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Abstract 
We present a Bayesian adaptive design for dose finding of a combination of two drugs in 
cancer phase I clinical trials that takes into account patients heterogeneity thought to be 
related to treatment susceptibility. The goal is to estimate the maximum tolerated dose 
(MTD) as a curve for continuous dose levels of the two agents for patient’s specific 
baseline covariate value. Parametric models are used to describe the relationship between 
the doses, baseline covariate, and the probability of dose limiting toxicity (DLT). Trial 
design proceeds using univariate escalation with overdose control, where at each stage of 
the trial, we seek a dose of one agent using the current posterior distribution of the MTD 
of this agent given the current dose of the other agent and the next patient’s baseline 
covariate value. At the end of the trial, we estimate MTD curves as functions of Bayes 
estimates of the model parameters. We evaluate design operating characteristics in terms 
of safety of the trial and percent of dose recommendation at dose combination 
neighborhoods around the true MTD by comparing the design that uses the covariate to 
the one that ignores the baseline characteristic.  
 
Key Words: Cancer Phase I trials; Maximum tolerated dose; Escalation with overdose 
control; Drug combination; Dose limiting toxicity; Continuous dose; baseline covariate. 
 
 
 

1. Introduction 
 
The combination of several cytotoxic and biologic agents in drug development and 
cancer treatment can help reduce tumor resistance to chemotherapy by targeting different 
signaling pathways simultaneously and improve tumor response when using additive or 
synergistic drugs [1]. Although the majority of cancer phase I trials use drug 
combinations of several agents, most of them are designed to estimate the MTD of one 
drug for fixed dose levels of the other drugs. This approach may provide a single 
tolerable dose for the combination but it may be suboptimal in terms of therapeutic 
effects in subsequent efficacy studies. 
 
Trials where the dose levels of at least two agents are allowed to vary yield more than 
one MTD, or even an infinite number of MTDs in the case of continuous does levels. 
Estimating the resulting set of MTDs by designing a safe trial is the main goal of phase I 
trials with dose combinations of several agents.  Statistical methodologies for designing 
such trials have been studied extensively in the past decade [2-13]. These methods 
assume that the patient population is homogeneous in terms of treatment tolerance and 
every patient should be treated at a dose combination corresponding to a pre-defined 
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target probability of DLT. As a result, no allowance is made for individual patient 
differences in susceptibility to treatment. For single agent trials, strategies of drug 
allocation that accommodate individual patient needs based on pharmacokinetics and the 
genetics of drug metabolism have been used in [14-16]. Statistical designs permitting 
individualized MTD determination in single agent cancer phase I trials have also been 
proposed and implemented in real trials by a number of authors [17-21]. For drug 
combinations, an additional layer of complexity in specifying the dose-toxicity 
relationship given a baseline covariate is needed. Using the notation in [11], the general 
problem can be stated as follows. Let Ai, i = 1,…,k be k drugs and Si ⊂ R+ be the set of 
all possible doses of drug Ai. Denote by x = (x1,…, xk) a dose combination of the k drugs, 
z the baseline covariate value, and S = S1×…× Sk. Consider a dose-toxicity model 
 
 ( )Prob DLT | dose ( , , ),z F z= =x, x ξ  (1.1) 
 
where F is a known link function and ξ ϵ Rd is an unknown parameter. The MTD for a 
patient with baseline covariate z is defined as the set Cz of dose combinations x such that 
the probability of DLT for a patient with baseline covariate z given dose x equals to a 
target probability of DLT θ: 
 
 { }: ( , , ) .zC S F z θ= ∈ =x x ξ  (1.2) 
 
In this manuscript, we extend the design described by Tighiouart et al. [11] using 
escalation with overdose control (EWOC) principle [21-23] by treating cohorts of two 
patients simultaneously and accounting for patients’ baseline binary covariate. We 
consider a simplified form of model (2.1) by assuming that patients with different 
covariate values will have parallel MTD curves. This assumption is mathematically 
convenient and allows us to use parsimonious models due to the small sample size 
constraints in cancer phase I trials. 
 
 

2. Model 
 
2.1 Dose-Toxicity Model 
 
Consider the problem of identifying tolerable dose combinations of two cytotoxic agents 
A and B given a patient with a binary baseline covariate value of z. We consider the dose-
toxicity model of the form 
 
 ( ) ( )0 1 2 3 4 Prob 1 | , ,   x y z F x y z xyδ β β β β β= = + + + +  (2.1) 
 
where 𝛿 is the indicator of DLT, 𝛿 = 1 if a patient given the dose combination (x, y) 
exhibits DLT within one cycle of therapy, and 𝛿 = 0 otherwise, 𝑥 ∈ [𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥] is the 
dose level of agent A, 𝑦 ∈ [𝑌𝑚𝑖𝑛,𝑌𝑚𝑎𝑥] is the dose level of agent B, 𝑧 is a binary baseline 
covariate, and F is a known cumulative distribution function. Suppose that the doses of 
agents A and B are continuous and standardized to be in the interval [0, 1]. We will 
assume that that the probability of DLT increases with the dose of any one of the agents 
when the other one is held constant for 𝑧 = 0, 1. A necessary and sufficient condition for 
this property to hold is to assume  𝛽𝑖 > 0, 𝑖 = 1, 2 and the interaction term 𝛽4 is 

JSM2015 - Biopharmaceutical Section

1644



nonnegative. The MTD for a patient with baseline covariate z is defined as the set 𝐶𝑧  of 
combinations (x*, y*) such that 
 
 ( )* *Prob 1 | ,  , . x y zδ θ= =  (2.2)        
  

The target probability of DLT θ is set relatively high when the DLT is a reversible or 
non-fatal condition, and low when it is life threatening. Using (2.1) and (2.2), the MTD 
𝐶𝑧 is 
 

 ( ) [ ] ( )1 *
2* * * 0 1 3

*
2 4

, 0,1 : z
F x z

C x y y
x

θ β β β
β β

− − − −
= ∈ = + 

 (2.3) 

 
We reparameterize model (2.1) in terms of parameters that are easily interpreted by the 
clinicians. These are ρ00, the probability of DLT at the minimum available doses of agents 
A and B for a patient with covariate value 𝑧 = 0, ΓA|0,0, the MTD of drug A when the 
level of drug B is 𝑌𝑚𝑖𝑛 and 𝑧 = 0, ΓA|0,1, the MTD of drug A when the level of drug B is 
𝑌𝑚𝑖𝑛 and 𝑧 = 1, ΓB|0,0, the MTD of drug B when the level of drug A is 𝑋𝑚𝑖𝑛 and 𝑧 = 0, and 
the interaction parameter β4. If MTD estimates of single agent trials using A and B are 
available, then these estimates can be used to approximate the prior mean and variances 
of the parameters ΓA|0,0, ΓA|0,1, and ΓB|0,0. We will assume that  0 < ΓA|0,0, ΓA|0,1, ΓB|0,0 < 1, 
i.e., the MTD of each agent when the other one is held at its minimum available dose in 
the trial is within the range of available doses in the trial. This is the reparameterization 
used in Tighiouart et al. [11] in the absence of a covariate. It follows that 
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The MTD (2.3) can be expressed in terms of these new parameters as 
 

 ( ) ( ) ( )( ) ( )( )( )
( ) ( )( )

1 1 *
00 |0,0 |0,1 |0,0* * *
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00 |0,0 4

( 1 /
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(2.5) 

 
 

 Let Dn = {(xi, yi, zi, δi), i = 1, …, n} be the data after enrolling n patients in the trial. The 
likelihood function under this reparameterization is 
 

 
( ) ( )( )

( )( )
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where 
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2.2 Prior and Posterior Distributions 
Equations (2.4) imply that 0 < ρ00 < θ since 𝛽𝑖 > 0, 𝑖 = 1, 2. We consider the priors ρ00/θ 
~ beta(a0, b0), ΓA|0,0 ~ beta(a1, b1), ΓA|0,1 ~ beta(a2, b2),  ΓB|0,0 ~ beta(a3, b3), 𝛽4 ~ gamma(a, 
b) with mean E(𝛽4) = a/b and variance Var(𝛽4) = a/b2. Vague priors for these parameters 
are achieved by taking aj = bj = 1, j = 0, 1, 2, 3. The prior mean for 𝛽4 is selected by 
setting 𝐸(𝛽4) = 8 �𝐹−1(𝜃)− 𝐹−1�𝐸(𝜌00)�� /𝐸�𝛤𝐴|0,0�𝐸�𝛤𝐵|0,0�, see [11] for the rationale 
behind this choice. A vague prior is achieved by selecting a large variance for 𝛽4,. Using 
Bayes rule, the posterior distribution of the model parameters is proportional to the 
product of the likelihood and prior distribution 
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Features of this posterior distribution are estimated using WinBUGS[24] and JAGS.  
 
2.3 Trial Design 
The algorithm for dose escalation is similar to the ones described in [11, 25]. It uses the 
EWOC principle [21-23] where at each stage of the trial, we seek a dose of one agent 
using the current posterior distribution of the MTD of the agent given the current dose of 
the other agent and the next patient’s baseline covariate value. For instance, if agent A is 
held constant at level x, the dose of agent B is y such that the posterior probability that y 
exceeds the MTD of agent B given the dose of agent A = x and covariate value z is 
bounded by a feasibility bound α. Cohorts of two patients are enrolled simultaneously 
receiving different dose combinations. Specifically, the design proceeds as follows. 
 

1. Each patient in the first cohort of two patients receives the same dose 
combination (x1, y1) = (x2, y2) = (0, 0). Let D2 ={(x1, y1, z1, δ1), (x2, y2, z2, δ2)}. 

2. In the second cohort of two patients, patient 3 receives dose (x1, y3) and patient 4 
receives dose (x4, y2), where y3 is the α-th percentile of π(ΓB|A=x1, Z=z3 | D2) and x4 is 
the α-th percentile of π(ΓA|B=y2, Z=z4 | D2). Here, π(ΓB|A=x1, Z=z3 | D2) is the posterior 
distribution of the MTD of agent B given that the level of agent A is x1 and the 
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baseline covariate value of patient 3 is z3, given the data D2. π(ΓA|B=y2, Z=z4 | D2) is 
defined similarly. 

3. In the i-th cohort of two patients, if i is even, patient (2i −1) receives dose (x2i-3, 
y2i-1) and patient 2i receives dose (x2i, y2i-2), where 
𝑦2𝑖−1=Π𝛤𝐵|𝐴=𝑥(2𝑖−3),𝑍=𝑧(2𝑖−1)

−1 (𝛼|𝐷2𝑖−2) and 𝑥2𝑖=Π𝛤𝐴|𝐵=𝑦(2𝑖−2),𝑍=𝑧 (2𝑖)
−1 (𝛼|𝐷2𝑖−2). If i is 

odd, then patient (2i −1) receives dose (x2i-1, y2i-3), patient 2i receives dose (x2i-2, 
y2i),where 𝑥2𝑖−1=Π𝛤𝐴|𝐵=𝑦(2𝑖−3),𝑍=𝑧(2𝑖−1)

−1 (𝛼|𝐷2𝑖−2) and 𝑦2𝑖=Π𝛤𝐵|𝐴=𝑥(2𝑖−2),𝑍=𝑧(2𝑖)
−1 (𝛼|𝐷2𝑖−2). 

4. Repeat step 3 until n patients are enrolled to the trial subject to the following 
stopping rule. 

 
Stopping rule:  
We stop enrollment to the trial if P(P(DLT|(x, y) = (0,0), z) ≥ θ+δ1 | data) > δ2, i.e. if the 
posterior probability that the probability of DLT at the minimum available dose 
combination in the trial exceeds the target probability of DLT is high for z = 0, 1. δ1 and 
δ2 are design parameters chosen to achieve desirable model operating characteristics. 

 
At the end of the trial, we estimate the MTD curve using Bayes estimates of the 
parameters defining this curve. For example, an estimate of the MTD curve for z = 0, 1 
is obtained using (2.5) as 
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(2.9) 

 
where 𝜌�00, 𝛤�𝐴|00, 𝛤�𝐴|01, 𝛤�𝐵|00, and �̂�4 are the posterior medians given the data Dn. 
 
 

3. Simulation Studies 
 
3.1 Simulation Set-up and Scenarios 
We evaluate design operating characteristics by assuming a logistic link function F(u) = 
(1 + exp(−u))–1 for the working and true models. DLT responses are generated assuming 
a logistic link function. We present two scenarios for the true MTD curve. In all cases, 
the target probability of DLT is fixed at θ = 0.33, the true value for ρ00 is 0.05, the 
interaction coefficient β4 is 10, and the trial sample size is n = 40 patients with 20 patients 
in each group. In all scenarios aj = bj = 1, j = 0, 1, 2, 3 which correspond to uniform 
priors for ρ00/θ, ΓA|0,0 , ΓA|0,1, and ΓB|0,0, and a vague prior for β4 was selected by taking 
E(β4) = 30 and Var(β4) = 900. The first scenario corresponds to ΓA|0,0 = ΓB|0,0 = 0.4 and 
ΓA|0,1 = 0.8, and the corresponding true MTD curves are shown by the solid lines in Figure 
1(a,b,c). In the second scenario, ΓA|0,0 = ΓB|0,0 = 0.7 and ΓA|0,1 = 0.8. The true MTD curves 
are displayed by solid lines in Figure 2(a,b,c). Other scenarios were studied but are not 
included here due to space limitation. For each scenario, m = 1000 trials were simulated 
using the logistic link function for the working and true model. 
 
3.2 Design Operating Characteristics 
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3.2.1 Comparison of three Designs 

In order to assess the performance of this method when designing a prospective trial, we 
evaluate its operating characteristics by comparing the following three designs. 

a) Design using a covariate; patients are accrued to the trial sequentially 
and the dose combinations given to the next cohort of patients is 
calculated assuming model (2.1). 

b) Design ignoring the covariate; patients are accrued to the trial 
sequentially and the dose combinations given to the next cohort of 
patients is calculating assuming model (2.1) without the covariate, i.e., as 
in [11, 25]. 

c) Design using separate trials; in each group, patients are accrued to the 
trial sequentially and model (2.1) without the covariate is implemented in 
each group. 

 
 
We evaluate and compare the performance of these methods by assessing the safety of 
the trial designs and the efficiency of the estimate of the MTD curve. 
 
3.2.2 Safety 
We assess trial safety by reporting the average percent of DLTs across all m = 1000 trials 
and the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.05 and 0.1. The 
threshold θ + 0.1 is usually considered to be an indication of an excessive DLT rate. 
 
3.2.3 Efficiency 
We present an estimate of the MTD curve using the average posterior medians of the 
model parameters. The estimate for z = 0, 1 is 
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(3.1) 

 
where F(·) is the logistic function and �̅�00, 𝛤�𝐴|0,0, 𝛤�𝐴|0,1, 𝛤�𝐵|0,0, and �̅�4 are the average 
posterior medians of the parameters ρ00, ΓA|0,0, ΓA|0,1, ΓB|0,0, and β4 from all m = 1000 trials, 
respectively. The next measure of efficiency is the pointwise average relative minimum 
distance from the true MTD curve to the estimated MTD curve. For i =1, … , m, let 𝐶𝑖 be 
the estimated MTD curve and 𝐶𝑡𝑟𝑢𝑒 be the true MTD curve. For every point (𝑥,𝑦) ∈
𝐶𝑡𝑟𝑢𝑒, let 
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where 𝑦′ is such that (𝑥,𝑦′) ∈ 𝐶𝑖. This is the minimum relative distance of the point 
(𝑥,𝑦) on the true MTD curve to the estimated MTD curve 𝐶𝑖. If the point (𝑥,𝑦) is below 
𝐶𝑖, then  𝑑(𝑥,𝑦)

(𝑖)  is positive. Otherwise, it is negative. Let 
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This is the pointwise average relative minimum distance from the true MTD curve to the 
estimated MTD curve and can be interpreted as the pointwise average bias in estimating 
the MTD. Let ∆(𝑥,𝑦) be the Euclidian distance between the minimum dose combination 
(0, 0) and the point (𝑥,𝑦) on the true MTD curve and 0 < p < 1. The last measure of 
efficiency we consider is 
 

 ( ) ( )( )1 ( )
,  , 

1

| | ( , ) .     
i i

m
i

x y x y
i

P m I d p x y−

=

= ≤ ∆∑  (3.4) 

 
This is the pointwise percent of trials for which the minimum distance of the point 
(𝑥,𝑦) on the true MTD curve to the estimated MTD curve Ci is no more than (100 × 𝑝)% 
of the true MTD. This statistic is equivalent to drawing a circle with center (𝑥,𝑦) on the 
true MTD curve and radius 𝑝∆(𝑥, 𝑦) and calculating the percent of trials with MTD curve 
estimate Ci falling inside the circle. This will give us the percent of trials with MTD 
recommendation within (100 × 𝑝)% of the true MTD for a given tolerance p.  
 
 

 
3.3 Results 
3.3.1 Trial Safety 
Table 1 shows that for each design and under the two scenarios, the average percent of 
DLTs varies between 22% and 27%. In general, the average DLT rate tends to be lower 
when the true MTD curve is farther away from the minimum dose combination. 
Furthermore, the percent of trials with an excessive rate of DLT as defined by a DLT rate 
exceeding θ + 0.1 is 0.00 using the three designs under the two scenarios. Further 
simulations (results not shown) under scenarios where ΓA|0,0 and ΓB|0,0 are different show 
that this rate does not exceed 2%. Based on these findings, we conclude that the 
methodology is safe in general.  
 
3.3.2 Trial Efficiency 
Figures 1(a,b) and 2(a,b) show the true and estimated MTD curves for each group of 
patients. The dashed line in figures 1(c) and 2(c) is the estimated MTD curve obtained 
from the model without a baseline covariate. The estimated MTD curves shown by 
dashed lines were obtained using (3.1) and DLT responses were simulated using the true 
logistic model. Figures 1(a) and 1(b) show that the estimated MTD curves are much 
closer to the true MTD curves when accounting for a significant baseline covariate 
relative to parallel trial designs. When ignoring the covariate, the estimated MTD curve 
tends to be in between the true MTD curves, see Figures 1(c) and 2(c). This shows that 

Table 1. Average percent of DLTs and percent of trials with DLT rate exceeding θ 
+ δ for each design under two scenarios. 
Scenario 
(ΓA|0,0, ΓB|0,0, ΓA|,01) 

Design Average 
% DLT 

% Trials: DLT 
rate > θ + 0.05 

% Trials: DLT 
rate > θ + 0.10 

(0.4, 0.4, 0.8) With covariate 27 0.00 0.00 
Parallel trials 25 0.03 0.00 
Ignoring covariate 27 0.00 0.00 

(0.7, 0.7, 0.8) With covariate 24 0.00 0.00 
Parallel trials 22 0.02 0.00 
Ignoring covariate 24 0.00 0.00 
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Figure 1. True and estimated MTD curves for each group of patients from m =1000 simulated 
trials under the first scenario with ΓA|0,0 = ΓB|0,0 = 0.4 and ΓA|0,1 = 0.8 when using (a) proposed 
design with a binary baseline covariate, (b) parallel trials, and (c) design ignoring a binary baseline 
covariate. The dashed lines represent estimated MTD curves and the solid lines indicate true MTD 
curves.  
 

 
 
Figure 2. True and estimated MTD curves for each group of patients from m =1000 simulated 
trials under the second scenario with ΓA|0,0 = ΓB|0,0 = 0.7 and ΓA|0,1 = 0.8 when using (a) proposed 
design with a binary baseline covariate, (b) parallel trials, and (c) design ignoring a binary baseline 
covariate. The dashed lines represent estimated MTD curves and the solid lines indicate true MTD 
curves.  
 
when the two MTD curves are well separated, not accounting for a baseline covariate 
results in suboptimal MTD curve estimation for one group of patients and a too toxic 
MTD curve recommendation for the other group.  
 
Figures 3 and 4 display the pointwise average relative minimum distance from the true 
MTD curve to the estimated MTD curve as defined by (3.3). This is a measure of 
pointwise average bias of the estimate of the MTD. In scenario 1, the maximum average 
bias with our proposed design with a covariate is about 0.04 for z = 0 and 0.05 for z = 1, 
which correspond to 6.7% and 4.4% of the distance from the minimum dose combination 
(0, 0) to the true MTD dose combinations (0.4, 0.4) and (0.8, 0.8), respectively (Figure 
3(a)).  Similar measures of the average bias are found in Figure 3(b) when using parallel 
trials. In scenario 2 where the true MTD curves for z = 0 and z = 1 are very close, the 
pointwise average bias is very close when using designs with (Figure 4 (a)) and without 
covariate (Figure 4(c)) and slightly higher with the parallel trials (Figure 4(b)).  Other 
scenarios (results not shown) also show that the maximum average bias with our 
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proposed design with a covariate is no more than 12% of the distance from (0, 0) to the 
corresponding true MTD dose combination. 
 
 

 
 
Figure 3. Pointwise average bias for each group of patients (dashed lines for patients with the 
covariate value of z=1; solid lines for patients with the covariate value of z=0) from m =1000 
simulated trials under the first scenario with ΓA|0,0 = ΓB|0,0 = 0.4 and ΓA|0,1 = 0.8 when using (1) 
proposed design with a binary baseline covariate, (b) parallel trials, and (c) design ignoring a 
binary baseline covariate.  
 

 
 
Figure 4. Pointwise average bias for each group of patients (dashed lines for patients with the 
covariate value of z=1; solid lines for patients with the covariate value of z=0) from m =1000 
simulated trials under the second scenario with ΓA|0,0 = ΓB|0,0 = 0.7 and ΓA|0,1 = 0.8 when using (1) 
proposed design with a binary baseline covariate, (b) parallel trials, and (c) design ignoring a 
binary baseline covariate.  
 
Figures 5 and 6 show the pointwise percent of trials for which the minimum distance 
from the true MTD curve to the estimated MTD curve is no more than (100 × 𝑝)% of the 
true MTD for p = 0.2. This can be interpreted as the percent of MTD recommendation for 
a given tolerance p. In scenario 1, the percent of trials with correct MTD recommendation 
varies between 67% and 100% and 66% and 98% with the designs accounting for a 
significant baseline covariate as shown in Figures 5(a) and 5(b), respectively while with 
the design ignoring a covariate the percent of MTD recommendation varies more widely 
between 37% and 99% (Figure 5(c)). Under scenario 2, the percent recommendation 
becomes slightly higher varying between 71% and 100% and 76% and 100% with the 
designs with and without a baseline covariate as shown in Figures 6(a) and 6(c), 
respectively while it is slightly lower varying between 60% and 100% with the parallel 
trials (Figure 6(b)). Under scenarios where ΓA|0,0 and ΓB|0,0 are different (results not 
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shown) the percent recommendation with our proposed design varies more widely 
between 32% and 100%. 
 
 
 

 
 
Figure 5. Pointwise percent MTD recommendation for tolerance p = 0.2 for each group of 
patients (dashed lines for patients with the covariate value of z=1; solid lines for patients with the 
covariate value of z=0) from m =1000 simulated trials under the first scenario with ΓA|0,0 = ΓB|0,0 = 
0.4 and ΓA|0,1 = 0.8 when using (1) proposed design with a binary baseline covariate, (b) parallel 
trials, and (c) design ignoring a binary baseline covariate.  
 

 
 
Figure 6. Pointwise percent MTD recommendation for tolerance p = 0.2 for each group of 
patients (dashed lines for patients with the covariate value of z=1; solid lines for patients with the 
covariate value of z=0) from m =1000 simulated trials under the second scenario with ΓA|0,0 = ΓB|0,0 
= 0.7 and ΓA|0,1 = 0.8 when using (1) proposed design with a binary baseline covariate, (b) parallel 
trials, and (c) design ignoring a binary baseline covariate.  
 
 
The percent recommendation increases as we move away from the minimum available 
dose combination. Based on these results and others from scenarios not shown here, we 
conclude that ignoring a practically important baseline covariate results in a lower MTD 
recommendation rate relative to a design accounting for this covariate and including a 
non-significant covariate in the model results in a slightly higher bias (still negligible) 
and a small reduction in percent of MTD recommendation. Therefore, we stand to lose 
little if we include a practically not important covariate in the model. 
 
 

4. Discussion 

(a) (b) (c) 

(a) (b) (c) 

JSM2015 - Biopharmaceutical Section

1652



 
We described Bayesian adaptive designs for cancer phase I clinical trials using two drugs 
with continuous dose levels in the presence of a binary baseline covariate. The goal is to 
estimate the MTD curve in the two-dimensional Cartesian plane for a patient’s specific 
baseline covariate value. The methodology extends the single agent trial design with a 
baseline covariate and two agents design without a covariate. In each case, vague priors 
were used to quantify the toxicity profile of each agent a priori. We used an algorithm for 
dose escalation where cohorts of two patients are enrolled simultaneously and the patients 
receive different dose combinations. We studied design operating characteristics of the 
method under a number of practical scenarios (only two of them are included due to 
space limitation) by comparing this method with a design that ignores the baseline 
covariate and designs using parallel trials. In all simulations, we used a sample size of n = 
40 patients. We found that in general, the methodology is safe in terms of the probability 
that a prospective trial will result in an excessively high number of DLTs when 
accounting for a significant covariate. We used several measures to assess the efficiency 
of the estimate of the MTD. In the presence of a practically significant baseline covariate, 
the design with a covariate had a smaller pointwise average bias and a higher percent of 
MTD recommendation relative to a design which ignores the covariate or when using 
parallel trials. When the two true MTD curves are very close, then including a baseline 
covariate in the model results in a slightly higher bias (still negligible) and a small 
reduction in percent of MTD recommendation relative to a design that ignores this 
covariate. Therefore, we stand to lose little if we include a practically not important 
covariate in the model. We plan to study the properties of this method under model 
misspecification and extend the approach for pre-specified discrete dose combination of 
the two agents in future work. Other extensions include accommodating late onset 
toxicity and efficacy studies. 
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