
Hamiltonian Sequential Monte Carlo

Svetoslav Kostov∗ Nick Whiteley†

Abstract

We present the basics of a new sampling algorithm - Hamiltonian Sequential Monte Carlo (HSMC),

which combines ideas from Hamiltonian Monte Carlo and Sequential Monte Carlo, allowing us to

move from an initial, easy-to-sample-from distribution, to the distribution of interest via a sequence

of intermediate distributions. The algorithm produces a sample from the desired distribution, as well

as an estimate of the ratio of the normalizing constants of the final and the initial distributions. We

show that for a particular choice of the transition kernels, the HSMC algorithm performs better in

terms of mean squared error of the estimate of the ratio of the normalizing constants, compared to

other standard algorithms. This is achieved through bias-variance trade off. We discuss some of the

properties of the new algorithm and present simulation results for couple of toy examples, as well

as for a 20-dimensional linear regression, where we estimate the Bayes factor for two competing

models.

Key Words: Simulation, Normalizing Constants, Bias-variance trade off, Bayes factor, Sequential
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1. Introduction and Motivation

Sampling from high-dimensional, multimodal distributions proved to be a really difficult

task using standard Monte Carlo methods. Some more advanced methods like Sequential

Monte Carlo (SMC), introduced in Gordon et al. [8] show big potential to complete this

task. In recent years a relatively new method - Hamiltonian Monte Carlo (HMC), introduced

first by Duane et al. [5] become popular among the statistical community as a sampling

algorithm, which partially alleviates the random walk behavior of the standard, random -

walk type of MCMC algorithms. In our work we combine ideas from SMC and HMC to get

a new sampling algorithm, which we call Hamiltonian Sequential Monte Carlo (HSMC).

This new algorithm will produce approximate samples from a target distribution, while also

producing an estimate of the ratio of normalizing constants for this target distribution and

an arbitrary initial one.

Standard HMC has problems in exploring multiple modes of a distribution, because its

inherent tendency to propose values, which lie on a single contour of constant energy, i.e. of

constant value of the Hamiltonian H . In contrast, because it is based on SMC, the HSMC

algorithm proves to deal well with sampling from multimodal distributions. On the other

hand, because it is based on HMC, it also benefits from the ability to make distant, long-

range proposals. Another novelty is the fact, that we introduce a natural parameter which

controls how much noise we use during the simulation process. This allows us to better

control the MSE of the estimate of the ratio of the normalizing constants that we obtain.
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2. HSMC algorithm

With a continuous, non-decreasing “schedule” function τ : [0, 1] → [0, 1], such that τ(0) =
0 and τ(1) = 1, and for some d ≥ 1 a family of functions {Uτ ; τ ∈ [0, 1]} each Uτ :
R
d → R and such that

∫
Rd exp [−Uτ (q)] dq < ∞, we consider a family of unnormalized

probability densities {π̄τ ; τ ∈ [0, 1]} with each π̄τ : R
2d → R+ given by

π̄τ (q, p) := exp [−Hτ (q, p)] , (1)

Hτ (q, p) :=
pTM−1p

2
+ Uτ (q) (2)

where p = (p1, ..., pd) and M > 0 is a positive-semidefinite matrix, called the mass matrix

(except when we explicitly state different, we will assume, that M is a constant matrix).

We shall regard the potential energy is equal to the minus logarithm of some probability

density on R
d, fτ (q) = exp[−Uτ (q)]/

∫
Rd exp[−Uτ (q

′)]dq′. With x = (q, p) we shall write

the normalized version of each π̄τ as πτ , i.e., πτ (x) = π̄τ (x)/Zτ , Zτ =
∫
R2d π̄τ (x)dx.

Hence, because of the definition in Equation (2), we can write πτ (x) = µ(p)fτ (q), where

µ(p) is the density of a normal distribution N (0,M). We shall sometimes write also the

probability measure πτ (dx) = πτ (x)dx, where dx is Lebesgue measure on R
2d.

Again with x = (q, p), denote:

Gn,k−1(x) =
π̄τ(k/n)(x)

π̄τ((k−1)/n)(x)

= exp[−Hτ(k/n)(q) +Hτ((k−1)/n)(q)] ∈ (0,+∞), k = 1, ..., n. (3)

We assume throughout that for each n ≥ 1 and k = 0, ..., n − 1,

cn,k := sup
x
Gn,k(x) < +∞.

Let {Lτ ; τ ∈ [0, 1]}, {Mτ ; τ ∈ [0, 1]} be two families of Markov kernels, where each of

these kernels is defined on R
2d. We will specify the exact functional form of these kernels

later. Then for each n ≥ 1, k = 1, ..., n and η a probability measure on R
2d , we define the

Markov kernel Kη
n,k(x, dx

′) as:

Kη
n,k(x, dx

′) : =
1

cn,k−1
Gn,k−1(x)Lτ(k/n)(x, dx

′) (4)

+

[
1−

1

cn,k−1
Gn,k−1(x)

]

×

∫
Ψn,k−1(η)(dζ)Mτ(k/n)(ζ, dx

′),

where Ψn,k maps probability measures to probability measures, according to

Ψn,k(η)(ϕ) :=
η(Gn,kϕ)

η(Gn,k)
, k = 0, ..., n − 1. (5)

where ϕ is a bounded test function, and where we use the notation η(f) =
∫
Rd f(x)η(dx)

for arbitrary function f . As we shall see in more detail later, the Markov kernelsK
πτ((k−1)/n)

n,k
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can be used to describe the evolution of the probability distributions πτ((k−1)/n), and in-

spires the following particle approximation.

With n ≥ 1 fixed, we will introduce a sequence of generations of particles {ξn,k}
n
k=0,

where ξn,k =
{
ξin,k

}N
i=1

and each ξin,k is valued in R
2d. We will assume that we have

already obtained an empirical distribution, ηNn,k−1(dx) := N−1
∑N

i=1 δξin,k−1
(dx) which is

an approximation of πτ((k−1)/n)(dx). Here, δa(dx) denotes the Dirac point measure.

We define the HSMC algorithm explicitly in Algorithm 1. Note, that to estimate the

cn,k−1 coefficient, we have to calculate the empirical maximum

cNn,k−1 = max
ξn,k−1

Gn,k−1(ξ
i
n,k−1)

and we note that:

Algorithm 1 Hamiltonian SMC: a generic algorithm

Fix n ≥ 1
For k = 0,

sample
{
ξin,0

}N
i=1

iid according to πτ(0) := π0
For k = 1, ..., n

for i = 1, ..., N

with probability
1

cNn,k−1

Gn,k−1(ξ
i
n,k−1), sample

ξin,k ∼ Lτ(k/n)(ξ
i
n,k−1, ·)

otherwise sample

ξin,k ∼

∑N
j=1Gn,k−1(ξ

i
n,k−1)Mτ(k/n)

(
ξjn,k−1, ·

)

∑N
j=1Gn,k−1(ξ

i
n,k−1)

∫
Ψn,k−1(η

N
n,k−1)(dx)Mτ(k/n)(x, ·) =

∑N
j=1Gn,k−1(ξ

i
n,k−1)Mτ(k/n)

(
ξjn,k−1, ·

)

∑N
j=1Gn,k−1(ξ

i
n,k−1)

.

The “otherwise” step in Algorithm 1 amounts to multinomial resampling, followed by sam-

pling according to the Mτ(k/n) kernel.

2.1 The Lτ(k/n) kernel

Our idea is to build Lτ(k/n)(x, dx
′) using the Hamiltonian dynamics, associated withHτ(k/n).

This Hamiltonian flow is a continuous map that gives the time evolution of (q, p) through

the solution of the system of Hamiltonian equations. For more details about Hamiltonian

Monte Carlo and Hamiltonian mechanics itself we will refer the reader to [5], [1], [11] and

[13]. In practice, we cannot integrate the Hamiltonian equations exactly, so an approxima-

tion using a numerical integrator is needed. We will use the Störmer-Verlet (or leapfrog)

integrator - for more details we refer the reader to [10].
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We will denote by φτ(k/n)(x) the discretized Hamiltonian flow that we obtain using

the leapfrog integrator for a dynamics, associated with Hτ(k/n)(x). We note here, that the

leapfrog integrator depends on the discretization parameters - the step size ǫ and the number

of steps l, but we do not include that explicitly in our notation for φτ(k/n)(x). We also

introduce the so called momentum flip operator F : R2d → R
2d as F : (q, p) 7→ (q,−p).

We also use the notation a ∧ b = min(a, b). We have summarized the sampling according

to Lτ(k/n) in Algorithm 2.

Algorithm 2 Sampling according to Lτ(k/n)(x, dx
′)

1. With current state x, calculate x̃ = φτ(k/n)(x)

2. With probability 1 ∧
πτ(k/n)(x̃)

πτ(k/n)(x)
, set x′ = x̃, otherwise set x′ = Fx.

To put it in words, the sampling according to the Lτ(k/n) kernel consists of several

steps. First, we apply the leapfrog integrator to the current particle ξin,k−1 and we obtain

a new value for the particle ξ′in,k−1. After that, with probability 1 ∧
πτ(k/n)(ξ

′i
n,k−1)

πτ(k/n)(ξ
i
n,k−1)

, we set

the newly proposed particle to be equal to ξ′in,k−1. Otherwise, we set the new particle to be

equal to the old particle ξin,k−1, but with flipped second component (momentum).

We can write an explicit expression for the kernel Lτ(k/n) as the composition of F and

Pτ(k/n)(x, dx
′), where

Lτ(k/n)(x, dx
′) = FPτ(k/n)(x, dx

′) (6)

Pτ(k/n)(x, dx
′) =

[
1 ∧

πτ(k/n)(Fφτ(k/n)(x))

πτ(k/n)(x)

]
δFφτ(k/n)(x)(dx

′) (7)

+

[
1−

(
1 ∧

πτ(k/n)(Fφτ(k/n)(x))

πτ(k/n)(x)

)]
δx(dx

′)

Notice, that there is no randomness in the proposals that we produce using Fφτ(k/n)(x).
The Pτ(k/n) kernel is a special case of the more general Metropolis Hastings proposal kernel

with deterministic proposals - see [14] and [15] for more details on deterministic proposals

in MCMC. This is important to be stressed, as it will turn out that this lack of randomness

will play significant role in the explanation of the performance of the HSMC algorithm

later.

2.2 The Mτ(k/n) kernel

We will define the Mτ(k/n)(x, dx
′) kernel to be

Mτ(k/n)(x, dx
′) = Mτ(k/n)((q, p), d(q

′, p′)) = µ(dp′)δq(dq
′) (8)

=
1

(2π)d/2 det (M)
exp

(
−
1

2
p′TM−1p′

)
dp′ δq(dq

′)

Here we denote with dp′ = d(p′1, ..., p
′
d) the d - dimensional Lebesgue measure. Let us

explain what is the definition ofMτ(k/n)(x, dx
′) essentially saying. To sample according to

Mτ(k/n)(x, dx
′), we start with a particle ξin,k−1 - we keep the value of the q - component of
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ξin,k−1 intact, whereas at the same time we sample new value p′ for the momentum (second

component) of the particle from a normal distribution N (0,M). Combining these two, we

obtain the newly proposed particle according to Mτ(k/n).

2.3 Estimate of the ratio of the normalizing constants

We can obtain the estimate of the ratio of the normalizing constants Z1/Z0 of the initial

πτ(0) and the final distribution πτ(1) by calculating

Ẑ1

Z0
=

n−1∏

k=0

ηNn,k (Gn,k) (9)

where
{
ηNn,k

}n−1

k=0
is the sequence of empirical measures that we have obtained by running

the HSMC algorithm. The expression in Equation (9) is motivated by the identity:

Z1

Z0
=

n−1∏

k=0

πτ(k/n) (Gn,k) , (10)

the equality following from the definitions of Gn, k and πτ(k/n). For further discussion of

(9) the reader is referred to [4] and [3] for more details.

2.4 Comments

We can clearly see, that Algorithm 1 is a generalization of the ǫ - algorithm, defined by Del

Moral in Section 7.2.1 of Chapter 7 in [3]. The ǫ - algorithm samples a sequence of gener-

ations of particles {ξn,0, ξn,1, . . . , ξn,n} as in the case of the HSMC algorithm, but it does

that according to the kernel, described in Equation (4), where we take Lτ(k/n)(x, dy) =
Mτ(k/n)(x, dy) = Rτ(k/n)(x, dy), where Rτ(k/n) is some proposal kernel. It is important

to note, that the ǫ - algorithm produces unbiassed estimate of the ratio of the normalizing

constants, as defined in Equation (9). We refer the reader to [3] for more details about the ǫ
- algorithm and its properties.

In the case of HSMC, the introduction of second Markov kernel Lτ(k/n)(x, dy) helps

us to “separate” the standard HMC proposal scheme into two. By doing this separation

we would like to decrease the noise in the estimate of Z1/Z0, defined in Equation (9). In

contrast to the ǫ - algorithm, the HSMC produces biased estimate of Z1/Z0, which is a

direct consequence of the introduction of second kernel.

3. Why HSMC works?

In this section we would like to discuss the foundations of the HSMC algorithm. We will

give some reasoning behind the algorithm. To start, we will observe the following important

property, defined as a Lemma

Lemma 1. For any n ≥ 1 and 1 ≤ k ≤ n, Ψn,k−1(πτ((k−1)/n)) = πτ(k/n), where Ψn,k−1

is defined in Equation (5), and the sequence of distributions πτ(k/n) is the same, as the one,

defined already in Equation (1).
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Proof. From (3) and (5), we have for the action of Ψn,k−1 on πτ((k−1)/n)

Ψn,k−1(πτ((k−1)/n))(ϕ)

=
πτ((k−1)/n)(Gn,k−1ϕ)

πτ((k−1)/n)(Gn,k−1)

=

∫
πτ((k−1)/n)(x)

π̄τ(k/n)(x)

π̄τ((k−1)/n)(x)
ϕ(x)dx

∫
πτ((k−1)/n)(x)

π̄τ(k/n)(x)

π̄τ((k−1)/n)(x)
dx

=

∫
πτ((k−1)/n)(x)

Zτ(k/n)

Zτ((k−1)/n)

πτ(k/n)(x)

πτ((k−1)/n)(x)
ϕ(x)dx

∫
πτ((k−1)/n)(x)

Zτ(k/n)

Zτ((k−1)/n)

πτ(k/n)(x)

πτ((k−1)/n)(x)
dx

=

∫
πτ((k−1)/n)(x)

πτ(k/n)(x)

πτ((k−1)/n)(x)
ϕ(x)dx

= πτ(k/n)(ϕ).

which is exactly what we wanted to show in the first place.

What Lemma 1 is essentially saying, is that the Ψn,k−1 operator maps the distribution

πτ((k−1)/n) into the distribution πτ(k/n). This Lemma is at the basis of the ǫ - algorithm as

well, so we refer the reader to [3] for more details.

To be able to justify the HSMC algorithm we will need also an auxiliary result from

[15], namely Special case 2 of Theorem 2, which we state in a Lemma

Lemma 2. Let ψ be a one-to-one transformation from space E to the same space E, i.e.

ψ : E → E and let ψ is such, that ψ−1 = ψ (i.e. ψ is an involution). Let us have

a Metropolis - Hastings transition kernel T (x, dy) : E × E → [0, 1], a proposal kernel

δψ(x)(dy) and a target distribution with density π(x), where

T (x, dy) = α (x, y) δψ(x)(dy) + (1− a (x)) δx (dy) (11)

a (x) = α (x, ψ(x))

α (x, y) = 1 ∧
π(ψ(x))

π(x)
(12)

Then if the current state is x, and the proposed state y is equal to ψ(x), then the com-

bination of transition kernel T (x, dy) and the target distribution π(x) satisfy the detailed

balance equation.

Proof. See the proof of Theorem 2 in Tierney’s paper [15].

The result in Lemma 2 is important part of the proof, that Lτ(k/n) and Mτ(k/n) leave

πτ(k/n) invariant. We are stating this in the following

Lemma 3. For each τ ∈ [0, 1], Lτ(k/n) and Mτ(k/n) both admit πτ(k/n) as an invariant

distribution.

Proof. First we will prove, that the Lτ(k/n) kernel leaves πτ(k/n) invariant. To do this, we

will first show, that the composition of the flip operator F and the leapfrog integrator φτ(k/n)
is indeed an involution. First, F is an involution, which is obvious from its definition - we
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have, that F 2(x) = F (F (q, p)) = F (q,−p) = x, or F = F−1. Moreover, F leaves πτ(k/n)
invariant, because Fπτ(k/n)(x) = πτ(k/n)(q,−p) = πτ(k/n)(x), because of Equation (2).

Then, we will also use the standard fact, that the Hamiltonian dynamics and the leapfrog

integrator, associated with Hτ(k/n), as defined in Equation (2), are time reversible - in other

words, that the inverse map φ−1
τ(k/n)

is obtained by first negating the momentum p, then

applying πτ(k/n) and after that negating the momentum again, i.e. φ−1
τ(k/n)

= Fφτ(k/n)F .

We refer the reader to [13] for more details about the time reversibility property. From the

reversibility and the fact, that F is an involution, we can easily see, why the composition

Fφτ(k/n) is an involution.

Knowing this, and using Lemma 2, we see, that Pτ(k/n)(x, dx
′), as defined in Sec-

tion 2.1, and πτ(k/n) satisfy the detailed balance equation. This automatically means, that

Pτ(k/n)(x, dx
′) also leaves πτ(k/n) invariant. Because Lτ(k/n)(x, dx

′) = FPτ(k/n)(x, dx
′),

we easily see, that Lτ(k/n) also leaves πτ(k/n) invariant.

To prove, that Mτ(k/n) leaves πτ(k/n) invariant, we make the following simple calcula-

tion

(πτ(k/n)Mτ(k/n))(d(q
′, p′)) =

∫

Rd

∫

Rd

πτ(k/n)(d(q, p))Mτ(k/n)((q, p), d(q
′, p′)))

=

∫

Rd

∫

Rd

fτ(k/n)(dq)µ(dp)δq(dq
′)µ(dp′)

=

∫

Rd

fτ(k/n)(dq)δq(dq
′)µ(dp′)

= fτ(k/n)(dq
′)µ(dp′) = πτ(k/n)(d(q

′, p′))

which is exactly what we wanted to show.

Having Lemma 3 and Lemma 1 in hand, we can now prove the following Lemma,

which will be used to justify the basis of the definition of the HSMC algorithm.

Lemma 4. We have for any n ≥ 1 and 1 ≤ k ≤ n,

∫
πτ((k−1)/n)(x)K

πτ((k−1)/n)

n,k (x,A)dx =

∫

A
πτ(k/n)(x)dx,

k = 1, ..., n, A ∈ B(R2d).

Proof. We have

∫
πτ((k−1)/n)(x)K

πτ((k−1)/n)

n,k (x,A)dx

=

∫
πτ((k−1)/n)(x)

1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)

πτ(k/n)(x)

πτ((k−1)/n)(x)
Lτ(k/n)(x,A)dx

+

[
1−

∫
πτ((k−1)/n)(x)

1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)

πτ(k/n)(x)

πτ((k−1)/n)(x)
dx

]

∫
Ψn,k−1(πτ((k−1)/n))(dζ)Mτ(k/n)(ζ,A)

=
1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)

∫
πτ(k/n)(x)Lτ(k/n)(x,A)dx
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+

[
1−

∫
1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)
πτ(k/n)(x)dx

]

∫
Ψn,k−1(πτ((k−1)/n))(dζ)Mτ(k/n)(ζ,A)

=
1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)

∫

A
πτ(k/n)(x)dx

+

[
1−

1

cn,k−1

Zτ(k/n)

Zτ((k−1)/n)

] ∫

A
πτ(k/n)(x)dx

=

∫

A
πτ(k/n)(x)dx,

where for the penultimate equality, Lemma 3 and Lemma 1 have been used.

Lemma 4 says, that if we apply the Markov kernel K
πτ((k−1)/n)

n,k to πτ((k−1)/n) we will

get πτ(k/n). This is the basis of the HSMC algorithm - we see, that starting from an initial

distribution πτ(0), we can move from the k−1 - th to the k - the distribution in the sequence

by applying K
πτ((k−1)/n)

n,k kernel. As for the approximating empirical measures ηNn,k, Lemma

4 suggests to us that if ηNn,k−1 is a “good” approximation of πτ((k−1)/n), then ηNn,k :=

N−1
∑N

i=1 δξin,k
should be a “good” approximation of the next distribution in the sequence,

πτ(k/n).

4. Numerical results

In this section we are going to present three numerical examples. In the first example we

will present simulations for the HSMC algorithm, when applied in a really simple, two

- dimensional setting. We will compare the performance of the HSMC algorithm with the

performance of the more standard, trivial algorithm, which we call L =M - algorithm. This

L =M - algorithm is just the standard ǫ - algorithm (as defined in Del Moral in [3]), but in

the case, where we choose both kernels L and M to be equal to the standard Hamiltonian

Monte Carlo transition kernel, i.e. the transition kernel consists of drawing a momentum

p from a Gaussian distribution N (0,M), where M is the mass matrix; then we propose

new value for the position q and the momentum p with the help of the leapfrog integrator;

and after that we make Metropolis - Hastings accept - reject step. We will compare both

algorithms in terms of the bias and the MSE of the estimate of the ratios of the normalizing

constants produced.

With the second numerical example we will investigate the dependence of the MSE of

the estimate of the ratio of the normalizing constants that we obtain with the HSMC algo-

rithm on the choice of the mass matrix. We will compare this dependence to the dependence

for the more standard L =M algorithm.

In the third, more realistic example, we will compare the performance of the HSMC

and the Annealed Importance Sampling (AIS) algorithm, introduced by Neal in [12]. The

example will be a 3 and a 20 dimensional heteroscedastic regressions. We will estimate the

Bayes factor for the two sub - examples with the help of the HSMC and AIS algorithms and

compare them in terms of accuracy and variability of the estimates.

We note, that in all numerical examples, we use linear schedule function τ(k/n) = k/n,

where n ≥ 1 and 0 ≤ k ≤ n. We also assume, that throughout all of the examples we
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Figure 1: Bias of the estimate of the ratio of the normalizing constants for the cases where

L = M = standard HMC, and where L 6= M , and L as defined in Section 2.1, and M as

defined in Section 2.2.

have the following expression for the sequence of densities, with given initial f0 and final

distributions f1: fτ(k/n) = f
1−τ(k/n)
0 f

τ(k/n)
1 .

4.1 Toy example - bias and MSE

In our first toy example, we are going to investigate the performance of the HSMC algo-

rithm, in the following setup - π1 is a bimodal normal distribution, and π0 is an unimodal

normal distribution. The target bimodal distribution has two clearly separated modes. We

will compare the performance of the HSMC (which we will also call L 6= M algorithm)

and the performance of the L =M algorithm, which we have already defined.

The exact details of the example are as follows - let us suppose that we have

f0 ∼ N (0,Σ0) ; f1 ∼ ω1N (µ1,Σ1) + ω2N (µ2,Σ2)

where in our particular we have µ1 = (10, 5), µ2 = (−10, 5), µ0 = (0, 0), Σ0 = Σ1 =
Σ2 = I and ω = (0.5, 0.5). The initial and final distributions f0 and f1 correspond to the

initial and final distributions in the sequence of distributions, defined in Section 2. For this

example we will have for the parameters of the leapfrog discretization (refer to [10]) - for

the stepsize ǫ = 0.1, and for the number of steps l = 1. We will run the both algorithms

m = 100 times with N = 10 particles.

In Figure 1 we plot the bias of the estimate of the ratio of the normalizing constants as a

function of the number of intermediate distributions n for both algorithms. We can clearly

see, that the estimate of the ratio that we obtain using the HSMC algorithm (the black line)

has much less variability and is much more accurate even for small values of n.

We see also, that the standard combination of HMC and SMC (the L = M algorithm,

or the red line at the plot) performs really poorly in terms of the variability of the estimate of

the ratio. We see that even for large values of n, the L =M algorithm could not produce a

reliable and accurate estimate of the ratio. In Figure 2 we plot the mean squared error of the

estimate of the ratio for both algorithms. We again see easily, that the HSMC outperforms
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Figure 2: MSE of the estimate of the ratio of the normalizing constants for the cases where

L = M = standard HMC, and where L 6= M , and L as defined in Section 2.1, and M as

defined in Section 2.2.

the L = M algorithm in terms of MSE for large values of n. Because the example that

we have is really extreme, we see, that both algorithms perform poorly for small values of

n. This is due to the fact, that the initial and final distributions are so different, that the

estimate of the ratio that we obtain for both algorithms is close to zero (the particles that

we propagate could not keep up with the change in the sequence of distributions, in other

words we are far from equilibrium).

4.2 Mass matrix dependence

In this section, we will investigate empirically an interesting property of the HSMC algo-

rithm. We know, that the choice of the mass matrix M is crucial when it comes to the

performance of the standard HMC algorithm - see for instance [11] or [13]. A major at-

tempt to cope with this problem was done by the authors of [7], where they introduce the

Riemannian Manifold HMC (RMHMC). In this paper, the authors introduce a mass matrix,

which is a function of the geometry of the statistical inference problem we have in hand.

This choice has several benefits - first, we save time, because we do not have to tune the

mass matrix by hand. Secondly, including information about the geometry of the target

distribution could help us improve the performance of the standard HMC algorithm. The

major drawbacks of the RMHMC are that it involves costly derivatives / matrix computa-

tions, as well as it is still a classical MCMC based simulation algorithm, so it is not suitable

for sampling of multimodal distributions.

It turns out, that the HSMC deals with the problem of choice of the mass matrix in a

very natural way. Our numerical investigations show, that for large number of intermediate

distributions n, the HSMC algorithm seems to be less sensitive to the choice of the mass

matrix. This corresponds with our intuition - when we increase n, we are sampling less and

less according to the Mτ(k/n) kernel, which depends on the mass matrix M .

Let us define the mass matrix as a multiple of the identity, i.e. M = aI , where a ∈ R
+.

In this example we also fix n = 10000, N = 10, m = 100, ǫ = 0.1 and l = 1. In Figure

3 we plot the dependence of the HSMC and L = M algorithms on the mass matrix scale
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Figure 3: Dependence on the scale of the mass matrix

parameter a (both the x and y axis are on a log - scale). The example we are using now

is simpler than the one, we used in the previous section - we have a unimodal initial and

unimodal final distributions, described as

f0 ∼ N (µ0,Σ0) ; f1 ∼ N (µ1,Σ1)

where we have µ1 = (3, 3), µ0 = (0, 0) and Σ0 = Σ1 = I .

We clearly see, that the scale of the mass matrix has almost no effect over the MSE of the

estimate of the ratio of the normalizing constants that we obtain from the HSMC algorithm

(the black line and points). On the other hand, we can see that MSE of the estimate of the

ratio obtained from the L = M (the red line and points on the plot) algorithm depends

strongly on the choice of a. We also see that the HSMC algorithm outperforms the L =M
algorithm (around 10x) even for the best possible choice of scale parameter a.

4.3 HSMC for Bayes factor estimation

In this more real - world example, we are going to test the performance of the HSMC

algorithm on a linear regression problem, in both low and high - dimensional cases. The

example that we are going to use is the heteroscedastic linear regression example from [6]

and [9]. The regression model could be written as

Y | β, σ, r ∼ N
(
Xβ, σ2r−θ

)

where r is a vector of weights, and θ ∈ [0, 1] is a model parameter, that controls the het-

eroscedasticity of the generated sample. If θ = 0, we have a regular, homoscedastic re-

gression, whereas for all other values of θ the model has some degree of heteroscedasticity,

which depends on the weights r.

In the two papers of Gelman et al. - [6] and [9], there is a specific practical problem that

the authors attack with this model - in the papers, they try to model with linear regression the
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properties of the outcome of a general election in the USA, having a data set. In our case,

we will simulate all of the observed data y, based on simulated values for the regression

parameters β, as well as chosen by hand values for the other parameters. We will estimate

the Bayes factor for the two competing models with θ = 0 and θ = 1., i.e.

B =
P (y | θ = 1)

P (y | θ = 0)

where y is the observed data. The basic rule of using the Bayes factor is to calculate the

ratio, and then compare its value to a table of predetermined values, which tell us how much

support do we have for the two models. For more information about the Bayes factor, we

refer the reader to specialized literature on the subject like the classic book of Bernardo et

al. [2].

We will now specify the exact model of the regression and the weights function r.
Following the paper by Boscardin and Gelman [9], we will choose for the functional form

of r
r = exp (1.5X2)

In other words, the model we are going to simulate and estimate is

yi | β, σ ∼ N
(
(Xβ)i , σ

2 exp (−3θXi2)
)

where we choose by hand σ = 10. In this model, θ is an external parameter, that will not

be estimated.

We will test the HSMC algorithm and compare it to the standard AIS with random walk

proposals in two cases - the first one will be only 3 dimensional, whereas the second one will

be more challenging - a 20 dimensional regression. For all examples, we have simulated

100 observations of the dependent variable y. The parameters sets that are going to be

estimated in these two cases are (β = (β1, β2) ;σ) and (β = (β1, . . . , β19) ;σ) respectively.

There is a specific detail that we would like to mention - because of the functional form

of the variance in the case where θ 6= 0, we see, that the posterior distribution over the

parameters of interest β, σ will be bi-modal - the σ parameter is allowed to have positive

and negative values, and for given value for it, both σ and −σ results in the same linear

regression model. So the choice of this model has another interesting feature - we will be

able to test the HSMC algorithm in a high-dimensional and multimodal setup, where the

two modes will be well separated. To make a connection with the HSMC setup, where we

have f0 and f1 - in this case, f0 is a multivariate normal distribution over β and σ. For f1 -

it is the posterior distribution over (β, σ), which is a product of the likelihood and the prior

distribution over (β, σ). The prior distribution we use is a product of a uniform distribution

on R for β, and Jeffrey’s prior on σ, which is p(σ) ∼ 1/σ.

The number of independent instances of the algorithm is m = 10, number of particles

is N = 100 and the number of intermediate distributions n is 1000. Here again we have

for the leapfrog parameters ǫ = 0.1 and l = 1. We present in Table 1 the results of the

simulations using HSMC for the 3 dimensional regression model. In the second column,

called Data, we specify which data set we have used to calculate the Bayes factor. We test

with both data sets in order to see whether the factor that we calculate will give the right

indication about the real model, that gave rise to the observed data y. We calculate the log -

likelihood, because of the numerical instabilities that appear during the calculation process.

The Bayes factor then is estimate as the exponent of the difference of this two marginal
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Table 1: HSMC - 3 dimensional example. Estimates of the marginal likelihoods and the

Bayes factor for the two models.

Log of the marginal Standard Estimated

Data Model likelihood estimate deviation Bayes factor

n = 1000
θ = 0 data

θ = 0 22.27 0.4
1.6 × 10−10

θ = 1 −0.27 0.4

θ = 1 data
θ = 0 −14.87 0.3

4.1 × 109
θ = 1 7.25 0.4

Table 2: AIS - 3 dimensional example. Estimates of the marginal likelihoods and the Bayes

factor for the two models.

Log of the marginal Standard Estimated

Data Model likelihood estimate deviation Bayes factor

n = 1000
θ = 0 data

θ = 0 19.95 1.4
4.9 × 10−10

θ = 1 −1.48 0.8

θ = 1 data
θ = 0 −15.38 0.6

2.5 × 109
θ = 1 6.27 1.1

likelihoods. We see from Table 1, that the HSMC decisively determines, through the value

of the calculated factor, the true value of the heteroscedasticity factor θ.

In Table 2 we see the same results as in the previous Table 1, but this time for the AIS

algorithm. We see clearly, that the estiamted Bayes factor is close to the one, estimated with

the HSMC algorithm. The difference here is, that the standard deviation of the estimates is

lower for the HSMC algorithm, compared to the AIS.

Now we look at the results for the 20 - dimensional example. The results for the HSMC

algorithm are in Table 4. We see that for n = 1000 the HSMC algorithm manages again to

estimate the Bayes factor correctly, although the example that we have is high - dimensional

and bimodal. This is not the case for the AIS algorithm, as seen from the results in Table 3.

We see, that because of the large variability in the estimates of the log marginal likelihood,

the AIS algorithm estimates the Bayes factors really poorly. Another interesting fact is,

that in the case of the AIS algorithm, the estimates of the log marginal likelihoods are

substantially different from the estimates that we obtain using the HSMC algorithm. This

could mean, that the AIS algorithm was far from equilibrium during the runs (which is

supported by the large variance of the estimates as well).

We can clearly see, that in this particular case, the AIS algorithm produces wrong value

for one of the Bayes factors, whereas the HSMC algorithm performs really well in both

cases - homo- or heteroscedastic data.

5. Conclusions

In this paper we present a novel simulation algorithm - Hamiltonian Sequential Monte

Carlo, that produces both samples of a desired target distribution, as well as an estimate

of the ratio of the normalizing constants. We have developed this new simulation algorithm

to tackle several goals. First, we introduce an extension of the standard Hamiltonian Monte

Carlo with the idea to be able to use HMC for sampling of multimodal distributions. Our

second goal was to introduce a way to use HMC to estimate ratios of normalizing constants.
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Table 3: Estimates of the Bayes factors for the aforementioned heteroscedastic regression

example, obtained by using standard AIS, in the case, where the dimension of the parame-

ters space is 20.

Log of the marginal Standard Estimated

Data Model likelihood estimate deviation Bayes factor

n = 1000
θ = 0 data

θ = 0 −176.80 5.6
1.1 × 10−10

θ = 1 −199.75 4.6

θ = 1 data
θ = 0 −176.68 4.5

2.8× 10−9

θ = 1 −196.38 5.5

Table 4: Estimates of the Bayes factors for the aforementioned heteroscedastic regression

example, obtained by using standard HSMC, in the case, where the dimension of the pa-

rameters space is 20.

Log of the marginal Standard Estimated

Data Model likelihood estimate deviation Bayes factor

n = 1000
θ = 0 data

θ = 0 −88.86 1.4
8.6× 10−9

θ = 1 −107.43 1.2

θ = 1 data
θ = 0 −106.70 1.1

1.7 × 107
θ = 1 −90.04 2.6

For this purpose, we extend the method proposed in [3] by introducing a second Markov

kernel. We saw that the introduction of a second kernel produces additional benefits - like

the fact, we can control in a natural way the amount of noise we induce into the sampling

algorithm while running it. This also means, that in certain regime of large value of the

number of intermediate distributions n we can avoid losing time and resources in choosing

an optimal mass matrix M . We show that by an example where we clearly see that for large

n the HSMC algorithm does not depend on the choice of the scale of the mass matrix.

We also compare the performance of the HSMC to a standard SMC in a toy model, and

also with the AIS algorithm in a real - world example of a heteroscedastic data, generated

from a linear model. These two examples show really well that we were able to achieve our

goal to introduce a sampling algorithm, based on HMC, that could sample from multimodal

and high - dimensional distributions.

As a summary, we can say, that the HSMC algorithm provides a novel way to sample

from multimodal distributions. It also makes possible the estimation of a ratio of normaliz-

ing constants of two distributions using techniques from standard HMC. As a by product we

achieve a remarkable result - we have a way to avoid tuning by hand the mass matrix param-

eter of the standard HMC. All these properties make the HSMC algorithm really attractive

research area in terms of theory, as well as in terms of methodological extensions.
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