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Abstract 
We investigate the effects of temporal aggregation on the cumulative sum of squares 
(CUSUMSQ) test to detect a variance change in a time series. First, we derive the proper 
parameter transformation of an aggregate ARIMA model. When temporally aggregated 
data are used, we show that two aggregation quantities, which are from the aggregate 
model parameters, in the CUSUMSQ test statistic have effects on test results. Then, we 
propose a modified CUSUMSQ test to control the aggregation effects. Through Monte 
Carlo simulations, the modified CUSUMSQ test shows better performance and higher 
test powers to detect a variance change in an aggregated time series. 
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1. Introduction 

 
It is sometimes found that an interruptive event, which starts at a certain time point, 
causes a structural change in a time series. If there exists a discordance in the second 
moment before and after the event time, it is called a variance change (or a variance shift) 
of the series. However, when one is interested to identify the variance change, a statistical 
test of independent samples, such as the F-test, cannot be directly employed because time 
series observations are almost certainly dependent and no possibility for randomization 
exists (Box and Tiao, 1965). Also, the event time is often unknown and needs to be 
estimated; that is, it makes another problem how to distinguish between the pre-event and 
the post-event and compare their variance difference. Therefore, various alternative 
procedures to test for a variance change have been proposed and developed in literature. 
Hsu (1977) proposes a cumulative sum (CUSUM) test for a variance change in a 
sequence of independent normal random variables when the event time is unknown. Tsay 
(1988) extends the Hsu test to the cumulative sum of squares (CUSUMSQ) test using 
time series model errors under independence condition. Inclán and Tiao (1994) show that 
the limiting null distribution of the CUSUMSQ test statistic follows a Brownian bridge. 
Lee and Park (2001) and Jin and Zhang (2011) modify the CUSUMSQ test with trimmed 
observations and bootstrapping, respectively. 
 
Another point of interest is temporal aggregation. Most published time series data are 
temporally aggregated from the original observations of a small time unit to the 
cumulative records of a large time unit. However, it is known that temporal aggregation 
has substantial effects on process properties because it transforms a high frequency 
nonaggregate series into a low frequency aggregate series. Amemiya and Wu (1972), 
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Brewer (1973), Abraham (1982), Weiss (1984), Stram and Wei (1986), and Silvestrini 
and Veredas (2008) study the changes of ARIMA model structures and parameters which 
result from the aggregation. Tiao (1972) and Wei (1978a) show that the aggregate model 
converges to an IMA limiting model as the aggregation order goes to infinity. Tiao and 
Wei (1976) and Wei (1978b) discuss the information loss in parameter estimation. 
Lütkepohl (1984, 1986) investigates the aggregation effects on VARMA model structures 
and the efficiency of the multivariate forecasts. It is also known that the temporal 
aggregation strengthens the linearity (Granger and Lee, 1999; Teles and Wei, 2000), 
induce the normality (Teles and Wei, 2002), and reduce the unit-root characteristic (Teles 
et al., 2008). 
 
In this paper, we study the effects of temporal aggregation on the CUSUMSQ test to 
detect a variance change in a time series. The paper is organized as follows. In Section 2, 
we review the test procedure of the CUSUMSQ test. Section 3 presents aggregation 
effects on ARIMA model structures and parameters. In Section 4, we develop a modified 
CUSUMSQ test when temporally aggregated data are used. In Section 5, we compare the 
unmodified CUSUMSQ test and the modified CUSUMSQ test through Monte Carlo 
simulations. Also, some further remarks of the tests are given in Section 6. 
 
 

2. Testing for a Variance Change in a Time Series 

 
The problem of interest is to identify a variance change in a time series process 
{ ; 1,..., }tx t n . It can be reworded as testing the null hypothesis of a constant error 
variance, i.e., 
 

 
1

2 2 2
0 :

na a aH       
 
against the alternative of a variance change starting at a time point k , i.e., 
 

 
1 1

2 2 2 2
1 :

k k na a a aH    


       
 

for 1 k n   and k , where  denotes the set of integers and 2
ta at is an error 

variance at time t . 
 
We consider two time series processes: 
 

1. A base process (0){ ; 1,..., }tx t n , which follows an ARIMA ( , , )p d q  model of 
 

 (0)( )(1 ) ( )d

p t q tB B x B a   , (2.1)  
 

where ta  is a Gaussian white noise of mean zero and variance 2
a , and 

1
( ) 1 p i

p ii
B B 


   and 

1
( ) 1 q j

q jj
B B 


   are polynomials of backshift 

operator B . Here, all the roots of ( )p B  and ( )q B are assumed to be outside of 

a unit circle. So the d th difference series (0)(1 )d

tB x  is stationary. 
2. A discordant process { ; 1,..., }tx t n  with a variance change starting at a time 

point k , which can be modeled as 
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( )
qd d
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B





 
     

 
 

, (2.2)  

 
where kv  is a change-magnitude and ( ) 1tI k   for t k  or 0  for t k . 

 
We define an error ( )(1 )d

t te B B x   for 1,...,t n , where 2
1 2( ) (1 )B B B     

( ) / ( )p qB B  . From (2.1) and (2.2), we have  
 

 
, for ,

(1 ) ,for ,
t

t

t t

a t k
e

v a t k


 

 
 (2.3)  

 

which implies that the error variance changes from 2
a  to 2 2(1 )k av   at k  (Tsay, 1988). 

 
Consider the cumulative sum of squares (CUSUMSQ), 2

1

l

tt
e

 , for 1,...,l n . To test for 
a variance change at an unknown k , Tsay (1988) and Inclán and Tiao (1994) propose a 
CUSUMSQ test with the test statistic,  
 

 
2,...,

sup k
k n

c


 and 
2

1
2

1

k

tt
k n

tt

e k
c

ne





 



 . (2.4) 

 

Under the null hypothesis of no variance change, it is known that 
2,..., 0 1

sup sup ( )
d

k
k n r

c B r
  

  

where ( ) ( ) (1)B r W r rW   is a Brownian bridge and ( )W r  is a Wiener process. Let 
x    denote the largest integer not greater than a real number x . The value r  is chosen 

from the condition of nr k    (Inclán and Tiao, 1994). 
 
 

3. Temporal Aggregation Effects on ARIMA Models 

 
The discordant series tx  is transformed into the m th order temporal aggregate TX  
defined to be 
 

 
1

( 1) 1 0

mT m
j

T t mT

t m T j

X x B x


   

   , (3.1)  

 
where the aggregation order m  is a positive integer for m n  and the aggregate time unit 

1,...,T N  for /N n m  (Tiao, 1972; Wei, 2006, p.508). Similarly, the base series (0)
tx  

is aggregated into 
1

(0) (0) (0)

( 1) 1 0

mT m
j

T t mT

t m T j

X x B x


   

   . 

 
It has been known that if (0)

tx  follows an ARIMA ( , , )p d q  model, then its m th order 
aggregate series (0)

TX  is also follows an ARIMA ( , , )P d Q  model of 
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 (0)( )(1 ) ( )d

P T Q TX A   , (3.2)  
 

where TA  is a Gaussian white noise of mean zero and variance 2
A , and 

1
( ) 1 P i

P ii
     and 

1
( ) 1 Q j

Q jj
     are polynomials of backshift 

operator mB . The orders P and Q are given by  
 
 P p , (3.3)  
 
and 
 

 ( 1)1 p d q
Q p d

m

   
    
 

, (3.4)  

 
if no hidden periodicity exists in the roots of equations ( ) 0p B   and ( ) 0q B  . For the 
details and proofs, we refers readers to Stram and Wei (1986) and Wei (2006, pp.513–
515). Also, Amemiya and Wu (1972), Brewer (1973), Weiss (1984), and Silvestrini and 
Veredas (2008) show aggregate ARIMA model’s parameters in terms of nonaggregate 
ARIMA model’s parameters and the aggregation order. 
 
 

4. Aggregation Effects on the CUSUMSQ Test 

 
Let K  be the change point of the discordant series TX  in (3.1), for 1 K N   and 
K  . Then, similarly to (2.2), TX  is written as 

 

 (0) ( )
(1 ) (1 ) ( )

( )
Qd d

T T K T T

P

X X A I K
 

     
 

, (4.1)  

 

where (0)(1 )d

TX  is the aggregate stationary series, K  is a change-magnitude and 
( ) 1TI K   for T K  or 0  for T K . 

 
Similarly to (2.3), an aggregate error TE  is written as 
 

 
, for ,

( )(1 )
(1 ) ,for ,

Td

T T

K T

A T K
E X

A T K


   

 
 (4.2)  

 

which implies that the variance of TE  changes from 2
A  to 2 2(1 )K A  at time point K , 

where 2
1 2( ) ( ) ( ) / ( )P Qq       . 

 
In the same manner as (2.4), the CUSUMSQ test statistic for a variance change starting at 
an unknown K  in the series TX  is given by 
 

 
2,...,

sup K
K N

C


 and 
2

1
2

1

K

TT
K N

TT

E K
C

NE





 



 , (4.3) 
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of which the null distribution is 
2,..., 0 1

sup sup ( )
d

K
K N r

C B r
  

 . 

 
Let  
 

 2 2

( 1) 1

mT

T T t

t m T

E e
  

    . (4.4)  

 
Then, KC  in (4.3) is rewritten as 
 

 
2

1 1
2

1 1

mK K

t Tt T
K mN N

t Tt T

e K
C

Ne

 

 

 
 

 

 

 
 , (4.5) 

 

which implies that the two aggregation quantities 
1

K

TT 
  and 

1

N

TT 
  explain the 

aggregation effects on the test statistic. 
 
To control the aggregation effects on the test procedure, we eliminate the two aggregation 
quantities from KC  and propose a modified CUSUMSQ test. 
 
Definition 4.1. A modified CUSUMSQ test statistic for a variance change of the 
aggregate series TX  is defined to be 
 

 ( )

2,...,
sup m

K
K N

C


 and 
2

( ) 1
2

1

( )

( )

K

T Tm T
K N

T TT

E K
C

NE





 
 

 




 . (4.6) 

 
 

5. Simulation Studies of the Aggregation Effects 

 
In this section, we compare the empirical null distributions of the two CUSUMSQ test 
statistics in (4.3) and (4.6) through Monte Carlo simulations. We also investigate their 
statistical powers. 
 
5.1. Empirical Null Distributions 
 
Under the null hypothesis of no variance change, we generate 2500 different 
nonaggregate stationary processes (each size 1800) which follow ARMA (1,1)  models, 
(1 ) (1 )t tB x B a    , for every choice   and { 0.95, 0.8, 0.5, 0.3, 0.1,0.1,0.3,      

0.5,0.8,0.95} , assuming    and ~ (0,1)
iid

ta N . That is, we simulate 2500×90=225000 
nonaggregate stationary series of size 1800. Then we transform the simulated series into 
their m th order temporal aggregates TX , as defined in (3.1), for 3,6,12,18,24,36m  , 
respectively. We note that each aggregate series TX  follows a stationary ARMA (1,1)  
process, (1 ) (1 )T TX A    and its series size becomes 600,300,150,100,75,N 

50 , respectively. 
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We draw the empirical null distributions of the unmodified test statistic (4.3) and the 
modified test statistic (4.6) for all the 225000 cases. The expected values of (4.3) are 
distributed on the left panel and the expected values (4.6) on the right panel of Figure 

5.1. 
 
We notice the null distribution of (4.3) changes its location rightward and its shape 
downward as the aggregation order m  increases. However, the null distribution of (4.6) 
is also constant in spite of the aggregation order increment. Hence, we are aware that the 
distribution location and shape mainly are dependent on the two aggregation quantities 

1

K

TT 
  and 

1

N

TT 
 .  

 
 
5.2. Test Powers 
 
To examine the statistical powers, we simulate alternative distributions. First, we 
generate 2500 different nonaggregate stationary processes (each size 1800) which follow 
the ARMA (1,1)  models shown in Section 5.1, assuming the change  10kv   at 901k  . 
 
In Table 5.2, we present the test powers obtained from the simulations at significance 
level 0.05  . When comparing their means, the test power using the modified (4.6) is 
much higher than the test power using the unmodified (4.3) as  m  increases. 
 
 
 
 
 
 

 
Figure 5.1: Empirical null distributions of the mean CUSUMSQ test statistics. 
 
 

 

 
Table 5.2:  Test powers of the two CUSUMSQ tests 

 
m Mean test powers for Mean test powers for 
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the unmodified test (4.3) the modified test (4.6) 
1 0.15904 0.15904 
3 0.12316 0.15892 
6 0.10764 0.15912 

12 0.10524 0.15995 
18 0.10547 0.15942 
24 0.10543 0.15936 
36 0.10297 0.15932 

 

 
5. Concluding Remarks 

 
In this paper, we analyze the effects of temporal aggregation on the CUSUMSQ 
test for a variance change in a time series. First, we show the proper model 
transformation of an ARIMA model structures. Then, using the aggregate model, 
we derive the modified CUSUMSQ test and find the two aggregation quantities 
on the test statistic. Through the simulation study and the data examples, we see 
the modified CUSUMSQ test performs better than the unmodified in terms of test 
powers. Therefore, we conclude that for efficient variance change detection on 
aggregate data, we should control the aggregation effect and use the modified 
CUSUMSQ test. 
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