ξ(d)X1) = 0 as d→∞,

• Inonsistent with ψ(d)
X if α > 1 and angle(ψ(d)

X , ξ(d)X1) = θX , for 0 < θX < π/2, as d→∞,

• Strongly inonsistent with ψ(d)
X if α < 1 or if α > 1 and angle(ψ(d)

X , ξ(d)X1) = π/2 as d→∞.

The asymptotic behavior of the sample canonical correlation coefficient ρ̂(d)1 is not straightforward to
imagine. Let’s take a simple example where σ2X = 1, σ2X = 1, τ2X = 1 and τ2Y = 1 in the spiked covariance
structure in (5) and (6). In this case, referring to the conjecture 1, the sample canonical correlation coefficient
ρ̂
(d)
1 converges in probability to the following random quantity,

ρ̂
(d)
1

P−→
d→∞

〈m1,m2〉
‖m1‖2‖m2‖2

,

where

m1 =

(√
1 + ρ+

√
1− ρ

2

)
z1 +

(√
1 + ρ−

√
1− ρ

2

)
z2,

m2 =

(√
1 + ρ−

√
1− ρ

2

)
z1 +

(√
1 + ρ+

√
1− ρ

2

)
z2.

Note that z1 and z2 are samples from n-dimensional multivariate standard normal distribution. It can be
easily verified that each elementm1i ofm1 (similarly form2i ofm2) follows a standard normal distribution,

m1,i =

(√
1 + ρ+

√
1− ρ

2

)
z1i +

(√
1 + ρ−

√
1− ρ

2

)
z2i ∼ N(0, 1),

m2,i =

(√
1 + ρ+

√
1− ρ

2

)
z1i +

(√
1 + ρ−

√
1− ρ

2

)
z2i ∼ N(0, 1),

which leads to,

‖m1‖2 ∼
√
χ2
n, ‖m2‖2 ∼

√
χ2
n,
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where χ2
n denotes the chi-square distribution with degree of freedom of n. Since the numerator part

〈m1,m2〉 is not a degenerate random quantity, one sees that ρ̂(d)1 does not converge to a trivial random
variable such as 1.

Now increase the sample size n to see which value the sample canonical correlation coefficient ρ̂(d)1

converges to. By the law of large numbers and noting that the elements m1,i and m2,i are from i.i.d.
standard normal distribution,

‖m1‖22
n

=
n∑
i=1

m2
1i

n

P−→
n→∞

1,
‖m2‖22
n

=
n∑
j=1

m2
2j

n

P−→
n→∞

1.

Furthurmore, noting that m1 and m2 are i.i.d. samples,

〈m1,m2〉
n

=

(√
1 + ρ+

√
1− ρ

2

)(√
1 + ρ−

√
1− ρ

2

) n∑
i=1

z21i
n

+

(√
1 + ρ+

√
1− ρ

2

)(√
1 + ρ−

√
1− ρ

2

) n∑
i=1

z22i
n

+

(√
1 + ρ+

√
1− ρ

2

)2 n∑
i=1

z1iz2i
n

+

(√
1 + ρ−

√
1− ρ

2

)2 n∑
i=1

z1iz2i
n

P−→
n→∞

2

(√
1 + ρ+

√
1− ρ

2

)(√
1 + ρ−

√
1− ρ

2

)
= ρ,

which confirms the conventional large sample asymptotic property of the statistic ρ̂(d)1 ,

ρ̂
(d)
1

D−→
d,n→∞

ρ.

4. Simulation

Simulation study in this section aims at verifing the asymptotic behavior of sample canonical correlation
coefficients and their corresponding weight vectors given in the main theorom 1 as dimension d grows with
sample size n fixed. We first state the parameter settings to be used. For the spiked covariance structures
of the random variables X(d) and Y (d) described in (5) and (6), we set σ2X = τ

(d)
X = σ2Y = τ

(d)
Y = 1. The

population caconical weight vectors described in (7) and population caconical correlation coefficient are set
to be,

ψ
(d)
X = (cos 0.75π)e

(d)
1 + (sin 0.75π)e

(d)
2 , ψ

(d)
Y = (cos 0.75π)e

(d)
1 + (sin 0.75π)e

(d)
2 , ρ = 0.7.

Note that 〈ψ(d)
X , e

(d)
1 〉 = 〈ψ

(d)
Y , e

(d)
1 〉 = cos 0.75π = 0.7071, which implies that the angle between ψ(d)

X

and e(d)1 is 135◦. The population cross-covariance structure of X(d) and Y (d) can be accordingly defined as
in (9). We perform 100 runs of simulations for each combination of different values of the following three
sets,

• Sample size n ∈ {20, 80},

• Dimension d ∈ {200, 500},
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Figure 1. Estimated sample canonical correlation coefficients ρ̂(d)i and inner products of the sample left canonical
weight vectors ψ̂(d)

Xi and the population canonical weight vector ψ(d)
Xi , for i = 1, 2, . . . , 5, obtained from 100 repetitions

of simulations for different settings of dimension d and exponent α with a sample size of n = 20.

• Exponent α ∈ {0.2, 8}.

Each case, estimates of the first 5 canonical correlation coefficients ρ̂(d)i and their corresponding canonical
weight vectors ψ̂(d)

Xi and ψ̂(d)
Y i are obtained. The estimated vectors ψ̂(d)

Xi and ψ̂(d)
Y i , for i = 1, 2, . . . , 5, are

compared to the population canonical weight vector ψ(d)
X using their inner product. Here, we do not include

results of ψ̂(d)
Y i as they are similar as those of ψ̂(d)

Xi .
Figure 1 presents the simulation results for a small sample size of n = 20. For α = 0.2, sample

coefficients and vectors are almost of no use as the estimated vectors tend to be as far away as possible
from the popultion direction (implied in the inner products of 0) with always perfect correlation. When
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Figure 2. 100 estimated sample canonical correlation coefficients ρ̂(d)i and inner products of the sample left canonical
weight vectors ψ̂(d)

Xi and the population canonical weight vector ψ(d)
Xi , for i = 1, 2, . . . , 5, obtained from 100 repetitions

of simulations for different settings of dimension d and exponent α with a sample size of n = 80.

α increases to a high strength of 8, the first sample coefficient ρ̂(d)1 approachs to the population direction
whereas the rest degenerate to 0 as d → ∞. The first left sample canonical weight vector ψ̂(d)

X1 converges
to the direction e(d)1 (implied in the inner products of cos 0.75π) containing dominant variability as d→∞
and the rest carry no information on the population direction with tending to deviate from it by a highest
degree of 90◦. Figure 2 illustrates the results for a larger sample size of n = 80. For the case of α = 0.2,
the behavior of ρ̂(d)i and ψ̂(d)

Xi is similar as that in a small sample size case. However, for α = 8, we see
a noticeable decrease in variability of the first sample canonical correlation coefficient ρ̂(d)1 around a true
value of 0.7 and of the rest of ρ̂(d)i around 0. This implies that the usual large sample theory works for
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ρ̂
(d)
1 . Diminishing variability is also observed for the sample canonical weight vectors ψ̂(d)

Xi , where the first
sample vector ψ̂(d)

Xi becomes almost identical to the largest variance direction e(d)1 and the rest diverge from
the population canonical direction ψ(d)

X .
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