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Abstract 
The appropriate treatment of missing data under different missing data mechanisms is 
essential for unbiased estimates and correct statistical inferences in propensity score 
analysis (PSA). This simulation study investigates the efficacy of multiple imputation 
approaches to missing data in PSA. Four different approaches are considered in 
combination of two factors: what to impute (covariates only or PS in concert with 
covariates) and how to combine multiply imputed data (average treatment effects or 
average PS). Simulation design factors include sample size (500, 1000), treatment effect 
magnitude (0, .05, .10, .15), correlation between covariates (0, .50), proportion of missing 
observations (.20, .40, .60), proportion of missing covariates (.20, .40, .60), the number of 
covariates (15, 30), and missing data mechanisms (MCAR, MAR, MNAR). The missing 
data treatments serve as a within group factor. Imputing covariates only, combined with 
averaging treatment effect estimates across imputations, outperforms other methods 
under MAR, but none of multiple imputation approaches is apt under MNAR. 
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1. Introduction 
 
Missing data are a ubiquitous problem in social science research. As most common 
statistical procedures assume complete data, failing to address the presence of missing 
values can lead to a multitude of issues, ranging from decreased power to heightened bias 
and inaccurate Type I error control. Among the several methods developed to deal with 
missing data problems, Multiple Imputation (MI) has become one of the most accepted. 
Provided the assumptions are met, MI has shown excellent qualities (see, for example, 
reviews by Graham, Cumsille, & Elek-Fisk, 2003; Graham & Hoffer, 2000; Shafer & 
Olsen, 1998).   
 
However, multiple imputation, when considered in the context of propensity score 
analysis, requires several decisions on the part of the researcher. Since random 
assignment is not possible in an observational study, we must account for the process by 
which individuals select their group (either treatment or control). Estimating and 
incorporating propensity scores is one method that allows one to control for this selection 
process. Rosenbaum and Rubin (1983) defined the propensity score as “the conditional 
probability of assignment to a particular treatment given a vector of observed covariates” 
(p. 41). An individual’s propensity score can be calculated as follows, where Pr(Z=1) is 
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the probability of assignment to the treatment group and p is the number of covariates in 
vector x: 

logit (Z = 1) = log [
𝜋̂

1 − 𝜋̂
] =  𝛽0 +  ∑ 𝛽𝑖𝑥𝑖

𝑝

𝑖=1

 

 
Consider a situation where there are missing data on one or more of the covariates 
included in vector x. These covariates are needed in order to calculate the propensity 
scores that will be required to account for group selection and make unbiased inferences. 
It is possible for researchers to estimate propensity scores for those individuals with 
complete data and multiply impute the remaining propensity scores or conversely, one 
could opt to impute the missing covariates themselves and use these new datasets to 
subsequently estimate the propensity scores. Thus, the first decision researchers must 
make in this context is which missing values to impute, the covariates alone or the 
propensity score in concert with the covariates. 
 
Regardless of which decision is made the researcher will now have multiple datasets each 
containing different propensity score values for those cases that included missing data 
which can now be used to estimate the treatment effect. The typical approach is to use 
each imputed data set to estimate separate treatment effects which would then be 
combined. Alternatively, the researcher can opt to average the propensity scores for 
individuals with more than one value and use that average in estimating the treatment 
effect (Hill, 2004). 
 
Examining all possible combinations of the two choices presented above leads to four 
distinct approaches for utilizing multiply imputed data in an observational context: (a) 
impute only covariates, conduct separate analyses with imputed datasets, and combine 
treatment effect estimates across imputations – Cov Only (MI), (b) impute only 
covariates, estimate and average propensity scores across imputations, and estimate a 
treatment effect using single mean propensity scores – Cov Only (Avg), (c) impute 
propensity scores along with covariates, conduct separate analyses with imputed datasets, 
and combine treatment effect estimates across imputations – Cov PS (MI), and (d) impute 
propensity scores along with covariates, average propensity scores across imputations, 
and estimate a treatment effect using single mean propensity scores – Cov PS (Avg). This 
study uses simulation to assess the efficacy of these techniques. Listwise deletion of cases 
with missing values was also included in the comparison because this method is the 
common default in software packages. 
 
Missing data problems become even more complex when we consider variation in the 
missing data mechanism. While most statistical analyses assume data are missing at 
random (MAR), this is often not an assumption that can be tested using the present 
dataset. In order to determine how robust our methodological choices are under different 
mechanisms for missingness, the five techniques above were conducted using data that 
were missing completely at random (MCAR), missing at random (MAR), and missing not 
at random (MNAR). 
 

2. Theoretical Framework 
 
2.1 Rubin’s Missing Data Taxonomy 
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When applying a missing data treatment, e.g., MI, the process or mechanism that causes 
missingness might need to be incorporated into the statistical model because 
incorporating the missing data mechanism leads to efficient data modeling for fitting the 
data adequately. In other words, the missing data treatment should reflect the underlying 
uncertainty of the process or mechanism that best explains why data are missing (Rubin, 
2005). Rubin’s (1976) theoretical framework is the most widely accepted for missing 
data research. 
 
Let Y = (Y1, Y2,…,Yp) be a random vector variable for p-dimensional multivariate data (y x 
p matrix), and θ and δ are  the parameter of the data and the parameter of the conditional 
probability of the observed pattern of missing data, respectively. In the presence of 
missing data, φ, inferences about θ are conditional on δ, the mechanism that causes 
missingness. That is, given the data at hand, the purpose of the missing data process is to 
allow making valid inferences about θ but these inferences depend upon or are 
conditional on δ, the mechanism that generated missing data. 
 
Missing Completely at Random (MCAR). When the probability of a missing value on a 
variable is independent of the observed or unobserved value for any variable, that is, the 
probability that yi is missing is independent of the probability of missingness for any yj, 
data are missing completely at random or MCAR.  
 
Missing at Random (MAR). When the probability that yi is missing for variable Y is 
dependent on the data of any other variables but not on the variable Y of interest, data are 
missing at random or MAR. In addition, MAR requires data on a variable to be missing 
randomly within subgroups (Roth, 1994).  
 
Missing NOT at Random (MNAR). When the probability of a missing value depends on 
unobserved data or data that could have been observed, data are missing not at random or 
MNAR. That is, the value of yi depends on the value of Yi. Under this scenario, why data 
are missing is not ignorable, thus requiring that the missing data mechanism is modeled 
to make valid inferences about the model parameter. 
 
2.2 Propensity Score Analysis with Observational Data 
Randomized trials are the “gold standard procedure” for evaluating the effectiveness of 
treatment effects; under random assignment to T (t1 = treatment, t0 = control), xi is the 
vector of baseline covariates (i.e., pretreatment measurements, before treatment is 
assigned) for which the i observations or units are likely to be similar. Thus, in a 
randomized experiment, every observation has the same probability of assignment to 
either t1 or t0 independently of x (strong ignorability of assignment assumption) and the 
average treatment effect is directly estimated as, 

τ = E(y1 ) – E(y0), 
where E means the expectation in the population. 
 
When an experimental study (randomized trial) cannot be conducted because of, for 
example, ethical issues (e.g., assignment of observations to life-threatening conditions), 
nonrandomized or observational studies provide the necessary data from which treatment 
effect inferences can be made. Because in these nonrandomized studies the treatment 
group (t1) and the control group (t0) can differ systematically in the baseline covariates 
due to selection bias, researchers can apply methods that ensure that selection bias is 
corrected; otherwise, biased estimates of the treatment effects might result. One of these 
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methods to handle the differences between treatment group and control group in an 
observational study is propensity score (PS) analysis. 
 
Rosenbaum and Rubin (1983) defined the propensity score as “the conditional probability 
of assignment to a particular treatment given a vector of observed covariates” x (p. 41). 
That is, the PS allows the conditional assignment of units to treatment and control groups 
given x. In practice, it is not possible for any observation or unit to receive both 
treatments; either yi1 or yi0 is observed and a unique response yit is expected (stable unit-
treatment value assumption; Rubin, 2005). The PS is an important application in 
observational studies because it adjusts for confounding variables which are a source for 
potential bias in treatment effect estimates.  
 
2.3 Multiple Imputation  
Multiple imputation (MI) creates m imputed data sets for an incomplete p-dimensional 
multivariate data. That is, missing values are replaced with a set of plausible values that 
represent a random sample and thus representing the uncertainty about the missing value. 
 

3. Method 
 
This study examines the efficacy of four multiple imputation techniques utilized to 
address missing data in propensity score analyses. Simulated data are used to empirically 
assess each method in terms of bias and variability in parameter estimates, Type I error 
rates, and statistical power. 
 
Data were generated using PROC IML in SAS 9.4 (SAS Institute, 2014) with values for 
explanatory variables being drawn from normal distributions. Several factors were 
manipulated: sample size (500, 1000), treatment effect magnitude (0, .05, .10, .15), 
correlation between covariates (0, .5), proportion of missing observations (.20, .40, .60), 
proportion of missing covariates (.20, .40, .60), the number of covariates (15, 30), and 
missing data mechanisms (MCAR, MAR, MNAR). The missing data treatments serve as 
a within group factor. In addition, the samples were analyzed before missing data were 
imposed to provide a reference condition for the evaluation of MI effectiveness. 
 

4. Results 
 
4.1 Missing Completely At Random (MCAR) 
 
4.1.1. Statistical bias 
As illustrated in Figure 1, although the mean biases for Cov Only (Avg), Cov PS (MI), 
and Cov PS (Avg) were not substantial, great variability existed in the bias distribution 
especially for the Cov Only (Avg) and Cov PS (Avg) approaches.  In addition, the Cov 
Only (Avg) and Cov PS (Avg) approaches provided underestimation of the treatment 
effect, while the Cov PS (MI) tended to slightly overestimate the treatment effect. Bias 
was relatively small for the Cov Only (MI) and listwise deletion as well as the complete 
data conditions, although for listwise deletion, there were cases in which the treatment 
effect was severely overestimated. The number of covariates and covariate 
intercorrelation had significant impact on the bias estimates (Figure 2). With a larger 
number of covariates and correlated covariates, the statistical bias increased. 
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Figure 1: Distributions of bias by method across all MCAR conditions 
 

 

 
Figure 2: Mean bias by number of covariates and covariate intercorrelation for MCAR 

 
4.1.2 RMSE 
Substantial variability in RMSE is evident for all missing data treatment approaches as 
well as for the samples before missingness was imposed. In comparing these 
distributions, the MI approach with covariates only produced only slightly larger RMSE 
values than those obtained with complete data, while the other three approaches to MI 
yielded notably larger RMSE values. The magnitude of RMSE varied as a function of the 
number of covariates and the correlation between the covariates.  
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4.1.3 Confidence interval coverage 
The overall distributions of 95% confidence interval (CI) coverage by missing data 
methods under MCAR are presented in Figure 3. The MI approach with covariates only 
surpassed the other MI methods in terms of CI coverage. For this outperforming method, 
there is no noticeable difference from the CI coverage under the complete data 
conditions. The listwise deletion and Cov PS (MI) also showed reasonable CI coverage 
around 95% except outlying cases. However, when the treatment effect was estimated 
with the average propensity scores, the CI coverage was notably below .95 with large 
variability.  
 

 
 
Figure 3: Distributions of CI coverage by Method across all MCAR conditions 
 
4.1.4 Confidence interval width 
The overall distributions of confidence interval width were not substantially different 
across missing data methods and very similar to that of the complete data. The major 
design factors related to the variability of CI width include the number of covariates, 
covariate intercorrelation, and the interaction between them.  
 
4.1.5 Type I error control 
The MI approach with covariates only, listwise deletion, and complete data evidenced 
Type I error rates that were adequately controlled, while the other three approaches 
yielded notably larger Type I error estimates (see Figure 4).  
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Figure 4: Distributions of Type I error rates by Method across all MCAR conditions 

 
4.1.6 Statistical power 
Because statistical power should only be considered after adequate Type I error control 
has been established, power was estimated only for complete data, listwise deletion, and 
MI with covariates only. The complete data condition evidenced the greatest power, but 
the MI treatment provided power that was nearly as large on average. The listwise 
deletion approach provided notably lower power.  
 

 
Figure 5: Distributions of power by Method across MCAR conditions 
 
4.2 Missing At Random (MAR) 
 
4.2.1 Statistical bias 
The results under MAR were generally comparable to those under MCAR in terms of 
statistical bias. With complete data, bias was small in all conditions. Among the five 
approaches for missing data treatment, the MI with covariates only and Listwise deletion 
produced relatively small bias values.  
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4.2.2 RMSE/CI coverage/ CI width 
The results of RMSE, CI coverage, and CI width under MAR were very similar to those 
under MCAR and are not repeated here. 
 
4.2.3 Type I Error Control 
The overall distributions of Type I error estimates for the MAR conditions are presented 
in Figure 6. In comparing these distributions, the MI approach with covariates only 
controlled Type I error rates nearly as well as the complete data conditions. Listwise 
deletion controlled Type I errors adequately, although it had slightly larger mean Type I 
error rate.  
 

 
 
Figure 6: Overall distributions of Type I error rates by Method across all MAR 
conditions 
 
The number of covariates and proportion of missing covariates (Figure 7) had significant 
impact on the Type I error control of most approaches. In general, Type I error rates 
increased with more missing data and with more covariates. Across levels of these 
factors, however, the use of MI with the covariates only provided the best Type I error 
control and listwise deletion of cases provided adequate control unless the number of 
covariates was large. 
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Figure 7: Mean Type I error rate by number of covariates and covariate intercorrelation 
under MAR 
 
4.2.4 Statistical power 
The overall distributions of statistical power for the three methods that provided the best 
Type I error control for the MAR conditions are evaluated. Power varied across methods 
but as expected, the complete data method had the higher overall mean power. The power 
for the MI approach with the covariates provided only slightly lower power, but the 
power of the listwise deletion approach was notably lower. 
 

 
 
Figure 8: Distributions of power estimates across MAR conditions 
 
4.3 Missing Not At Random (MNAR) 
 
4.3.1 Statistical bias 
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As illustrated in Figure 9, all of the imputation methods evidenced substantial positive 
bias when the data were MNAR, with the greatest bias seen when both the covariates and 
the propensity score were imputed. In contrast, the listwise deletion approach showed an 
average bias near zero, although the range of bias values (both overestimating and 
underestimating the effect) was substantial. 
 

 
 
Figure 9: Distributions of bias by method across all MNAR conditions 
 
Both the proportion of missing covariates and the correlation between covariates were 
substantially related to the resulting bias in the estimate of the treatment effect realized by 
the imputation approaches (Figure 10). As expected, the bias tended to increase with 
greater proportions of missing data and with correlated covariates. 
 

 
 
Figure 10: Mean bias by proportion of missing covariates and covariate intercorrelation 
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for MNAR 
 
4.3.2 RMSE 
The results suggested that RMSE estimates for listwise deletion were comparable to those 
with complete data. MI with covariates only showed larger RMSE, but this approach 
provided smaller RMSE values than the other imputation strategies.  
 
4.3.3 Confidence interval coverage 
The average confidence interval coverage across all conditions was unacceptably low 
with considerable variability when multiple imputation was implemented under MNAR 
regardless of imputation models as shown in Figure 11. On the other hand, for listwise 
deletion the 95% CI coverage was about 95%, which was very comparable to that of the 
complete data conditions except for slightly larger variability.  
 

 

Figure 11: Distributions of CI coverage by Method across all MNAR Conditions 

 
4.3.4 Confidence interval width 
Similar to the results of MCAR and MAR, generally there was no salient difference in the 
CI width across missing data methods including the complete data conditions. However, 
the dispersion of the CI width across conditions was notably larger for the listwise 
deletion possibly due to the loss of observations and subsequently larger standard errors.  
 
4.3.5 Type I error control and power 
None of the imputation methods provided adequate Type I error control in the majority of 
conditions. However, the listwise deletion approach controlled Type I error probabilities 
nearly as well as the complete data conditions. It should be noted that (as expected) the 
statistical power of listwise deletion was notably smaller than that obtained for the 
complete data conditions and the power differential became greater as the effect size 
increased. 
 

5. Conclusions 
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The results of this study will be of practical significance to researchers working with 
observational data. In such situations missing data are a frequent occurrence and the 
results of this study can inform practice by determining which methods perform best. The 
analysis of differential effectiveness by the simulation design factors will help to assess 
the sensitivity of results under research design choices and missing data mechanisms. 
 
Overall, the results of this study indicate the importance of selecting a missing data 
treatment with care. For imputation, the use of MI with the covariates only, followed by a 
separate estimate of the treatment effect within each imputed data set, is clearly the 
preferable strategy. This method provided the smallest bias and the best CI coverage for 
MCAR and MAR missing data mechanisms. With the MNAR conditions, however, none 
of the imputation methods were effective. For these conditions, the listwise deletion 
approach provided notably better estimates than any of the imputation methods. 
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