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Abstract 

The development of drugs and biologicals whose mechanisms of action may extend 
beyond their target indications has led to a need to identify unexpected potential toxicities 
even in ongoing blinded clinical trials.  Recently issued FDA rules regarding safety 
reporting requirements raise the possibility of breaking the blind for serious adverse 
events that are not the clinical endpoints of a blinded trial.  However, unblinding 
individual cases of frequently occurring adverse events could compromise the overall 
validity of the trial.  The possibility of elevated risk can be addressed without unblinding 
the trial by using external information about adverse event rates among patients not 
receiving the test product in populations similar to the trial population.  We describe a 
Bayesian approach to determining the likelihood of elevated risk suitable for binomial or 
Poisson likelihoods that applies regardless of the metric used to express the difference.  
The method appears to be particularly appropriate when the adverse events are not ‘rare’. 
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1. Introduction 

Assurance of the safety of drugs, vaccines, and other medical products has been an 
explicit regulatory objective for more than a century.  With the development of drugs and 
biologicals whose mechanisms of action may extend beyond their target indications, there 
has been an increasing recognition of the need to detect potential toxicities as soon as 
possible.  This need extends to identifying unexpected potential toxicities even while 
blinded clinical trials are under way during the product development process.   

The FDA recently issued rules regarding safety reporting requirements pertaining to 
products still under development. [1]  One component of these rules is the possibility of 
breaking the blind for serious adverse events that are not the clinical endpoints of a 
blinded study in order to identify a possible risk associated with the new product.  A 
number of concerns were raised in comments responding to the rule, including the 
possibility that unblinding individual cases of frequently occurring adverse events could 
compromise the overall blinding of the study.   

It may be possible to obtain information about relative adverse event risks of a new 
product without unblinding individual cases, especially if the trials are large.  If a trial is 
blinded, then only the total number of patients in the trial and the total number of reports 
of an adverse event are known.  The actual numbers of patients on the test and control 
treatments are unknown, as are the numbers of patients on each treatment who report the 
adverse event.   

The key question is, for which adverse events should consideration be given to taking 
some action such as partially unblinding individual cases to conform to the recently 
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issued rules?  Typically, these would be the adverse events that appear to be occurring 
unusually frequently.  However, ‘unusually frequently’ has to be considered in context, 
particularly with regard to the patient population included in the trial. 

Literature databases contain few articles dealing with estimates based on blinded data.  
Blinded trials do not provide reliable estimates of differences between treatment effects 
[2, 3], so using only blinded data provided by an individual trial or suite of trials is 
unlikely to provide useful insights into potential toxicity issues.   

External information about the natural incidence of an adverse event in the clinical trial 
population, and some simplifying assumptions, can be used to provide treatment risk 
difference estimates that are insufficiently accurate to justify firm conclusions, yet may 
be useful for identifying potential toxicity issues for which further followup would be 
appropriate.  An intuitive approach in this direction is provided in  [4]. 
 

2. Model 
2.1 Single Trials 
The information provided from a typical trial, or from a collection of trials, consists of 
the allocation fraction, the numbers of patients assigned to the test and control treatments, 
the numbers of events reported by the patients on each treatment, and the test and control 
event rates (pT, pC, respectively).  If the trial is blinded, then the only known quantities 
are N, the total number of patients in each trial, X, the total number of reports of the 
event by the patients in either treatment group of each trial, and , the fraction of the total 
sample size allocated to the test group.   

The description that follows applies to a single trial, but can be extended to multiple 
trials.  If the event counts are generated from binomial likelihoods, then the joint 
likelihood is 

Likelihood = fbinom(X; N, pC) ቀ
ଵି୮౐
ଵି୮ి

ቁ
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  (1) 

where Cሺx୘, X, N, ሻ  denotes a combinatorial factor.  If M denotes a measure of the 
difference between the test and control event rates, e.g., the ratio R = pT/pC, then pT in (1) 
can be replaced by a function of M and pC.  Summing (1) with respect to xT gives the 
probability of X as a function of pC and M.  Multiplying the result by the product of the 
prior densities for M and pC and integrating with respect to M and pC gives the marginal 
probability function of X that can be used to construct control charts for monitoring 
ongoing trials. 

If N is large and pC and pT are small, then the events can be regarded as realizations from 
Poisson likelihoods and the analogue of (1) is, when M = R = T/C is the ratio of event 
rates, 

Likelihood = fPoisson(X; (R + 1)C)  fbinom(xT; X, R/(R + 1))   (2) 

where  is the exposure of subjects on T relative to those on C.  Exposure can be 
expressed in terms of the allocation ratio,  = /(1 - ), duration of treatment, etc. 

The next step is to specify priors for M and for pC, usually on the basis of literature 
reports and prior data reflecting regulatory and clinical considerations.  The prior 
distribution for M should be diffuse, so that its posterior is driven primarily by the 
observed event count, but the prior distribution for pC should be precise.  Conventional 
Bayesian calculations generate the posterior density of M given the observed event count 
and the parameters of the prior distributions of M and pC, from which one can calculate 
the posterior probability that the metric exceeds some critical value,  e.g., the posterior 
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probability that the ratio R =  pT/pC exceeds 2.  If this probability is sufficiently high, then 
some action such as partial unblinding might be considered. 
 
2.2 Determining the Prior Distributions 
Information about the prior distribution of the control group event rate pC can be obtained 
from various sources, e.g., large electronic record health databases.  This information can 
be used in various ways, typically involving regulatory and clinical input, to specify a 
prior distribution for pC  Figure 1 illustrates diffuse (dashed curve) and precise (solid 
curve) prior beta(a,b) distributions for pC when the expected event rate is 2% or 10%. 

    (a,b) = (1,49) or (20,980)   (a,b) = (5,45) or (100,900) 

 
Figure 1: Prior cdfs for the control group event rate pC assuming an expected rate of 

2% (left panel) or 10% (right panel) 

Since, as will be demonstrated, the sensitivity of the method for detecting possible 
increases in risk depends strongly on the location and precision of the prior distribution of 
pC, careful attention should be given to its determination.  It generally will be sufficient to 
assume that a transformed value of M has a normal prior distribution with low precision. 
 
2.3 Decision Rule 
A typical decision rule might be “Consider taking action if Ppost(M > Mcrit | X) > crit”.  
The posterior probability depends on the total sample size N and the total number of 
events X.  The values of Mcrit and crit need to be determined before observing the trial 
data.  Table 1 displays the values of Xcrit = min(X : Ppost(M > Mcrit | X) > crit) when M is 
the rate ratio R = pT/pC.  Observing X crit or more events implies the posterior probability 
will exceed crit. 
 
Table 1: Values of Xcrit = min(X: Ppost(R < Rcrit | Xcrit) > crit) for various prior 

distributions of pC when (Rcrit, crit) = (1, 0.8), (2, 0.5), or (2, 0.8). 

E(pC) 0.02 0.02 0.1 0.1 
(Rcrit, crit) Prior (a,b) (1, 49) (20, 980) (5, 45) (100, 900) 

(1, 0.8) N = 100 14 4 22 13 
  1000 56 31 134 105 

(2, 0.5) 100 18 8 28 19 
  1000 136 38 241 156 

(2, 0.8) 100 30 12 40 23 
  1000 238 50 344 172 

 
2.4 Statistical Properties 
The statistical properties of the approach are expressed in terms of the probability that the 
observed total event count X will exceed a critical value Xcrit such as in Table 1 as a 
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function of the true values of pC and pT.  Figure 2 provides a graphical summary of the 
statistical properties of the method under various assumptions about the true values of pC 
and R.  The vertical lines identify the Xcrit values corresponding to (Rcrit, crit) = (2, 0.5) 
for a prior with low precision (‘diffuse’) or with high precision (‘sharp’).  The ordinate 
corresponding to the intersection of a vertical line with a curve corresponding to a true 
value of R. which is unknown, gives the probability of observing an X value no less than 
Xcrit, i.e., of possibly taking some action, for that true value of R.   

 
    pC = 0.02 

 
    pC = 0.10 

 

Figure 2: Upper tails of the probability distribution of X as a function of the total 
sample size N (left panel: N = 100, right panel: N = 1000), the expected 
control group event rate pC (upper panels: pC = 0.02, lower panels: pC = 
0.10), the spread of the prior distribution of pC, and the true value of the 
event rate ratio R = pT/pC [solid: R = 1,  dashed: R = 2,  dotted: R = 4]  The 
vertical lines correspond to the values of Xcrit when (Rcrit, crit) = (2, 0.5). 

It is evident from Figure 2 that the probability of an observed value of X exceeding Xcrit 
depends on the total sample size, the precision of the prior distribution of the control 
group event rate, and the true value of R.  If the prior distribution of the control group 
event rate is ‘diffuse’ and the expected value of pC is small (0.02), then the probability 
that X exceeds Xcrit is essentially zero regardless of the sample size even if R = 4. If the 
prior distribution of the control group event rate is precise, then the probability that X 
exceeds Xcrit is nearly 1 for R = 2 or 4 except when N = 100 and the expected value of pC 
is 0.02, when the probability is about 0.10.  If R = 1 (solid curve), corresponding to no 
risk inflation, then there is essentially zero probability that X > Xcrit for any of the cases.   
 

3. Example 

We illustrate the method in the context of trials in women with Type 2 diabetes mellitus, 
with the target adverse event being atrial fibrillation.  Table 2 summarizes information 
about the ‘natural’ incidence of atrial fibrillation among these patients obtained from the 
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literature and from large databases. For the sake of illustration, the findings in Table 2 are 
assumed to provide a reasonable assessment of the range of values for the probability that 
a woman with Type 2 diabetes mellitus will develop a first occurrence of atrial 
fibrillation in a year of observation.   The objective is to determine an appropriate sample 
size for a new trial that provides reasonable sensitivity for detecting potential toxicity of a 
treatment for Type 2 diabetes mellitus.   
 
Table 2: Incidence of atrial fibrillation among women with Type 2 diabetes mellitus 

but without a previous history of atrial fibrillation. 

Source No. Pats 
Incidence/1000 
Patient-Years 

CPRD 66,036 6.47 
CCMC 2,500,051 13.95 
Schoen et al [5, 5] 3,667 3.67 
Nichols et al [6, 6] 7,836 7.6 

Suppose that 10,000 patients are to be observed for a year in each treatment group of the 
new trial.  The sample size has to be large because atrial fibrillation is relatively rare.  
Since the natural event rate (incidence per person-year) pC is quite small, a Poisson model 
like (2) will be appropriate.  The findings in Table 2 suggest (details immaterial) a beta 
distribution for pC with parameters (75, 8366), which has about 95% of its probability 
content between 0.007 and 0.011.  This corresponds to a Poisson event rate parameter C 
= 10,000pC with a gamma (75.75, 0.85) prior distribution.  This distribution has the 
central 95% of its probability between 70 (= 0.007  10,000) and 110 (= 0.011  10,000).   

Figure 3 summarizes the statistical properties for this example assuming that the true 
value of C is 70, 90, or 110.  The vertical line is at the value of Xcrit corresponding to Rcrit 
= 2 and crit = 0.5.  A decision to take some action (X > Xcrit) if the true event ratio was 2  

 True C = 70     True C = 90    True C = 110 

 

Figure 3: Distribution of the total event count X as a function of the control group event 
rate C and the true ratio R of the test and control group event rates.  The solid 
curve corresponds to R = 1, the dashed curve to R = 2, and the dotted curve to 
R = 4.  

would be highly unlikely if the true value of C is 70 or 90, but almost certain if the true 
value of C is 110.  It is clear from from Figure 3 that the prior distribution of the control 
group event rate should be precise, to minimize the prior probability of values of C that 
would lead via the likelihood to an excess number of events in the control group and, 
consequently, a total number of events implying an elevated event risk in the test group 
for which some action should be contemplated even if the expected event rates were the 
same in both groups or the test group event risk was only modestly increased.  
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4. Discussion 

The key conclusion is that it may not be necessary to unblind an ongoing trial to satisfy 
the spirit of the recently issued FDA rules regarding safety reporting requirements 
pertaining to products still under development [1] if external information about adverse 
event rates in relevant patient populations can be obtained from large databases such as 
electronic health databases.  However, unless the prior information provides a very 
precise estimate of the control group event rate, the trial to which the method would be 
applied is fairly large, and the increase in risk from the test agent is substantial, a finding 
that would justify unblinding the trial is unlikely.  This is not necessarily a disadvantage, 
because unblinding a trial has many consequences and it would be inadvisable to do so 
without substantial evidence suggesting that it was necessary. 

The illustration of the statistical properties of the method provided in Section 2 is based 
on parameters (chosen for illustration) for the prior distributions that define the method.  
In practice, the values of the parameters rest on clinical and regulatory considerations and 
must reflect discussion and concurrence of development program sponsors and managers, 
and regulators.  It is unlikely that a single set of parameter values will apply in general or 
even within a particular development program.   

Various rules can be described for specifying actions that could be taken based on the 
application of the method described here.  Regardless of the action that any rule might 
prescribe, the occurrence of larger numbers of adverse events than would be anticipated 
from prior experience cannot by itself be interpreted as demonstration of increased risk 
from the test treatment.  Associative or causal treatment relationships can be 
demonstrated only when the trial is unblinded and the treatment assignments are known. 

The method is intended to be used primarily for screening large ongoing blinded trials to 
identify situations where the incidence of adverse events is substantially larger than 
would be anticipated on the basis of prior information about the ‘natural’ incidence of the 
events, that is, the incidence for patients in the control group.  Its purpose is to alert trial 
sponsors and managers to a potential safety issue in a principled way without 
compromising the blinding or integrity of the trial.  In that sense, it is analogous to a 
control chart in a manufacturing process, or a canary in a coal mine, and so can be 
applied repeatedly during a trial.  It is not intended to, and cannot, provide a precise or 
even necessarily accurate ongoing assessment of the relative test/control adverse event 
risk.  Assessment of the reason for an elevated overall event count requires at least partial 
unblinding and a separate analysis.   
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