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Abstract 
The median test is often used to compare two or more distributions that have similar but asymmetric 
shapes and is typically used as an alternative, nonparametric approach to other tests of location such as 
the t-test. In the case of zero-inflated distributions, it is of interest to compare the distributions with 
respect to their proportions of observed zero values coupled with the comparison of the medians for their 
observed non-zero values. We present an application of the median test to simultaneously test the equality 
of the proportions of zeros as well as the medians among several groups. Results of simulation studies are 
reported to summarize some characteristics of the test.  
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1. Introduction 

Suppose we are interested in comparing two or more independent samples from distributions that are 
asymmetric or have some unusual form. A useful comparison is often among the medians as this a 
nonparametric estimate of the location of the distribution. In this case, Mood’s median test [1] is a 
common choice and, as a special case of Pearson’s chi-square test, it is easy to explain and set-up. 
However, if the data have an excess of zeros (i.e., a zero-inflated distribution), the standard median test 
may not be the most appropriate tool to compare the distributions because it may ignore differences in the 
proportions of zeros that are less than the combined sample median. Instead of testing the equality of 
medians of the entire sample, we would like to split the hypothesis into two tests: one for the equality of 
the proportions of zeros and one for the equality of medians of the non-zero values. Typically, 
observations with zero-values are significant is some way (such as observations below a detection limit) 
and differences in the proportions of zeros between groups may be a distinguishing characteristic. 
Although the standard median test (not taking into account the proportion of zeros) may be more powerful 
in certain situations due to larger cell sizes, there is no component to test the equality of proportions of 
zeros, just the overall sample median.  
 
Zero-inflated distributions can be modelled as a mixture of a point distribution (not necessarily at zero) 
and some other continuous or discrete distribution. There are many situations in which zero-inflated 
distributions may occur. One common cause is lower detection limits in measurement devices or 
laboratory procedures. If a value is less than the detectable limit, the observation is given a set value, 
thereby creating a “mass” of some particular value. Variables such as age can be collapsed or combined 
for similar observations as this may simplify analyses. For instance, all ages less (or greater) than a 
certain value may be given the same value. Count data modelled with zero-inflated Poisson models are 
perhaps most familiar given their prevalence. Although fairly common, especially in biomedical 
applications, there are very few tests for homogeneity of zero-inflated distributions, particularly 
nonparametric tests.  
 
The primary focus of zero-inflated data has been for count data with excess zeros to be modelled as either 
zero-inflated Poisson [2, 3] or negative binomial distributions [4]. Some tests for homogeneity of zero-
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inflated Poisson data include those described by Tse et al. [5] and Bedrick et al. [6]. Lachenbruch [7, 8] 
proposed two-part tests – one for the equality of the proportion of zeros as well as equality of a 
continuous distribution with a z-test, Kolmogorov-Smirnov test, or Wilcoxon test. The median test can be 
easily modified to test for equality of medians of zero-inflated distributions for either continuous or 
discrete data, and will be the focus of this paper.   

 

2. Test Procedure 
 

2.1 The Median Test 
Suppose random samples are available from each of K populations and we wish to test the null hypothesis 
that some arbitrary quantile, Q, of the populations are equal; that is, the null hypothesis H0: Q1 = Q2 = … = 
QK is tested against the alternative, H1: one or more inequalities exist such that Qi ≠ Qj for at least one i ≠ 
j where i, j = 1, 2, …, K. We allow Q to be any percentile, although the 50th (the median) is most 
commonly used; we use the term “median test” to include any percentile. The following procedure is a 
generalization of the median test, which is a special, single- percentile case of the general percentile test 
described by Johnson et al. [9]: 
 

(1)  Combine the K samples and calculate the combined sample percentile estimate of Q. Denote the 
combined sample percentile as q. 

(2) For each of the K samples, sort the respective samples’ observations into two bins or columns. 
Observations that are less than or equal to q are placed in the first bin; otherwise, the second bin.  

(3) Construct a K × 2 contingency table where each row contains the sorted observations for one of 
the K populations, as in Step 2.  

(4) Perform the chi-square test on the contingency table with degrees of freedom equal to (K – 1). 
 
2.2 Median Test with Zero-Inflated Distributions 
A zero-inflated distribution can be written as a mixture of two distributions: D = πg + (1 − π) f, where π is 
the probability of an observation being in the point distribution, g, and f is the non-constant distribution. 
Denote the distribution of the ith population as Di = πi g + (1− πi) fi, i = 1, …, K and H0: D1 = D2 = ⋯ = 
DK. It is assumed that g is the same fixed constant in all populations because it is a parameter of a specific 
process that produces D, such as limits on a measurement device. In order for the null hypothesis (all Di 
are identical; i = 1, 2, …, K) to be false, at least one inequality exists such that Di ≠ Dj for at least one i ≠ j 
where i, j = 1, 2, …, K.  Thus, at least one of πi or fi must be unequal. Note that D could also contain two 
point distributions, one at the minimum value and one at the maximum in the domain. In this case, Di = 
πi1gl + πi2 gu + (1− πi1 – πi2) fi, where gl is the point distribution at the minimum value and gu is the point 
distribution at the maximum value, with probability πi1 and πi2, respectively.  
 
The median test outlined in the previous section can be modified to simultaneously test the equality of 
proportions of zeros in all populations and the equality of the medians (or some other percentile) in all 
populations. Let πi (i = 1, …, K) be the proportion of zeros in the ith population for a random variable X. 
For each sample, Xi, P[Xi ≤ 0] = πi and the value of any percentile less than πi is 0. Note that the median is 
simply an estimate of a percentile and 0 could be considered just another percentile estimate – the 
estimate of the πith percentile. Since any percentile less than πi is equal to 0, we can select an arbitrary 
number such that each population’s estimate is 0. However, because we use the combined sample 
estimates to create bins for the contingency table, we must select a percentile less than the combined 
sample proportion of zeros, denoted as 𝜋̅.  
 
Essentially, the purpose is to create an additional column in the contingency table where all values equal 
to 0 are placed. First, calculate the combined sample estimate of q as in the standard median test. Then, 
further sort those values that are less than or equal to q into another column. This creates a K × 3 
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contingency table where the first column is for observations that are equal to 0 (the 𝜋̅th combined sample 
percentile estimate), the second column for observations greater than 0 and less than or equal to q (the 
combined sample estimate of Qth percentile), and the third column for observations greater than q. As 
with the median test, we perform a chi-square test on the contingency table with degrees of freedom equal 
to 2(K – 1). Table 1 is an example of the resulting contingency table.  
  
 

Table 1: Contingency table for testing equality of the medians with bin for zeros. 
 

Sample Bin 1 
(X = 0) 

Bin 2 
(0 < X ≤ q ) 

Bin 3 
(X > q) Total 

1 14 12 78 104 
2 29 21 41 91 
3 41 28 26 95 

Total 84 61 145 290 
 
 
For the data in Table 1, we calculate a χ2 value of 46.5 with four degrees of freedom, which indicates that 
at least one of the proportions of zeros or the medians are unequal among at least two of the three groups.  
We can also see from Table 1 that, depending on the proportions of zeros in the samples, the median may 
result in small cell counts in the contingency table. If 𝜋̅ is very close to 0.5, the median may not be a wise 
choice for Q because the power of the chi-square test depends on the size of the particular cells. Care 
should be taken when choosing Q to ensure a minimum expected value for each cell within each column.  
 
We could perform a similar procedure for data with a point distribution at the maximum value as well. 
Instead of using the 𝜋̅th combined sample percentile estimate for sorting observations, we use the (1− 
𝜋̅)th combined sample estimate to sort observations that are greater than q. Let u denote the value of the 
point distribution at the maximum of the domain which is equal to the (1− 𝜋̅)th combined sample 
percentile estimate. We would sort the data into three columns (each group by row): (1) X < q, (2) q ≤ X < 
u, and (3) X  ≥ u. We can extend this further for data with point distributions at both the minimum and the 
maximum of the domain. Let l (u) denote the 𝜋̅𝑙th (𝜋̅𝑢th) combined sample percentile estimate 
corresponding to the minimum (maximum) value of the domain. We sort the data into four columns (each 
group by row): (1) X ≤ l, (2) l < X ≤ q, (3) q < X < u, and (4) X ≥ u. Then, perform the chi-square test with 
3(K – 1) degrees of freedom.  
  
 

3. Simulation Studies 

 
The asymptotic properties of the test with zero-inflated distributions were investigated for skewed 
continuous data generated from gamma distributions. We used gamma distributions as a convenient 
method to generate skewed data, although the procedure is nonparametric. The proportion of zeros, 
sample size and parameters of the non-zero gamma distribution were varied and results are presented in 
Table 2. The subscripts for the parameters in the tables refer to the respective samples with sample ‘2’ 
having constant values for the non-zero distribution. For the continuous case, sample ‘2’ has shape 
parameter that is held at α2 = 2, and the scale parameter held at β2 = 2. All simulations were conducted 
with R 3.1.2 using 10,000 replicate samples.  

 

The results in Table 2 give some insight into the behavior of the test in various situations. Empirical type 
I error (first column of power results, boldface results) is adequate in samples of size 50. The power of the 
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test is determined by the interaction between the difference in the true ratio between rows in the 
contingency table (determined by the difference in the distributions and probability of zeros) and the 
relative proportion of each column, as well as sample size. In general, power is maximized when the 
relative proportion of column corresponds with the difference in the row profiles.  
 

Table 2: Power simulations for testing the equality of medians with zero-inflated gamma distributions 
(empirical estimates of type 1 error in boldface). 

 
Sample 

Size 
(n = m) 

π1 π2 

Gamma Distribution Parameters 
α1 = 2 
β1 = 2 

α1 = 2.2 
β1 = 2.2 

α1 = 2.3 
β1 = 2.3 

α1 = 2.4 
β1 = 2.4 

50 0.1 
0.1 0.0533 0.1363 0.2667 0.421 
0.2 0.2122 0.3301 0.4276 0.5684 
0.3 0.6119 0.6812 0.7432 0.8211 

100 0.1 
0.1 0.0532 0.2499 0.4937 0.7418 
0.2 0.4129 0.5893 0.7520 0.8824 
0.3 0.9051 0.9487 0.9685 0.9867 

200 0.1 
0.1 0.0502 0.4453 0.8041 0.9620 
0.2 0.7152 0.8877 0.9671 0.9943 
0.3 0.9977 0.9996 1.0000 1.000 

50 0.2 
0.2 0.0489 0.1233 0.2176 0.3522 
0.3 0.1529 0.2398 0.3240 0.4528 
0.4 0.4896 0.5472 0.6217 0.6887 

100 0.2 
0.2 0.0496 0.2096 0.4254 0.6581 
0.3 0.2876 0.4514 0.6157 0.7738 
0.4 0.8037 0.8608 0.9135 0.9516 

200 0.2 
0.2 0.0488 0.3910 0.7181 0.9283 
0.3 0.5357 0.7500 0.9037 0.9757 
0.4 0.9865 0.9917 0.9978 0.9997 

 
 
For example, for any sample size and π1 = π2, α1 ≠ α2, and β1 ≠ β2, power is greater when the overall 
proportion of zeros is lower. In these cases, the first bin which contains all the zero observations has equal 
probability for both samples but the medians of the remaining observations are unequal. Thus scenarios 
with greater counts in the second and third columns (corresponding to unequal medians) have the greatest 
power. For example, simulations where π1 = π2 = 0.1 always have greater power than π1 = π2 = 0.2. 
Similarly, for any sample size and π1 = π2/2, α1 = α2, and β1 = β2 (the ratio of zeros is constant as well as 
non-zero distribution), power is greater when the overall proportion of zeros is greater. In cases where π1 
≠ π2, α1 ≠ α2, and β1 ≠ β2, the relationship remains but is obscured by differences in the medians of the 
non-zero distributions. If we examine situations where the ratio of π1 and π2 are equal (π1 = 1/2 π2) with 
unequal non-zero medians, we still observe greater power with greater 𝜋̅ for the parameters in Table 2.  
 

There are situations where the probability of zero is greater than 0.5, making the modified median test (as 
defined in Section 2) obsolete. One solution is to sort only the observations greater than zero (the median 
test on non-zero values) and append this K × 2 table with the counts of the number of zeros, making a K × 
3 table. (This approach could be used for data with 𝜋̅ < 0.5; however, the results are similar to the 
procedure in Section 2 and neither approach is uniformly better in all scenarios). An alternative solution is 
to select Q > 𝜋̅. Table 3 shows results of comparing gamma distributions with a high proportion of zeros 
with Q = 0.85. 
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Table 3: Power simulations for testing the equality of Q = 0.85 with zero-inflated gamma distributions 
(empirical estimates of type I error in boldface). 

 

Sample 
Size 

(n = m) 
π1 π2 

Gamma Distribution Parameters 
α1 = 2 
β1 = 2 

α1 = 2.2 
β1 = 2.2 

α1 = 2.3 
β1 = 2.3 

α1 = 2.4 
β1 = 2.4 

50 0.5 
0.5 0.0515 0.1014 0.1652 0.2547 
0.6 0.1323 0.1835 0.2656 0.3331 
0.7 0.4286 0.4826 0.5260 0.5891 

100 0.5 
0.5 0.0507 0.1450 0.2716 0.4412 
0.6 0.2283 0.3181 0.4298 0.5706 
0.7 0.7492 0.7882 0.8378 0.8784 

200 0.5 
0.5 0.0502 0.2614 0.5219 0.7706 
0.6 0.4225 0.6007 0.7537 0.8894 
0.7 0.9685 0.9818 0.9885 0.9960 

 

 

4. Concluding Remarks 

 
We present a novel extension of the median test to compare zero-inflated distributions. By treating the 
proportions of zeros as another percentile estimate along with the median, we can simultaneously test the 
equality of the proportion of zeros as well as the equality of medians (or another percentile) between two 
or more groups. Zero-inflated distributions are very common yet there are few nonparametric procedures 
to test for homogeneity between populations of interest. The proposed test addresses this problem and 
provides a simple, easy to use procedure for testing any continuous or discrete set of data for any number 
of samples. Also, the test allows for comparisons of point distributions of any value at the minimum 
and/or maximum value in the domain. Thus it is not limited to point distributions at zero or non-negative 
values. 
 
The chi-square test in itself could be considered a limitation as it is generally outperformed by other tests 
that do not require such large sample sizes. The choice of percentiles within the profile is limited by the 
mechanics of the chi-square test (such as minimum expected values) although percentiles other than the 
median may be chosen to avoid this. Power of the chi-square test is a function of the relative sizes of the 
cells and certain combinations of percentiles may reduce the power based on this alone. Further research 
could be done to investigate the severity of limitations of large-sample restrictions, as well as the intricate 
relationship between the underlying distributions, the choice of the percentile, and the power of the test. 
The exact power of the test could be explored in further research.  
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