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Abstract

We establish a finite mixture model for clustered binary data in which
members of clusters in one latent class have a zero response with proba-
bility one; and clusters in a second latent class yield correlated outcomes.
Response probabilities in terms of random effects models are formulated,
and maximum marginal likelihood estimation procedures based on Gaussian
quadrature are developed. Application to esophageal cancer data in Chi-
nese families is presented.

KEYWORDS: Clustered binary data, Gaussian quadratures, Logistic-
Gaussian model, random effect models, zero-inflated clustered data, zero-
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1. INTRODUCTION

Binary response, such as the presence or absence of a disease are common in clini-
cal reseach. In addition, correlated data arise in many application areas including
studies of disease occurrence among family members, studies involving repeated
measures of outcome on units, and studies involving group randomization. To
account for correlation within clusters, random-effects models have been proposed
and have been used in various applications for correlated binary data (Anderson
and Aitkin, 1985; Prentice, 1988; Rosner, 1989). The presence of binary or count
data with excess zeros are also a common phenomena in a wide variety of dis-
ciplines. A literature review on this (Ridout and others, 1998) cited examples
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from a variety of research areas including agriculture, econometrics, epidemiol-
ogy, public health, medicine, and social work. For example, in laboratory litter 
studies, it may frequently happen that some animals are unaffected by treatment -
the so-called non-response phenomena. In correlated grouped-time survival data, 
some groups of individuals may be immune to the event of interest. Moreover, in 
genetic studies, it is often suspected that only a small subgroup of patients may 
have a disease gene that would be linked to a disease marker. Consequently, in 
studying rare, genetic or familial diseases, data that are randomly sampled, will 
lead to many families that are largely devoid of individuals with the attribute. 
Mixture models (Brillinger and Preisler, 1983) provide a natural framework for 
unobserved heterogeneity in population studies and the overall distribution of 
disease occurrence in such data or similar outcomes should appropriately be a 
mixture.

Approaches for dealing with excess zero phenomena, notably the zero-inflated 
count models have seen rapid interest and development in recent years. This 
includes the zero-inflated Poisson model (Lambert, 1992) and the zero-inflated Bi-
nomial model (Hall, 2000) for count data with excess zeros. Fox(2013) proposed a 
multivariate zero-inflated Poisson—Gamma model for counts and processing times 
in modelling feedback behavior. Wang (2010) proposed a zero-inflated Poisson 
model to handle multivariate count data and zero-inflated Poisson models with 
random effects have been considered (Min and Agresti , 2005; Rabe-Hesketh and 
Skrondal, 2007). Hall(2000) introduced zero-inflated binomial model for count 
data and incorporated random effect to accommodate correlation of outcomes in a 
repeated measures design. Hur and others (2002), proposed a model for clustered 
count data with excess zeros for health outcomes research. Recently, (Loeys and 
others, 2012) gave a more general introduction, where Bayesian alternatives have 
been proposed.

The current paper builds on works of zero-inflated models and introduce a 
zero-inflated variance component model for clustered binary data with excess zero 
clusters. We consider an application of disease occurrence among families for 
motivation and development of our methods. For most applications in family 
studies, the outcome is a disease status -affected or not affected, and excess zero 
cluster of families is a common phenomena. For example, diseases that are rare 
or familial are more susceptible in certain families than others. In our case study 
of esophageal cancer in 2951 Chinese families (Kwagyan, 2001), 1580(53%) had 
no affected family members (see Table 1). While models for handling excess zeros 
for count data have been studied, and whiles the case study presents excess zero
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clusters, models that accommodate such data structure for clustered binary data
with covariate effects have not been well developed.

We (i) introduce a finite mixture likelihood model for binary data with zero-
inflated clusters, (ii) model the response probabilities in terms of random effects
based on Gaussian distributional assumption to allow for investigation of between
cluster heterogeneity and (iii) develop approximate maximum (marginal) likeli-
hood procedure using Gaussian quadrature for estimation of parameters.

2. MODEL FOR ZERO-INFLATED CLUSTERED BINARY

DATA

Suppose data is composed of N clusters each of size ni, i = 1, ....., N and a
vector of binary responses Yi = (Yi1, ...., Yini)

T measured on it. Let Y =
(Y1,Y2, ..,YN)T , then the Y′is are independently distributed vectors. Let Π0

and Π1 represent two latent classes where Π0 is the class (of families) whose mem-
bers do not manifest the attribute under study and Π1 the class (of families)
whose members are susceptible to the attribute under study. In other words, we
consider data situation in which excess number of zero vector of responses occur
in some clusters. Further, suppose given a cluster (or family) from the class, Π1,
the probability of an outcome follows a Bernoulli distribution with probability of
success, δij. We shall call Π0 the ”zero-vector state” and Π1 the ”Bernoulli state”.
We define the unobserved random variable, Zi(Zi = 0, 1), i = 1, ...N , such that

Zi =

{
0, with probability 1− αi
1, with probability αi

Suppose further that Zi = 0 when Yi is generated from the ”zero-vector state”
and Zi = 1 when Yi comes from the ”Bernoulli state”. Thus 1 − αi is the
probability that a randomly choosing cluster (family) comes from the ”zero-vector
state”, Π0, and αi, the probability that it comes from the ”Bernoulli state”, Π1.

Then for each outcome, Yij,

Yij =

{
0, with probability 1− αi
Ber(δij), with probability αi

With this, joint distribution of the i-th cluster is derived via a mixture formulation
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as

P (Yi) = P (Yi1 = yi1, ..., Yini = yini) = E[P (yi1, yi2...., yini|Zi)]
= P (Zi = 0)P (Yi|Zi = 0) + P (Zi = 1)P (Yi|Zi = 1)

= (1− αi)1[y=0] + αiP1(yi) (1)

By assumption,

1[y=0] =

{
1, if

∑ni
j=1 yj = 0

0, if
∑ni

j=1 yi > 0
⇔

ni∏
j=1

(1− yij) (2)

Thus 1[y=0] can be thought of as a degenerate (one point) distribution whose values
are localized at 0.

In addition, we have by assumption

P1(yi) = P1(yi1, ..., yini) =

ni∏
j=1

δ
yij
ij (1− δij)1−yij (3)

Substituting equation (2) and (3) into (1) we establish the joint distribution for
the i-th cluster as

P (Yi1 = yi1, ..., Yini = yini) = (1− αi)
ni∏
j=1

(1− yij) + αi

ni∏
j=1

δ
yij
ij (1− δij)1−yij

(4)

Thus, the model we obtain is a mixture of a form of a degenerate distribution
representing the class (of families) that do not manifest the attribute and an
independent distribution representing the class (of families) whose members yield
correlated outcomes. In effect, we have established a finite mixture model for
clustered binary data in which members of clusters in one latent class have a zero
response vector with probability one; and clusters in the other latent class yield
correlated outcomes.

From Eqn (4), we find the first moment, the mean of Yij, as

µij = E(Yij) = P (Yij = 1) = αiδij

and the second moment, the variance of Yij, as

V ar(Yij ) = P (Yij = 1){1− P (Yij = 1)} = iδij (1− iδij ) = µij (1− µij )
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We notice that for j 6= j′,

P (Yij = 1, Yij′ = 1) = P (Yij = 1)P (Yij′ = 1|Yij = 1)

⇒ δij = P (Yij = 1|Yij′ = 1)

And so δij is simply the conditional probability of the outcome of one member
given another member from the cluster has the attribute.

If αi → 1, δij → µij, the joint distribution, (Equation 4), of the ith cluster
reduces to

P (Yi1 = yi1, ....., Yini = yni) =

ni∏
j=1

δ
yij
ij (1− δij)1−yij →

ni∏
j=1

µ
yij
ij (1− µij)1−yij

This is the standard logistic distribution, which in most applications is the null
hypothesis of independence of outcomes within cluster. Thus, α may be inter-
preted as a measure of cluster dependence. We shall term the parameter, α, the
relative cluster dependence parameter.

Now suppose the j-th subject has a vector of p individual-specific covari-
ates, Xij = (xij1, ..., xijp) and let the i-th cluster has q cluster-specific covariates
Wi = (wi1, ..., wiq). The scientific objective is to characterize the dependence
of Yij on Xij and Wi. The logit model with Gaussian random effects has been
studied extensively (Anderson and Aitkin, 1985; Gilmour and others, 1985; Zeger
& Karim, 1991; Pinheiro & Bates, 1995 & 2000) and will be adopted. We model
the logit of the parameter, δij, as

δij(X) = P (Yij = 1|Yij′ = 1,Xij) =
1

1 + exp[β0 + βXij + γi ]
(5)

where λi v N(0, σ2), is an unobservable random effect assumed to have a Gaussian
distribution with mean zero and variance σ2 to account for excess heterogeneity
and within cluster correlation. In a similar manner, we can model the parameter
αi via a logit link as a function of cluster-specific covariates,Wi, but without
random effects. That is

αi(W) = [P (Zi = 1|Wi)] =
1

1 + exp[λ0 + λWi ]

This is necessary, because αi has an embedded property to measure within cluster 
dependence, and heterogeneity is accounted for in the modeling for δij . Hall (2000) 
suggested similar parametrization in a random effect zero-inated count model for 
a repeated measures design.
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3. PARAMETER ESTIMATION

Different methods for estimating parameters in random effects models have been
proposed by several authors ( Zeger and Karim, 1991; McCulloch, 1997; Kuhn
and Lavielle, 2005). When the dimension of the random effects is one or two,
numerical integration techniques can be implemented reasonably easily and will
be used ( Im and Gianola, 1988; Crouch and Spiegelman, 1990; Hur and others,
2002).

In this application, we shall model αi = α, a constant, without loss of general-
ity. The constant relative dependence model can be regarded as the analogue of
the desirable homoscedastic model in general linear models.

Let θ = {α, β0,β, σ2} be the parameters to be estimated, then the conditional
distribution of Y =(Y1, ...., YN)T , given γi is

P (Y|γi,θ) =
N∏
i=1

{
(1− α)

ni∏
j=1

(1− yij) + α

ni∏
j=1

δ
yij
ij [1− δij]1−yij

}
γi ∼ N(0, σ2) (6)

The (marginal) distribution of Y is found by integrating out of the conditional
distribution equation (6) with respect to the unobserved random variable γi and
is given by

P (Y|θ) =
N∏
i=1

{
(1− α)

ni∏
j=1

(1− yij) + α

∫ ∞
−∞

[
ni∏
j=1

δ
yij
ij [1− δij]1−yijf(γi;σ

2)

]
dγi

}
For convenience, we consider Vi = γi/σ, then Vi ∼ N(0, 1), and so

P (Y|σ,θ) =
N∏
i=1

{
(1− α)

ni∏
j=1

(1− yij) + α

∫ ∞
−∞

[
ni∏
j=1

δ
yij
ij (1− δij)1−yijφ(Vi)

]
dVi

}
(7)

where φ(.) is the standard normal density and

δij(β0,β, σ) =
1

1 + exp[−(β0 + βX + σVi)]
It is not possible to carry out the integration analytically, therefore numerical ap-

proximation is necessary. Since the integrals are over Gaussian densities, Gaussian 
quadrature would be appropriate and is used.
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Using an M-point Hermite-Gaussian quadrature; an integral of the form
∫
f(v)φ(v)dv,

where φ(v) is the standard normal density is approximated by the weighted sum;∫
f(v)φ(v)dv ≈

1√
π

M∑
m=1

wmf(
√

2vm)

where vm are the Gaussian quadrature points and wm the associated weights.
Applying this to the log-likelihood of equation (7), we have

l(β, U ;Y) ≈
N∑
i=1

log

{
(1− α)

ni∏
j=1

(1− yij) +
α√
π

M∑
m=1

wm

[
ni∏
j=1

(δijm)yij(1− δjim)1−yij

]}

where

δijm(β0,β, σ) =
1

1 + exp{β0 + βXij +
√

2σvm}
Maximum likelihood using Newton-Raphson algorithm can be used to estimate
the parameters. Im and Gianola (1988) recommends using a small number of
quadrature points as possible. In principle, one could also use an EM algorithm
combined with Gaussian quadrature (Bock and Aitkin, 1981; Im and Gianola,
1988), but notably, the EM has the disadvantage of not readily providing standard
errors of the parameter estimates, and convergence is usually slow in the absence of
close form solutions and therefore will not be discussed further in this application.

4. APPLICATION TO ESOPHAGEAL CANCER DATA

IN CHINESE FAMILIES

Esophageal cancer, a gastointestinal cancer, is one of the deadliest cancers world-
wide because of its extremely aggressive nature and poor survival rate and are 
commonly seen in China than in the US (Li, 1982; Khuroo and others, 1992; 
Rasool, 2012), with incidence rates of 20 to 30 times higher. This application 
involves the study of esophageal cancer in 2951 randomly sampled nuclear fami-
lies collected in Yangcheng County, Shanxi Province, Peoples Republic of China 
(Kwagyan, 2001). The main objective of the study was to assess the presence 
of familial aggregation of esophageal cancer. In this analysis, we consider as a 
cluster, the nuclear family unit, and assess correlation of the disease adjusting for 
measured risk factors. The outcome variable is whether an individual is affected 
with esophageal cancer or not. Table 1 summarizes the distribution of number
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of affected individuals by family size. Of the 2951 families, 1371(47%) had at
least one affected member and 1580(53%) had no affected members- presenting
a substantial number of ”excess zero” clusters. The respondent within a family
has correlated outcomes which are influenced in part or wholly by the cluster as
well as the variables on the individual respondent. The following covariates are
available: SEX is coded as 0 for female and 1 for male, AGE is years centered
at 50, SMOKE is coded as 0 for nonsmoker and 1 for smoker, and ALCOHOL
is coded 0 for nondrinker and 1 for drinker. The outcome variable, Y, is coded 1
if an individual is affected with esophageal cancer and 0 otherwise.

Table 1 : Distribution of number of affecteds by family size

Number with esophageal cancer

Family Size 0 1 2 3 4 5 6 7 Total

3 435 151 34 3 623

4 536 215 52 16 6 819

5 335 203 81 34 8 0 659

6 159 155 59 27 1 4 0 412

7 74 95 46 12 5 3 0 1 232

8 30 54 25 11 2 3 1 0 129

9 6 21 10 3 1 1 0 0 43

10 4 8 6 2 1 1 1 0 23

11 0 3 1 1 0 1 1 0 8

12 0 1 0 1 0 0 0 0 2

13 1 0 0 0 0 0 0 0 1

Total 1580 906 314 110 24 13 3 1 2951

Assuming a single random effect, the general (full) model for predicting an indi-
vidual’s response to esophageal cancer, accounting for potential family to family
heterogeneity whiles adjusting for the excess zero clusters is given as:

logit[δij|X, λi] = β0 + β1Sex+ β2Age+ β3Smoke+ β4Alcohol + λi, λi v N(0, σ2)

α = constant

The following describes specific fitted models and GEE for comparison.
1. Model I: Standard Logistic Regression Model: This is the complete inde-

pendence model, which is our basic null hypothesis.

logit[µij|X] = β0 + β1Sex+ β2Age+ β3Smoke+ β4Alcohol

α = 1
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2. Model II: Logistic-Gaussian Model: This is a random effects model that assumes 
correlation of outcomes within families arises from unobserved random variation 
accross families.

logit[δij |X, λi] = β0 + β1Sex + β2Age + β3Smoke + β4Alcohol + λi, λi v N(0, σ2)
α = 1

3. Model III: Zero-inflated Logistic Model: This is a fixed effect model that as-
sumes correlation of outcomes within families whiles adjusting for excess zero 
clusters.

logit[δij |X, λi] = β0 + β1Sex + β2Age + β3Smoke + β4Alcohol
α = constant

4. Model IV: Zero-inflated Logistic-Gaussian Model. This is a random effect 
model, that assumes correlation of outcomes within families and further tests for 
unobserved variation across families whiles adjusting for excess zero clusters.

logit[δij |X, λi] = β0 + β1Sex + β2Age + β3Smoke + β4Alcohol + λi, λi v N(0, σ2)
α = constant

Computations of the proposed models were performed using computer programs
we developed which was linked with the likelihood optimization software MUL-
TIMAX (Bonney and others, 1997). Brillinger and Preisler (1983) reported that 
results do not change much for quadrature points, M > 8 and so for computations,
M = 9 was employed to complete the analysis.

Results of the fitted models are summarized in Table 2. The table contains 
values of the parameter estimates with their standard errors, the likelihood ratio 
chi-square statistics to test the significance of differences between the null hypoth-
esis of independence and the hypothesis of dependence. Within family dependence
is described by the magnitude of the relative dependence parameter, α, and excess 
familial heterogeneity by the magnitude of σ, the variance component parameter. 
The significance of the individual estimates is judged by t-test based on the stan-
dard errors and 95% CI. The final (most parsimonious) model was selected based
on the Akaike information criterion (AIC), defined as,

AIC =− 2 ∗ log(likelihood) + 2 ∗ (number of parameters)

As expected, the likelihood ratio chi-square statistics show significance of the 
logistic-Gaussian model (likelihood ratio χ 2(1) = 6.76, p < 0.01), zero-inflated
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(fixed effect) model (likelihood ratio χ2(1) = 34.02, p < 0.0001) and the zero-
inflated logistic-Gaussian model (likelihood ratio χ2(2) = 46.92, p < 0.0001) com-
pared with the standard logistic (independence) model. Both zero-inated models 
(Model III and Model IV) fit the data better than the logistic-Gausian model 
(Model II) based on the AIC. The likelihood ratio test indicates that the zero-
inated (random effect) logistic-Gaussian model fits the data better than the zero-
inflated (fixed effect) model (likelihood ratio χ2(1) = 15.16, p < 0.001), indicating 
significant variation of outcomes across families. It should be noted that the use 
of the likelihood-ratio test for testing variance components has been called into 
question, with some advocating halved p-values for such testing of variance com-
ponent parameters (Snijders and Bosker ,1999). In this analysis, the difference 
in log-likelihood values between the zero-inated fixed effect model and random-
effect models is large, relative to the number of degrees of freedom, so that the 
preference of the random effect model is unequivocal. The zero-inated logistic-
Gaussian model was therefore the best fitted model and selected. For this model,
the maximum likelihood estimate±SE of the relative dependence parameter, α, 
was 0.849 ± 0.025; the 95% confidence interval is estimated from

0.795 ± (1.96)(0.027) as (0.7421, 0.8479)

which excludes 1, and so we conclude there is significant dependence of outcomes 
in these families. This suggests that the data was sampled from a population 
where the aggregation of esophageal cancer is higher than that from the general

population. The estimated ± SE of σ, the variance component parameter is 
0.771 ± 0.086 with a 95% CI of (0.605, 0.939). which excludes 0. Thus the data 
further suggests some degree of heterogeneity of outcomes across families.

At the individual covariate level, sex and age have positive significance while 
alcohol has negative significance. Smoking was not significant at the 5% level. We 
conclude that the males were at a higher risk of getting esophageal cancer than 
the females and also that it is more prevalent in older people. The negative effect 
of alcohol means that, it has a propensity to lower the risk of esophageal cancer. 
Although the amount (number of drinks) of alcohol drank is not available for this 
analysis, we can speculate that the significance could be due to moderation in 
drinking.

In comparison, the parameter estimate of the mean risk, β0, is much larger 
in the logistic (independence) model and the logistic-Gaussian model than the 
zero-inated models. The parameter estimates in both fixed and random-effect 
zero-inflated models are relatively close for sex, age, and smoke. However, the
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parameter estimate for alcohol in the random-effects model is appreciably smaller 
(in absolute terms) compared to the estimate in the fixed-effects model. In 
summary we conclude that esophageal cancer aggregates in the families sampled.

5. CONCLUSION

This paper has been concerned with development of a finite mixture likelihood 
formulation for clustered binary data with zero-inated clusters, a data structure 
in which all members of clusters in one latent class have a zero response with 
probability one; and clusters in the other latent class yield correlated outcomes. 
Response probabilities in terms of random effects models and approximate maxi-
mum (marginal) likelihood estimation procedures based on Gaussian quadrature 
for regression analysis were developed. The development, albeit being straight 
forward and based on simple analytic formulation, is novel and well suited for 
areas of application including public health and biomedical research. For exam-
ple, in correlated grouped-time survival data (Hedeker and others, 2000), some 
groups of individuals may be immune to the event of interest. In public health 
research, patients clustered within a physician office may not have the outcome 
of interest. The case analysis of the esophageal cancer data demonstrated that, 
the proposed zero-inated (fixed effect) logistic model improved the fit over the 
standard logistic regression model and the logistic-Gaussian model, and it also 
illustrated that the zero-inated (random-effect) logistic-Gaussian model fits the 
data significantly better than the fixed-effect model. Thus, the random effects 
model provides a useful tool for analyzing clustered binary data with excess-zero 
clusters. The proposed model provides accounts for within cluster (family) de-
pendence, provides a good portrayal of cluster (family) differences while adjusting 
for excess zero clusters. The relative errors incurred by ignoring the adjustment 
of excess-zeros can be problematic even for a small number of groups with zeros, 
if a traditional modeling methods are used (Gupta and others, 1996).

To our knowledge, the work we have established in this paper is the first like-
lihood formulation for modelling clustered binary data with zero-inated clusters. 
It is possible, however, that closer scrutiny, practical considerations and numerical 
studies would suggest modifications and/or refinements to the methods discussed. 
In conclusion, we remark that the proposed finite mixture model for correlated 
binary data is suitable and computationally tractable for the regression analysis 
of binary data with zero-infl ated clusters with covariate e
ects.
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 Table 2: Estimates and Standard Errors of the Regression Analysis of Esophageal Cancer in 
Chinese Families  

Model I: 

Standard 

Logistic 

Model II:  

Standard 

Logistic-Gaussian 

Model III: 

Zero-inflated 

 Logistic 

Model IV:  

Zero-inflated  

Logistic-Gaussian 

Parameter Estimate ± SE Estimate ± SE Estimate ± SE Estimate ±SE 

Mean Risk: β₀ -5.235 ±0.116 -4.494 ± 0.109 -4.152 ±0.109 -4.272 ± 0.141

Individual Covariates 

Sex: β₁  0.982 ± 0.052   0.908 ± 0.059  0.834 ± 0.058  0.811 ± 0.059 

Age: β₂  0.037 ± 0.003   0.038 ± 0.002  0.037 ± 0.002  0.036 ± 0.004 

Alcohol: β₃ -1.175±0.171 -1.145 ± 0.173 -1.046 ±0.169 -0.968 ± 0.146

Smoke: β₄ 0.056 ± 0.066 0.057± 0.067 0.058 ± 0.059 0.064 ± 0.053

Dependence parameter: α  - -  0.816 ±0.023 0.749± 0.024 

Variance Component : σ   0.732 ± 0.074  0.841 ±0.085 

-2*Log(Likelihood)  10749.08   10736.06   10717.32   10702.16 

AIC  10759.08   10738.06   10729.32   10714.16 

*Likelihood Ratio χ²(df)     13.02(1)      31.76(1)     46.92(2) 

*p-value  < 0.001     < 0.0001   < 0.0001 
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