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Abstract 
The allocation space of an unequal allocation permuted block randomization can be quite 
wide. The development of unequal allocation procedures with a narrower allocation space 
is complicated by the need to preserve the unconditional allocation ratio at every step 
(ARP property). When the allocation paths are depicted on the K-dimensional unitary 
grid, where allocation to the j-th treatment is represented by a step along the j-th axis, the 
ARP property can be expressed in terms of the center of the probability mass after i 
allocations. For an ARP procedure that randomizes subjects to K treatment groups in w1: 
… :wK ratio, w1+...+wK=1, the coordinates of the center of the mass are (w1i, …, wKi). In 
this presentation the momentum with respect to the center of the probability mass 
(expected distance) is used to compare ARP procedures in how closely they approximate 
the target allocation ratio. It is shown that the 2-arm Brick Tunnel Randomization (BTR) 
by Kuznetsova and Tymofyeyev (2011) has the smallest momentum of all ARP 
procedures with the same allocation ratio. The resident and transition probabilities for 3-
arm BTR are analytically derived. 
 
Key Words: Brick Tunnel Randomization, Unequal Allocation, Large Block Size, 
Allocation Ratio Preserving Randomization, Restricted Randomization, Imbalance in 
Treatment Totals 
 
 

1. Introduction 
 
Unequal allocation is becoming more wide spread in clinical trials [1-5].   
 
Equal allocation algorithms are usually symmetric with respect to the treatment arms and 
as a result, all patients are allocated with the same unconditional allocation ratio 
regardless of their place in the allocation sequence. For example, in a study with equal 
allocation to Control and Experimental treatments, the patients allocated first, second and 
third, all have 0.5 probability to be allocated to Experimental treatment.  
 
This is not necessarily the case in studies with unequal allocation [6-10].  For example, in 
a study with 1:2 allocation to Control and Experimental treatments, the allocation 
procedure can be designed in such a way that the first three patients have unconditional 
probabilities of 0.2, 0.6, and 0.2 of being assigned Control treatment; the same pattern of 
unconditional probabilities is repeated for patients 4-6, 7-9, and so on. While the overall 
allocation ratio across large samples remains close to 1:2, such variations in the 
unconditional allocation ratio from allocation to allocation present a problem [6-11]. 
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In single-center open-label studies with restricted randomization, where a sequence of all 
previous allocations is known to the investigator, selection bias is often a problem. When 
the investigator knows that, given the sequence of previous treatment assignments, the 
Experimental treatment is more likely to be assigned to the next patient than the Control 
treatment, he might choose to enroll a patient with a better prognosis; the patients with a 
worse prognosis are left to be enrolled when the Control treatment is more likely to be 
assigned. As a result, the Experimental group has patients with a better prognosis which 
leads to biased results. 
 
Selection bias in studies without variations in the unconditional allocation can be 
typically prevented by proper blinding of the study. Not knowing the previous 
assignments, the investigator will not be able to predict which treatment is more likely to 
be assigned to the next patient. In studies with variations in the allocation ratio, however, 
blinding does not eliminate the selection bias. Indeed, if the investigator knows that the 
1st, 3rd, 4th, 6th, 7th, … patients have lower than average probability of being assigned to 
Control, while the 2nd, 5th, 8th, … patients have higher than average probability of being 
assigned to Control, he can introduce selection bias without knowing the actual sequence 
of treatment assignments.  The evaluation of the patients can also be biased by the 
knowledge of variations in the unconditional allocation ratio.   
 
Thus, variations in the unconditional allocation ratio provide potential for selection and 
evaluation bias even in double blind studies [6-10].  Such variations can also result in an 
accidental bias – in particular, in multi-center studies with randomization stratified by 
center [11, 8-9] and lead to randomization test problems [11, 10]. As was demonstrated 
by Proschan et al. [11], the distribution of the randomization test statistic is shifted away 
from 0 when the unconditional allocation ratio varies from allocation to allocation, 
resulting in a lower power of the test.  Kuznetsova and Tymofyeyev [10] derived the 
value of the shift from the sequence of the unconditional allocation ratios. Kaiser [12] 
demonstrated that such variations cause the treatment effect estimator to be biased from a 
randomization perspective and recommended to avoid allocation procedures that do not 
preserve the unconditional allocation ratio. 
 
Kuznetsova and Tymofyeyev [10] call procedures that preserve the unconditional 
allocation ratio at every step Allocation Ratio Preserving (ARP) procedures.  
 
Unfortunately, the need for ARP property in studies with unequal allocation was not 
recognized until recently and many unequal allocation procedures lack this property. 
Among non-ARP unequal allocation procedures are urn design [1, p.51], expansion of the 
maximal procedure by Salama et al. [13], biased coin randomization and minimization 
expansion by Han et al. [14], doubly adaptive biased coin design procedure by Hu and 
Zhang [15] applied to fixed unequal allocation as described by Sverdlov and Zhang [16], 
minimum quadratic distance constrained balance randomization by Titterington [17] (as 
demonstrated in [16]), adaptation of biased coin randomization by Frane [18], 
generalized method for adaptive randomization by Russel et al. [19], generalized 
multidimensional dynamic allocation method by Lebowitsch et al. [20].  
 
Permuted Block Randomization (PBR) [21] – the most commonly used unequal 
allocation procedure – is an ARP procedure, and so are the Drop-the-Loser Urn Design 
by Ivanova [22] applied to fixed unequal allocation and the Urn Block design by Zhao 
and Weng [23]. However, when the unequal allocation ratio gives rise to a large block 
size, the PBR has a wide allocation space – and it is even wider for the procedures by 
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Ivanova [22] and Zhao and Weng [23]. As a result, in small cohorts of subjects the 
observed allocation ratio can considerably deviate from the target allocation ratio. 
Nevertheless, ARP procedures with the allocation space narrower than that of the PBR 
designed for arbitrary allocation ratio were lacking until the recent introduction of the 
Brick Tunnel Randomization (BTR) by Kuznetsova and Tymofyeyev [6-7].    
 
BTR is an ARP randomization procedure that requires the allocation path to stay within 
the tunnel built of K-dimensional unitary cubes pierced by the allocation ray, which 
guarantees a certain closeness of the observed allocation ratio to the targeted allocation 
ratio. BTR is defined uniquely for randomization to two treatment arms but not 
necessarily uniquely for K>2 arms. For 1:m two-arm allocation, BTR coincides with the 
PBR with the block size 1+m.  
 
Kuznetsova and Tymofyeyev offered an iterative way to derive the resident and transition 
probabilities for BTR [6-7].  They did not prove that BTR can always be constructed in 
this way (that is the derivations can always be successfully executed to the end of the 
block), but that was the case in the numerous examples of the BTR they considered. 
 
Narrow allocation space of the BTR guarantees that the observed allocation ratio is close 
to the target one throughout the enrollment; it also reduces the accidental bias associated 
with the time trend.  This is helpful in adaptive design dose-ranging studies [5, 24, 25], 
studies with a time trend in response or baseline characteristics, multi-center studies [7, 
25].  However, in a single-center open-label trial, where the investigator knows the 
sequence of previous treatment assignments, it makes the allocation procedure more 
predictable and thus, prone to selection bias. Predictability is most pronounced in a two-
arm BTR, where all generations within a block have two nodes; the allocation from one 
of the two nodes is deterministic, while both treatments can be assigned from the other 
node.  In this respect, the two-arm BTR is similar to the 1: m PBR. To reduce the 
predictability of the BTR in open-label trials, Kuznetsova and Tymofyeyev [26, 27] 
widened its allocation space to a strip of desired width narrower than the PBR allocation 
space while keeping the ARP property. The resulting allocation procedure, Wide Brick 
Tunnel, is less predictable and can be a better choice for open-label single-center trials. 
Kuznetsova and Tymofyeyev offered other ways to expand the allocation space of the 
BTR, not necessarily to a strip, while keeping the ARP property in [25]. 
 
In this paper, we will introduce the concept of the center of the probability mass of the i-
th generation in the allocation space of a procedure.  All ARP procedures with the same 
allocation ratio have the same sequence of the centers of the probability mass.  We will 
use momentum of the probability mass with respect to its center (expected distance) to 
measure how close the probability mass is to the target allocation ratio. This measure will 
be used to compare unequal allocation ARP procedures in how well they approximate the 
target allocation ratio. 
 
We will show how to build an ARP procedure with nodes closest to the center of mass 
for K=2 (Section 3) and K=3 (Section 4). For K=2, such procedure coincides with the 
BTR. We will show that the two-arm BTR is the minimum momentum two-arm ARP 
procedure. For K=3 such procedure is a version of the 3-arm BTR. The resident 
probabilities for the 3-arm BTR can thus be derived analytically for all generations at 
once, without the need for iterative calculations.  It can be proven that respective 
transition probabilities always exist [28]. We will compare the momenta of the 2- and 3-
arm BTR, PBR, and CR in Section 5. Discussion completes the paper.   
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2. Concepts and Notation 
 
Let us introduce some notation that will be used throughout the paper.  

Consider a study with C1:C2: ...:CK allocation to K treatment groups G1, G2, …, GK, 
where C1, …, CK are integers that have no common divisor. Let us use S=C1+C2+...+CK 
as the block size. Let us denote by wl, l=1, …, K, the allocation probabilities  wl = Cl /S; 
thus, w1+ w2+ …+ wk =1. We will denote the vector of allocation probabilities by 

),...,( 1 ′= kwwW . 
 
For simplicity, we will also denote the treatments as Treatments A and B in 2-arm 
examples and as Treatments A, B, and C in 3-arm examples. 
 
We will visualize an allocation sequence as a path along the integer grid in the K-
dimensional space as described in [29].   Axis l, l=1, …, K,  represents allocation to 
treatment Gl.  The allocation path starts at the origin and with each allocation moves one 
unit along the axis that corresponds to the assigned treatment.  After i allocations, the 
allocation path ends up at the node with coordinates (N1i, N2i, …, NKi), where Nli is the 
number of Gl allocations within the first i allocations.   
 
The set of nodes that can be realized with a given allocation procedure forms its 
allocation space.  For some allocation procedures, such as CR or biased coin 
randomization [30], the allocation space is equal to the whole non-negative sector of the 
K-dimensional space; for other allocation procedures, such as PBR, it is a subset of the 
non-negative sector.  Specifically, for PBR with the permuted block size mS, the 
allocation space is a chain of K-dimensional parallelepipeds with the lowest corners at 
(jmC1, ..,jmCK), j≥0,  and dimensions mC1×mC2×...×mCK. 
 
We will call the nodes that can be realized with the allocation procedure after i 
allocations the nodes of generation i. We will number them from 1 to mi, where mi is the 
number of nodes in generation i, and denote the j-th node in generation i and its 
coordinates as Xij=(xij1, xij2, …, xijK). All nodes of generation i belong to the (K-1)-
dimensional plane πi = { (x1, x2, …, xK): x1+ x2+ …+ xK =i}. The origin (0, 0, …, 0) could 
be considered 0 generation – the start of every allocation sequence.  
 
We will call the ray AR=(C1u, C2u, …, CKu), u ≥ 0, the Allocation Ray (AR).  We will 
call the intersection of the plane πi and the AR the point of perfect balance of the i-th 
generation Bi=(w1i, w2i, …, wKi).  The coordinates of the point of perfect balance are 
proportional to the allocation ratio.  The point of perfect balance belongs to the unitary 
grid (and thus can represent observed treatment group totals) only when i=mS, m ≥1.   
 
We will call the probability for an allocation sequence to reside in the node Xij after i 
allocations the resident probability of the node Xij and denote it as R(Xij) (or as Rij for 
shortness). Let us denote by ),...,( 1 ′=

iimii RRR  the mi-dimensional vector of resident 
probabilities of the nodes in the i-th generation.  The sum of the resident probabilities 

across the nodes of the same generation is 1: ∑
=

=
im

j
ijR

1
1 .  
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The probability of treatment Gl allocation from the i-th generation node Xij=(xij1, xij2, …, 
xijK) will be called the transition probability from Xij to (xij1,…, xij(l-1), xijl +1, xij(l+1), …, 
xijK) (or the transition probability from Xij in the direction l) and denoted by pilj.  If the 
restricted allocation procedure does not allow allocation to Gl from Xij, pilj=0.  If only one 
of the transition probabilities from the node Xij is positive, the allocation from the node Xij 
is deterministic.  For example, the last allocation in a block of the PBR sequence is 
deterministic. 
 
Let us denote by Pi the K×mi -dimensional matrix of transition probabilities from 
generation i to generation (i+1).   The mi columns of the matrix represent the mi nodes 

iimi XX ,...,1  in the i-th generation.  The K rows represent the transition along each of the 
K treatment axes with the (i+1)-th allocation. The element 0 ≤ pilj ≤ 1 ,  l = 1,…, K, j = 
1,…, mi, of the matrix Pi represents the transition probability from the node Xij within the 
generation i in the direction l.   For every node Xij in the i-th generation the sum of the 
transition probabilities from Xij is equal to 1: 

∑
=

=
K

l
iljp

1
1,      for all i ≥0, j = 1,…, mi       (1) 

 
The ARP property can be expressed in terms of resident and transition probabilities in the 
following way [6-7].   The K-dimensional vector Wi+1 of the unconditional probabilities 
of allocation to Treatments l = 1, …, K,  at the (i+1)-th allocation is equal to the product 
of the matrix of the transition probabilities from the i-th generation Pi and the vector of 
the resident probabilities in the i-th generation R:  [ ] imKii RPW

i
′×=+ ,1 . Thus, the 

requirement of preserving the unconditional allocation ratio at every allocation step 
WWi =  is  

[ ] WRP imKi i
=×, , i ≥0.       (2) 

 
The matrix equation (2) can be written as a system of K linear equations, each 
corresponding to a respective row of the matrix Pi.  Due to the constraint (1), the last 
equation in this system is redundant – it holds if all the previous equations hold. 
 
Kuznetsova and Tymofyeyev [6-7] introduced K-dimensional BTR as an ARP 
randomization procedure that requires the allocation path to be constrained within the 
chain of the K-dimensional unitary cubes that are pierced by the allocation ray. This 
closeness of the allocation path to the allocation ray guarantees a certain closeness of the 
observed allocation ratio to the target allocation ratio even in a short cohort of patients.  
 
Figure 1 illustrates the reduction of the allocation space with BTR compared to PBR with 
the examples of the 2-arm BTR with 21: 25 allocation ratio and the 3-arm BTR with 
3:5:7 allocation ratio.  The reduction of the PBR allocation space is more pronounced for 
large block sizes, like 46 for 21:25 allocation compared to small block sizes, like 5 for 
2:3 allocation. 
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   a)     b) 
 
Figure 1: The allocation space for two examples of the BTR. a) 2-arm BTR with 21:25 
allocation ratio pictured within 21 × 25 block; b) 3-arm BTR with 3:5:7 allocation ratio, 
pictured within the 3 × 5 × 7 block. 
 
Kuznetsova and Tymofyeyev [7] derived the transition and resident probabilities for BTR 
by solving (2) iteratively for i=0, 1, 2, …, S.  They showed that for K>2 the tunnel can be 
further reduced for some generations by elimination of some of the nodes.  They did not 
prove that the iterations can always be carried out to the end of the block, although this 
was the case in practice. 
 
In this paper we explicitly derive the resident probabilities for 2- and 3- arm BTR using 
the concept of the center of the probability mass of the i-th generation: Centi =(centi1, …, 
centiK), where 𝐶𝐶𝐶𝐶𝑖𝑖 = ∑ 𝑅𝑖𝑖𝑥𝑖𝑖𝑖

𝑚𝑖
𝑖=1 .  

 
It is easy to see that the allocation procedure is an ARP procedure if Centi belongs to the 
allocation ray for all i≥1; specifically, Centi = Bi.  Thus, all ARP procedures with the 
same allocation ratio have the same sequence of the centers of the probability mass Centi.  
These procedures can be compared in how tightly they distribute the probability mass 
around Centi.   
 
For an allocation sequence that after i allocations ends up at the node Xij=(xij1, xij2, …, 
xijk), the imbalance in treatment assignments after i allocations describes how close the 
node Xij is to the point of perfect balance of the i-th generation.  Following Sverdlov and 
Zhang [16] we will use the Euclidean distance between Xij and Bi as the measure of 
imbalance in treatment assignments after i allocations: 

𝐼𝐼𝐼(𝑋𝑖𝑖) = �∑ �𝑥𝑖𝑖𝑖−𝑤𝑖𝑖�
2𝐾

𝑖=1        (3) 
 
The absolute imbalance is 0 and the observed allocation ratio is equal to the target one if 
the node Xij lies exactly on the allocation ray.  For example, for PBR with the block size 
S, the imbalance is 0 at the end of each block, that is for i=mS, m≥1.  For two-arm 
allocation the absolute imbalance in treatment assignments is commonly defined as 
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I2=|N2i – N1i × C2/C1| (or proportional to this difference) [12, 13] – a quantity proportional 
to (3).  For two-arm equal allocation (C2=C1=1) the absolute imbalance reduces to |N2i – 
N1i|.    
 
Momentum of the probability mass 𝑀𝑀𝐼𝑖 = ∑ 𝑅𝑖𝐼𝐼𝐼(𝑋𝑖)𝑚𝑖

𝑖=1  (the expectation of the 
imbalance in treatment assignments after i allocations) is a convenient measure of the 
closeness of the probability mass in the i-th generation to its center of mass.  We will use 
this measure to compare ARP procedures in the balance they provide.  We will call an 
unequal allocation procedure well balanced if it results in a low imbalance, that is 
approximates well the target allocation ratio.  
 

3. How to Build an ARP Procedure With Nodes Closest to the Center of Mass  
for K=2 

 
Figure 2 presents the centers of the probability mass for a 2-arm ARP procedure. To build 
the ARP procedure with the nodes closest to the centers of mass, take two nodes (D and 
E) closest to Centi in generation i.  These two nodes will be the corners of the unitary 
square that contains the center of mass. 
 

 
 
Figure 1: 2-Arm ARP Procedure with Centers of the Probability Mass 
 
There is a unique way to place resident probabilities Ri1 and Ri2 in E and D so that Centi is 
the center of the mass. Specifically, the resident probabilities should be inversely 
proportional to the distances from the nodes to the center of the mass.  Accounting for Ri1 
+ Ri2 =1, it follows that 
 
Ri1 =  w1i -[w1i]          (5) 
Ri2 =  w2i -[w2i]   
 
The transition probabilities can be derived and it can be easily proven that they always 
exist [28]. 
 
The described procedure is nothing else but the 2-arm Brick Tunnel randomization.  It 
follows from the above that the 2-arm BTR is the minimum momentum ARP procedure, 
that is, for every generation the BTR has the momentum lower than any other ARP 
procedure with the same allocation ratio. 
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4. How to Build an ARP Procedure With Nodes Closest to the Center of Mass  
for K=3 

 
The nodes of the 3-dimensional grid (x1, x2, x3), xl≥0 such that x1+ x2+x3 =i form a 
triangular grid on the plane πi. Figure 3 depicts the grid for i=3. The perimeter of the 
triangular grid is an equilateral triangle with (i+1) nodes on each side. If i is the last 
generation in a block (i=mS), the center of the BTR probability mass of the generation i 
falls on the node of the grid, since its coordinates w1i, w2i, or w3i are all integers. Such 
node has the resident probability of 1.   
 
For other generations, the center of the BTR probability mass of the generation i Centi 
can either fall within one of the triangles on the grid (when none of the coordinates of 
Centi: w1i, w2i, or w3i is an integer; Figure 3a) or belong to a segment connecting a pair of 
nodes (when one of the coordinates of Centi is an integer, Figure 3b).   
 

            

      a)         b) 

Figure 3:  The triangular grid formed by the nodes on the plane π3 with the coordinates 
of the three vertices. The center of mass of the 3rd generation Cent3 (black dot) belongs to 
the inner part of the triangle DEF on the grid.  

If Centi belongs to the inner part of triangle DEF (as in Figure 3a), the resident 
probabilities in the three nodes D, E, and F, that result in Centi being the center of the 
probability mass are determined uniquely. Similarly, if Centi belongs to segment DF, the 
resident probabilities in nodes D and F that result in Centi being the center of the mass 
are also determined uniquely.   
 
The resident and transition probabilities can be easily derived [28]; it is proven that the 
resident probabilities always exist [28]. Described derivation of the resident probabilities 
and corresponding transition probabilities is simple and can be easily programmed. 
 
This procedure is a version of the 3-arm BTR where the nodes other the DEF (when the 
center of the mass belongs to an inner part of a triangular) or DF (when the center of the 
mass belongs to a segment connecting two nodes) are removed from the brick tunnel. 
 
Although the 3-arm BTR with resident probabilities defined by Lemma 4 is not 
necessarily the minimum momentum ARP procedure, it is the ARP procedures with the 
nodes closest to the center of mass in each generation. 
 
It should be noted that while C1, C2, ...,CK were defined above as integers following the 
PBR conventions, for BTR C1, C2, ...,CK can be any positive numbers. If S is not a 
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rational number, there will be no generation where BTR has a node on the allocation ray. 
For K=2 and K=3, the resident and transition probabilities are derived by the same 
formulae, regardless of the type of C1, C2, ...,CK. 
 

5. Comparison of the Momenta of the BTR, PBR, and CR 
 
Formulae for the momenta of the 2- and 3-arm BTR, PBR, and CR are derived in [28]. 
For 2-arm BTR, Momi≤√2/2 regardless of the block size or the allocation ratio. The 
maximum momentum of √2/2 is reached in the middle of the block when both C1 and C2 

are odd. The average momentum across all generations in a block depends on the block 
size, but not on the allocation ratio. When the bloc size increases, the average momentum 
converges to √2/3. 
 
Figure 4 provides the comparison of the momenta of the probability mass by generation 
for BTR, PBR and CR for 21:25 allocation ratio (a) and 7:10 allocation ratio (b). As 
Figure 4a shows, for small cohorts of 10-12 subjects the momentum of the PBR is almost 
the same as the momentum of the CR. This illustrates the point that for large block sizes 
PBR offers little advantage over CR in approximating the targeted allocation ratio in 
small cohorts. The highest momentum with the 21:25 PBR (reached in the middle of the 
block of 46 allocations) is 1.95883, while for BTR it is 0.70711. For smaller block size of 
17 (7:10 allocation, Figure 4b), the highest momentum with the PBR is 1.20728, while 
for BTR it is 0.70466. 
 
 
 

 
     a)     b) 
 
Figure 4: Comparison of the momenta of the probability mass by generation for BTR 
(bottom line), PBR (middle line) and CR (top line) for a) 21:25 allocation ratio; b) 7:10 
allocation ratio. 

Since 2-arm BTR has the lowest momentum among all ARP procedures, it can be used to 
benchmark the momenta of other allocation procedures.  Figure 5 illustrates this point by 
presenting the momenta of 21:25 PBR and three types of ARP Biased Coin 
Randomization plotted against the BTR momenta.  
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Figure 5: Momenta of the 21:25  BTR (line 1), PBR (line 2), and Three Types of ARP 
Biased Coin Randomization (lines 3-5).    
 

For 3-arm BTR, maximum momentum of �2
3 �  is reached when Centi is placed exactly 

at the center of the triangle formed by the nodes of the i-th generation.  Thus, Momi≤ 

�2
3 � = 0.817 for any allocation ratio.  

 
Figure 6 presents the comparison of the momenta of the BTR, PBR, and CR with 3:5:7 
allocation ratio. Since there are only 3 nodes in the first generation for each procedure, all 
three procedures (as well as any other APR procedure) have the same momenta in the 1-
st generation. (For PBR and BTR the same is true for the 14th generation in the block). 
For other generations, the allocation space for PBR is wider than for the BTR which is 
reflected in the momentum of the PBR exceeding the momentum of the BTR (Figure 6). 
For CR, momenta are close to those of the PBR for a few generations, but continue to 
grow and diverge from the PBR momenta with generation.  
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Figure 6: Momenta of the Probability Mass by Generation for 3:5:7  allocation: 
BTR (bottom line), PBR (middle line), CR (top line) 
 
Similar to the 2-arm case, the advantage of the BTR over PBR and CR in approximating 
the targeted allocation ratio is even more pronounced for larger block sizes than the block 
size of 15 in the considered example. 
 
 

6. Discussion 
 
For equal allocation to two arms the allocation space can be as narrow as the space of the 
permuted block with the block size 2.  Such allocation has one node in even generations 
and two nodes in odd generations and limits the absolute imbalance in treatment totals to 
1. No similarly tight allocation space was available for ARP unequal allocation with 
arbitrary allocation ratio before the BTR was introduced by Kuznetsova and Tymofyeyev 
[6-7]. The permuted block design, the most common unequal allocation procedure, can 
have a wide allocation space.  Unless C1, C2, …, CK are small, such space can be too wide 
for many applications as it might result in the undesirable imbalance in treatment 
assignments.  
 
Other allocation procedures developed for unequal allocation often lack an ARP property 
– the deficiency that was not well recognized. For example, to address the need for 
narrow allocation space, Salama et al. [13] offered an expansion of the maximal 
procedure for unequal allocation. They allowed all allocation sequences that fit within a 
strip of pre-specified width around the allocation ray. Unfortunately, they assigned equal 
probabilities to all permitted allocation sequences which lead to variations in the 
allocation ratio from allocation to allocation (a lack of an ARP property).  
 
The unequal allocation procedures by Zhao and Weng [23] and Ivanova [22] are ARP 
procedures. They can be described as generated following the mapping principle [8-10] 
that ensures an ARP property. First, an equal allocation procedure to any number of arms 
symmetric with respect to the arms is described. Then, to generate an unequal allocation 
procedure to K ≥ 2 treatment groups Gl, l =1,…, K  in C1:C2: … :CK  ratio, where S 
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=C1+C2+ … + CK, one first generates an equal allocation to S "fake" treatment arms F1, 
F2, … , Fs following the equal allocation procedure and then maps the groups of “fake” 
treatment arms to the actual treatment arms. Specifically, the first C1  "fake" treatment 
arms 

11 CFF −  are mapped to treatment G1; the next  C2 "fake" treatment arms 

211 1 CCC FF ++ −  are mapped to treatment G2; …, ; and finally, the last CK "fake" treatment 

arms SCC FF
k

−+++ − 1... 11
 are mapped to treatment Gk.  Due to symmetry, such procedure 

provides equal allocation to S "fake" treatment arms F1, F2, … , Fs and thus, C1:C2: … : 
CK unconditional allocation ratio to actual treatment groups at every allocation. Other 
unequal allocation procedures can be developed following the mapping approach, but the 
allocation space for all such procedures will, by necessity, include the allocation space of 
the C1:C2: … :CK permuted block allocation.  
 
The ARP allocation that limits the set of permuted block sequences to the better balanced 
ones and thus reduces the PBR allocation space can be built following constrained 
randomization [31-35]. For small C1, C2, …, CK, a reasonable constraint can often be 
built by a statistician, but for an arbitrary allocation ratio coming up with an acceptable 
constraint is a difficult task. 
 
The BTR [6,7], an unequal allocation ARP procedure that works for any allocation ratio 
and has the space narrower than the permuted block with the minimal block size, 
provides a very tight balance in treatment assignments. It was followed by the wide brick 
tunnel [26, 27] – a two-arm ARP procedure that expands the BTR space to a strip around 
the allocation ray. The BTR allocation space for K≥2 can be also expanded by randomly 
permuting short segments of the BTR [25].  The allocation space wider than the BTR, but 
narrower than the permuted block space, can be useful in open-label studies (mainly two-
arm ones) to reduce the potential for selection bias. 
 
BTR closely approximates the targeted allocation ratio throughout the enrollment, in 
particular, for small samples. This makes BTR useful in adaptive design dose-ranging 
studies [5, 24, 25], unequal allocation studies with a time trend in response or baseline 
characteristics, multi-center studies [7, 25]. BTR application in two-arm response-
adaptive randomization setting, where the allocation ratios are too inconvenient for PBR 
so that CR is used to allocate patients, should be further explored. There BTR can be used 
to randomize small cohorts of 5-6 patients with the same allocation ratio instead of 
allocating each patient using CR with his own allocation ratio.  This approach would 
allow avoiding considerable deviations of the observed allocation ratio from the targeted 
one. 
 
Complexity of the BTR algorithm for K>2, where the transition probabilities are derived 
iteratively for generation after generation using optimization techniques is the main 
obstacle to its implementation. This paper uses the concept of the center of probability 
mass in the i-th generation to explicitly derive, for K=2 and K=3, the resident and 
transition probabilities for all generations at once through simple formulae.  It also proves 
that the required set of transition probabilities always exists for K=2 and K=3.  It 
demonstrates that the two-arm and 3-arm BTR are the ARP allocation procedures with 
the tightest allocation space among all allocation procedures with the same allocation 
ratio. It further shows that the 2-arm BTR is the minimum momentum 2-arm ARP 
allocation procedure. Although the simplification of the algorithm for K>3 needs to be 
further explored, simplifying it for K=2 and K=3 provides an important step forward as 
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the 2- and 3-arm studies cover a large sector of clinical trials with unequal allocation. 
Moreover, the same algorithm applies when a study has K>3 arms, but only 2 or 3 
distinct allocation ratios.  
 
Comparisons of the BTR with the PBR and the CR in the momentum with respect to the 
center of the probability mass demonstrate the advantage of the BTR in the balance it 
provides.  With better understanding of the BTR properties and easy generation for two 
and three arms, the BTR can find its way into clinical trials. 
 
Contact: olga_kuznetsova@merck.com 
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