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Abstract 
Methods for analyzing multilevel data with group-level outcome variables were compared 
in a simulation study. The analytical methods included OLS analyses of group means, a 
two-step approach suggested by Croon and van Veldhoven (2007), and a Full Information 
Maximum Likelihood Latent variable technique proposed by Lüdtke et al. (2008). Type I 
error control, power, bias, standard errors, and RMSE in parameter estimates were 
compared across design conditions that included number of predictor variables, level of 
correlation between predictors, level of intraclass correlation, predictor reliability, effect 
size, and sample size. Results suggested that an OLS analysis of group means, with 
White’s heteroscedasticity adjustment, provided more power for tests of group-level 
predictors but less power for tests of individual-level predictors. Further, this simple 
analysis avoided the extreme bias in parameter estimates and inadmissible solutions that 
were encountered with other strategies.  Results were interpreted in terms of 
recommended analytical methods for applied researchers.  
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1. Analyzing Multilevel Data 
 
An increasing number of investigations have examined methods for correctly analyzing 
data that are collected in multilevel contexts. Multilevel data structures occur in almost 
every discipline.  However, the degree to which various disciplines acknowledge the 
complexities of these data and concomitantly seek to analyze them appropriately varies.  
Considerable work in education, psychology, medicine and management has 
acknowledged the intricacies of multilevel data and recommended sophisticated analysis 
methods to address the challenges.  Other fields have seen less of an emphasis on 
capturing the complexities of these data and developing appropriate analysis methods. 
 
A substantial body of work has been developed for analyzing multilevel data where the 
outcome variable is measured at the individual level (see, for example, Raudenbush & 
Bryk, 2002).  Often referred to as the macro-micro data situation (cf., Snijders & Bosker, 
1999), the dependent variable Y is measured at the lower level (e.g., individual) and is 
assumed to be affected by explanatory variable(s) X, which are also measured at the 
lower level, and group-level variables (Z), which are measured at a higher (L2) level.   In 
education and social sciences, the most common analysis method used for these data 
structures is hierarchical linear modeling (Raudenbush & Bryk, 2002) or random effects 
models (Hedeker, Gibbons, & Flay, 1994). 
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Less work has been devoted to the micro-macro data situation, where Y is measured at 
the higher (group) level and corresponding explanatory variables are measured at the 
individual level (X) and at the group level (Z).  Generally, there have been two 
approaches for analyzing micro-macro data.  While not generally accepted, one could 
analyze the data at the individual level, essentially disaggregating the group level data 
and repeating the group variable scores for each individual in the group.  Such analyses 
usually yield biased estimates of standard errors and grotesquely inflated Type I error 
rates for hypothesis tests.  
 
The more popular analysis method for micro-macro data analysis is to aggregate the data 
measured at a lower level (i.e., individual) to a higher level—generally the level at which 
Y, the dependent variable, is measured.  Under these data conditions, the level at which Y 
is measured is often a naturally occurring group, such as a team, a classroom, a hospital 
ward, or a department.  In this analysis approach, the group means of the explanatory 
variables are used as scores on variables in the subsequent analyses conducted at the 
group level.   
 
1.1 A Latent Variable Approach 
Croon and van Veldhoven (2007) presented a latent variable approach to the analysis of 
individual- and group-explanatory variables in predicting a group outcome variable Y.  
Given a set of linear equations where the relationship between the group scores on 
explanatory variables Z and  , and the outcome variable Y is:   

g g g gy Z      0 1 2  

The latent group-level variable   represents the unobserved variable that gives rise to the 

observed individual–level explanatory variable X. Each individual’s score on X, ,igx  is 

treated as a reflective indicator for the unobserved group score.   The unobserved group-
level score g  may be correlated with the observed group-level variable Z, and both may 

have an effect on the group level outcome variable Y.  The error component  is assumed 
to be homoscedastic, or to have a constant variance for all groups.  

 

All three parameters in the equation above are defined at the group level, but because g
is not an observed variable, the relationship between g  and igx  must be modeled as:  

ig g igx     

where the variance of  is denoted by 2
 , and the variance of the disturbance term ig  

(assumed to be constant for all subjects and groups) by 2
 .  The variance 2

  is the 

between-group variance of X; the variance 2
  is its within-group variance. 

 
1.2 A Full Information Maximum Likelihood Approach 
 
Lüdtke et al. (2008) described a full information maximum likelihood estimation method 
(FIML) for the analysis of contextual effects in multilevel models.  Although this 
approach was demonstrated on multilevel data with a dependent variable measured at the 
individual level, a comparative investigation that is specific to data instances where the 
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dependent variable is measured at the group level would be an important extension of the 
work of both Croon and van Veldhoven (2007) and Lüdtke et al. (2008) and may also 
provide an alternative to the recommended analysis approaches.   Understanding how the 
FIML approach performs under those data conditions where both the current 
investigation and the work of Croon and Van Veldhoven (2007) yielded  unacceptable 
results or model non-convergence would lead to more precise recommendations of  the 
best approach to employ with intractable data configurations.  As such, we conducted an 
additional simulation with a partial replication of the full simulation design to compare 
this FIML method to the Croon and group mean analysis methods. 
 

2. Purpose of the Study 
 
The primary purpose of this study was to expand the scope of Croon and van Veldhoven 
(2007) by comparing the performance of their recommended approach with the 
traditional group aggregation analysis across broader and more realistic research 
conditions.  In this context, we wanted to confirm their statistical bias results, provide 
Type I error and statistical power estimates, and test the viability of the less 
computationally complex alternative of aggregating on group means.    In a separate 
analysis (Study 2), we also investigated the comparative performance of the Full 
Information Maximum Likelihood (FIML) approach recommended by Lüdtke at al. 
(2008).  A comparative investigation that is specific to data instances where the 
dependent variable is measured at the group level (L2) is an important extension of the 
work of both Croon and van Veldhoven (2007) and Lüdtke et al. (2008) and may provide 
an alternative to the typical aggregation approach currently used with data configurations 
such as these.    
 

3. Method (Study 1) 
 
The statistical performance of the Croon method (with [CV-W] and without White’s 
adjustment [CV]), and a traditional regression analysis using group means (with [GRP-
W] and without White’s adjustment [GRP]), was investigated using Monte Carlo 
methods, in which random samples were generated under known and controlled 
population conditions.   We assumed that the individual level measures would be 
reflective indicators of the group level construct, where the scores associated with 
individuals in a group are interchangeable. 
 
The Monte Carlo study included ten factors in the design: the number of individual and 
group-level regressors; the correlation between the individual and group-level regressors; 
cross-level correlations; reliability of regressors; the effect size; the intraclass 
correlations; the number of groups; and the sample size in each group.   

 
Number of regressors.  At the individual level, we included models with 3, 5, and 7 
individual-level regressors, extending the number of regressors from what was tested by 
Croon and Van Veldhoven (2007) to models that are more typical of the data analyzed by 
applied researchers.  At the group level, we included models with 2 and 4 group-level 
regressors.   
 
Correlation between individual- and group-level regressors. We varied the correlation 
between the individual regressors by levels that would be considered low, medium, and 
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high inter-regressor correlations ( X  = .10, .30, and .50).   Correlations between group 

level regressors were varied by values of ( Z  = .20, .40, and .60).   

 
Cross-level correlations. Cross-level correlations were set to zero, moderate, and high 
correlations ( XZ = 0, .30, and .50).  These values allowed comparison to Croon and van 

Veldhoven (2007) as well as providing performance information on a scenario where 
cross-level correlations were high.   
 
Reliability of Regressors.  Measurement error was simulated in the data (following the 
procedures used by Maxwell, Delaney, & Dill, 1984; and by Jaccard & Wan, 1995), by 
generating two normally distributed random variables for each regressor (one to represent 
the "true scores" on the regressor, and one to represent measurement error).  Fallible, 
observed scores on the regressors were calculated (under classical measurement theory) 
as the sum of the true and error components.  The reliabilities of the regressors were 
controlled by adjusting the error variance relative to the true score variance 

2

2 2
T

xx
T E


 




 

where 2
T  and 2

E  are the true and error variance, respectively, and xx  is the reliability.  

 
Reliability of the regressors was tested at values considered acceptable ( XX = .70; 

Nunally, 1970; 1978), high ( XX = .90), and perfect ( XX = 1.00).   For simplicity, the 

same level of regressor intercorrelation and regressor reliability was applied to all 
regressors in a given condition.  Reliability of the regressor scores was controlled at the 
individual level, since most analysts assess reliability at this level and there is 
considerable disagreement about how to accurately assess reliability of aggregated 
reflective group level variables (cf., Bliese, 2000; O’Brien, 1990).  

 
Effect Size and Regression Coefficients. The effect size was programmed at the individual 
regressor level in the context of the set of regressors (i.e., squared semi-partial 
correlations).  In addition to models with no effect (f 2 = 0.00), we chose to model a 
“medium” effect size, to ensure a valid comparison to the results of Croon & van 
Veldhoven (2007).   Effects were modeled to corresponded to Cohen's (1988) medium (f 
2   = 0.15) effect size. For the non-null models we simulated, the regression coefficients 
ranged from 0.10 to 0.29 for the individual level predictors and from 0.10 to 0.32 for the 
group level predictors. For the null models, of course, all regression coefficients were 
equal to zero. 
 
ICC of the predictor variables. The ICC of the predictor variables (i.e., the amount of 
variance located between groups) was set at .10 and .20, using the values in Croon & van 
Veldhoven (2007).  Most work suggests that intraclass correlations in education and 
organizational research are usually lower than 0.30 (Bliese, 2000; Hedges & Hedberg, 
2007; James, 1982).   Some authors have provided guidelines for interpreting the 
magnitude of intraclass correlations with small, medium, and large values reported as .05, 
.10, and .15 (cf., Hox, 2002).  As such, our selected ICC values would be considered 
medium and large, similar to what one might encounter in educational or organizational 
research. 
 

JSM2015 - Social Statistics Section

1751



Number of groups.  We varied the number of groups on the two levels used in the Croon 
simulation (50 and 100).  To extend these values completely to what one might find in 
educational or organizational research we added a condition with 25 groups. 
 
Group size.  The number of observations in each group at the individual level was varied 
on three levels, based on the conditions used in Croon and van Veldhoven (2007).  The 
first two levels kept group size fixed at either nj =10 and nj =40.  In the third level, group 
sizes were varied by randomly selecting groups with small samples ranging from 5 to 15 
and large samples ranging from 20 to 60.   A group size of 5 is normal in small group 
research (cf., Kenny, Kashy, Mannetti, Pierro, & Levi, 2002) and group sizes of 30 are 
typical in educational research.   In multilevel research, variability in group sizes often 
leads to heteroscdasticity.   Calculating heteroscedastic-consistent (or robust) standard 
errors using White correction method is often used to address this issue (cf., Croon & 
VanVeldhoven, 2007; White, 1980).  
 
The ten factors were completely crossed in the Monte Carlo study design yielding 23,328 
conditions. All samples were generated from multivariate normal populations. 
 
The research was conducted using SAS/IML version 9.1 (SAS Institute, 2004). The SAS 
macro provided by Hayes and Cai (2008) was used in the simulation to compute the HC3 
covariance matrices for White’s adjustment. Conditions for the study were run under both 
Windows and UNIX platforms. Normally distributed random variables were generated 
using the RANNOR random number generator in SAS.  A different seed value for the 
random number generator was used in each execution of the program. The program code 
was verified by hand-checking results from benchmark datasets. 
 
For each condition investigated in this study, 10,000 samples were generated. Using a 
large number of sample estimates allows for adequate precision in the investigation of the 
sampling behavior of point and interval estimates of the regression coefficients, as well as 
the Type I error rates and statistical power for hypothesis tests. For example, 10,000 
samples provide a maximum 95% confidence interval width around an observed 
proportion that is .0098 (Robey & Barcikowski, 1992). 
 

4. Results (Study 1) 
4.1 Type I Error Control 
The distributions of the estimated Type I error rates for the tests of regression parameters 
of the Individual level (X) and Group level (Z) predictors are presented in Figure 1. All 
four approaches provided Type I error control at or below the nominal alpha level (.05) 
for all conditions examined. The CV-W and GRP-W adjustments led to tests that were 
slightly conservative, but this effect was quite modest.  
 
4.2 Statistical Power 
The distributions of estimated statistical power for the tests of the regression parameters 
are presented in Figure 2. The use of CV and GRP resulted in very low power values for 
the tests of the regression parameters of both the Individual-level predictors and the 
group-level predictors (power less than .10 for the majority of tests). The addition of 
White’s adjustment to the methods (CV-W and GRP-W) resulted in a notable increase in 
the power of these tests (with average power near .35 for CV-W and near .65 for GRP-
W). Further, differences in power between CV-W and GRP-W were noted for the tests of 
Individual level and Group level predictors. The CV-W approach provided slightly 


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greater power for tests of Individual level predictors, but notably lower power for tests of 
Group level predictors. 

 

 

 
Figure 1: Distributions of Estimated Type I Error Rates Across Study Conditions (α = 
.05) 
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Figure 2: Distributions of Estimated Statistical Power Across Study Conditions (α = 
.05) 
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4.3 Bias in Parameter Estimates 
The distributions of estimated bias in parameter estimates are provided in Figure 3. The 
average bias was near zero for all analyses. However, the results indicate that for the CV 
and CV-W approaches, there is considerable variability in the bias estimates that is not 
evident for the GRP and GRP-W approaches.  This variability increases as cross-level 
correlation increases.  At the highest levels of cross-level correlations, average standard 
deviation in the bias estimates for the CV and CV-W reaches 2.07.  In contrast, the GRP 
and GRP-W methods have much less variability for the same degree of correlation—
around 0.11. Our investigation of the cause of these bias results (not reported here) 
suggest that the CV and CV-W approaches induce extreme multicollinearity in some 
conditions. 
 

 

 
Figure 3: Distributions of Estimated Bias Across Study Conditions (α = .05) 
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4.4 RMSE in Parameter Estimates 
The distributions of Root Mean Square Error (RMSE) in parameter estimates are 
provided in Figure 4. Concomitant with the variability in bias, large variability in RMSE 
is evident for the CV and CV-W approaches. In contrast, the use of GRP and GRP-W 
approaches result in consistently small RMSE estimates.  
 

Figure 4: Distributions of Estimated RMSE Across Study Conditions (α = .05) 
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5. Method (Study 2) 

 
To investigate the performance of the FIML approach, we generated data using the same 
method as in the first simulation. Data were generated for 25, 100, and 500 groups, with 
group sizes of 5-15 and 20-60, and an ICC of .20.  We used two group level predictors 
and three and seven individual level predictors, with reliability levels of .70 and 1.00. 
Correlations between individual level predictors were set to .10, between the group level 
predictors to .20 and .40, and cross-level correlations were set to .30 and .40.  We 
investigated effect sizes of zero (to estimate Type I error control) and 0.15 (to estimate 
power).   The FIML estimation was implemented in Mplus Version 6 (Muthén & 
Muthén, 2007). 
 

6. Results (Study 2) 
 
6.1 Type I Error Control 
The distributions of estimated Type I error rates across the simulation conditions are 
provided in Figure 5. In contrast to the CV and GRP approaches (with and without 
White’s adjustment), the FIML approach resulted in notably elevated Type I error rates 
for tests of regressors at both levels. With the failure to control Type I error probability 
evidenced by the FIML approach, estimation of statistical power was not undertaken. 
 
6.2 RMSE in Parameter Estimates 
The distributions of RMSE in the parameter estimates are provided in Figure 6. The 
FIML approach resulted in large average values and large variability in the RMSE 
estimates. These values were larger than those provided by the CV and CV-W 
approaches. The use of GRP and GRP-W resulted in notably smaller values of RMSE, 
and consistently small values across the simulation conditions. 
 

7. Results (Model Convergence) 
 
Both the CV and FIML approaches to analyzing the simulated samples evidenced 
problems with model convergence in some conditions. Overall, the CV approach 
failed to converge in 7% of the samples (a rate consistent with that reported by 
Croon & van Veldhoven, 2007). A much larger problem with model convergence was 
seen with the FIML approach. When three Individual level predictors were used, only 
44% of conditions converged with all samples and non-convergence rates reached as high 
as 10% of the samples. When the number of Individual level predictors was increased to 
seven, only 22% of conditions converged with all samples and non-convergence rates 
reached as high as 45% of the samples. As expected, the GRP approach converged with 
all samples simulated. 
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Figure 5: Distributions of Estimated Type I Error Rates Across Study Conditions (α = 
.05) 
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Figure 6: Distributions of Estimated RMSE Across Study Conditions (α = .05) 
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8. Conclusions and Recommendations 
 
This comparison of analytic strategies for group level outcomes suggests that little is 
gained with the Croon and van Veldhoven (2007) approach relative to an OLS analysis of 
group means in conjunction with White’s adjustment for heteroscedasticity.  Type I error 
rates were the same for the group level analysis (GRP) and the method recommended by 
Croon and van Veldhoven (CV).  Differences between the approaches were more evident 
with statistical power.  The GRP analysis showed substantially lower power than the CV-
W analysis. Power for the group means analysis was improved by utilizing White’s 
adjustment for heteroscedasticity, although results compared to the CV-W approach were 
not consistently superior.  Compared to an analysis of group means in conjunction with 
White’s adjustment for heteroscedasticity (GRP-W), CV-W evidenced slightly greater 
power for testing the individual level (X)  predictors and substantially lower power for 
testing the coefficients of the group level (Z) predictors. We also found a significant 
interaction in statistical power between the number of groups and cross-level correlation 
that differs for individual and group level predictors.  For individual level (X) predictors, 
as the number of groups increased, statistical power improves for both approaches when 
White’s correction is employed.  As the cross-level correlation increases, however, 
statistical power decreases.  For group level (Z) predictors using the GRP approaches, as 
the number of groups and the cross-level correlation increased, statistical power 
improves.  For group level predictors using the CV approaches, statistical power 
decreases as the number of groups and the cross-level correlation increased.  For both 
approaches, the power magnitude and impact of the interaction is more prominent when 
White’s correction is utilized.   

 
Our analyses of the FIML approach suggested by Lüdtke et al. (2008) yielded similar 
findings in that the method does not provide adequate Type I error control for the types of 
data conditions investigated in this study. Further, for conditions in which Type I error 
control was adequate, the FIML approach provided less statistical power for tests of 
group level predictors than that provided by the GRP-W analysis. Finally, our results 
showed that severe problems with non-convergence occurred with the FIML method as 
the number of individual level predictors increased unless the number of groups was 500 
(even with 500 groups, up to 7% of the samples did not converge in some conditions). 
The reader is reminded that this research differs from the Lüdtke et al. research in two 
important ways. First, Lüdtke et al. examined an outcome variable measured at the 
individual level rather than at the group level. Secondly, Lüdtke et al. included only a 
simple model in their simulations (using one regressor at the individual level and one at 
the group level). The models investigated in the current study include multiple predictors 
at both levels with a variety of correlation patterns among them. 
 
While our general recommendation for the researcher is to rely on a GRP analysis 
combined with White’s correction, we acknowledge that the differences in power 
performance between GRP-W and CV-W may temper our recommendations.  If the 
researcher is primarily interested in group level predictors (Z), then using the GRP 
aggregation approach in conjunction with White’s correction will maximize statistical 
power for these predictors.   If the focus is on individual level (X) predictors, then our 
results suggest that using the CV approach followed by White’s correction yields 
somewhat better power rates.    Overall, however, we find that statistical power for 
predictors at the individual level (X) only approach acceptable levels (power = .80) with 
little to no cross-level correlations and at least 100 groups, combined with White’s 
correction. For predictors at the group level (Z), using the GRP approach in conjunction 
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with Whites correction results in the greatest statistical power.  In combination with the 
GRP-W approach, numbers of groups as small as 50 yield adequate statistical power 
when associated with moderate cross-level correlations.   
 
In the context of analyzing multilevel data with the outcome at the group level, the 
general guidelines for selecting an analysis strategy and the recommendations of 
Wilkinson and the Task Force on Statistical Inference (1999) should be considered: 

 
The enormous variety of modern quantitative methods leaves researchers with 
the nontrivial task of matching analysis and design to the research question. 
Although complex designs and state-of-the-art methods are sometimes 
necessary to address research questions effectively, simpler classical approaches 
often can provide elegant and sufficient answers to important questions. Do not 
choose an analytic method to impress your readers or to deflect criticism. If the 
assumptions and strength of a simpler method are reasonable for your data and 
research problem, use it. Occam’s razor applies to methods as well as to 
theories. (p. 598) 
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