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Abstract 
 
A 1:n matched case-control design, in which each case is matched to n controls is 
commonly used to evaluate the association between exposure to a risk factor and a 
disease. The odds ratio (O.R.) is typically used to quantify such an association. 
Difficulties in estimating the true O.R. arise when the exposure status is unknown for at 
least one individual in a matched case-control grouping. In the case where the exposure 
status is known for all individuals in the group, the true O.R. can be estimated using 
conditional logistic regression, among other methods. In the case where the case-control 
data are independent, the O.R. is estimated using the cross-product ratio from the 
exposure-by-disease contingency table. In this presentation we suggest a simple method 
for estimating the O.R. when the sample consists of a combination of matched and 
unmatched observations, resulting from incomplete 1:n matching. This method uses a 
weighted average of traditional methods for estimating the O.R. with matched and 
unmatched data. We illustrate our method with a hypothetical example. 
 
Key Words: matching, conditional logistic regression, cross-product ratio, simulation, 
bias, mean squared error 
  

1. Introduction 
 

As opposed to an experimental study (also known as an intervention study), an 
observational study is a type of research design in which the investigators observe or 
measure specific characteristics without attempting to intervene in the lives of the study 
subjects in any way. Observational studies are commonly found in clinical medicine and 
public health, where researchers design and conduct these studies in an attempt to unravel 
the etiology of and identify risk factors for human diseases. There are three basic types of 
observational study designs: cohort, case-control, and cross-sectional. All three designs 
can be used to determine whether there is an association between a factor or a 
characteristic and a disease. In a case-control study, two groups of individuals, those with 
the disease (cases), and those without (controls), are identified and information is 
collected on the respective exposure status of both groups. A cohort study also begins 
with identifying two groups of individuals, those exposed to a certain factor (exposed 
group), and those not exposed (non-exposed group). The investigator then follows up 
with both groups and compares the incidence of disease in the two groups. In a cross-
sectional study, an investigator collects information on exposure and disease status 
simultaneously for each study subject.  

To determine whether the disease is associated with the exposure of interest in an 
observational study, the odds ratio (OR) is often used as the measures of association. The 
odds of an event is defined as the ratio of the probability that the event will occur divided 
by the probability that the event will not occur. The OR is defined as the ratio of the odds 
that the cases were exposed to the odds that the controls were exposed. For rare diseases, 
the odds ratio closely approximates the relative risk (Gordis 2009).  
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Despite various advantages of case-control studies1, one major concern when 
conducting a case-control study is that cases and controls may differ in characteristics or 
exposures other than the targeted exposure (Gordis 2009, Schlesselman 1982). To deal 
with this problem, cases and controls are sometimes matched on variables known to be 
risk factors for the disease (e.g., age, sex, race, socioeconomic status, occupation, blood 
type, hospital of admission, neighborhood). One or more controls are paired with each 
case based on the similarity of the matched variables.  

 
Table 1. Canonical Form of 2x2 Table for an Unmatched Case-Control Study 

 Cases Controls Total
Exposure  

Yes    
No    

Total    
 
In an unmatched case-control study, the numbers of individuals with their 

respective disease and exposure status are listed in a 2 ×2 table, as seen in Table 1. The 
estimated odds of a case having been exposed is the estimated probability of a case 
having been exposed, a/n1, divided by the probability of a case having never been 
exposed, c/n1.  After taking the ratio of the two probabilities, the estimated odds of a case 
having been exposed is a/c. Similarly, estimated odds of a case having been exposed is 
the estimated probability of a case having been exposed, b/n2, divided by the probability 
of a case having never been exposed, d/n2.  After taking the ratio of the two probabilities, 
the estimated odds of a case having been exposed is b/d.The estimated odds ratio is 

calculated as follows, 
a / c

ad / bc.
b / d

 In a matched case-control study with one control 

per case, four types of case-control pairs with dichotomous exposure are possible: 
concordant pairs (pairs in which both the case and the control were exposed, pairs in 
which neither the case nor the control were exposed), and discordant pairs (pairs in which 
the case was exposed but the control was not, pairs in which the control was exposed but 
the case was not). In the canonical 2×2 table for a matched case-control study, the 
number in each cell no longer represents the number of individuals, but the number of 
matched pairs, as seen in Table 2. 

   
Table 2. Canonical Form of 2x2Table for a Matched Case-Control Study 

Control   

  Total 

   Case

  
Total  

 
The concordant pairs (A and D, where cases and controls are either both exposed 

or both unexposed) do not contribute to how cases and controls differ regarding exposure 
history, and are ignored during the calculation of the estimated OR. Therefore, the 
estimated OR for matched pairs is the ratio of the discordant pairs (the ratio of the 

                                                 
1  Suitable for rare diseases or those with long latency periods, relatively quick to conduct, 
relatively inexpensive, requires comparatively fewer subjects, existing records can sometimes be 
used, no risk to subjects, and allows for study of multiple risk factors for a disease. 
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number of pairs where the case was exposed and the control was not, to the number of 
pairs where the control was exposed and the case was not), i.e., B/C in Table 2. 

Sometimes due to the small number of cases available (e.g., when the disease is 
rare), multiple controls may be matched to each case to increase the power of the study 
(Kim et al. 2011, Pike et al. 1997).  In general, as the ratio of controls to cases increases 
beyond 4:1, the additional gain in statistical power for the test of the odds ratio may not 
be worth the extra time and effort (Miettinen 1969).  

When each case has exactly one matched control (1:1 matching), the maximum 
likelihood estimate of the odds ratio is the ratio of discordant pairs, B/C (Cox 1958, 
Kraus 1960, McNemar 1947).  

When each case has two matched controls (1:2 matching), Taube and Hedman 
(1969) derived a minimum chi-square estimate of the odds ratio and a chi-square test of 
significance for matched studies with multiple controls per case. Miettinen (1970) also 
gave an estimate based on conditional maximum likelihood, along with alternative 
procedures for calculating exact and approximate tests of significance and confidence 
intervals.  

When three or more controls are matched to each case, the method proposed by 
Mantel and Haenszel(1959) can be used. Mantel and Haenszel proposed a stratification-
based method for estimating the odds ratio, which treats each matched pair in a 1:1 
design as a stratum and computes the odds ratio for each matched pair before calculating 
a weighted average of the individual odds ratio. The Mantel-Haenszel method can easily 
be extended to 1:n matching. Conditional logistic regression can also be used to estimate 
the odds ratio for any degree of matching. These methods are described in more detail in 
Section 2. 

The aforementioned methods operate under the assumption of complete data; that 
is, exposure data are available for each case and all controls matched to it. However, 
during data collection, for various reasons, information on exposure is sometimes lost or 
unavailable, which creates difficulties for statisticians and researchers when estimating 
the desired odds ratio. Examples of 1:1 matched studies in which such incomplete data 
were present include London et al. (1991) and Pike et al. (1997). London et al. (1991) 
ignored the matching and treated all cases and controls as if they were independent. Pike 
et al. (1997) ignored the incomplete pairs. For the general 1:1 matched setting, Breslow 
and Day (1980, p.113) state that “common practice is to eliminate from analyses 
including a certain variable all individuals for whom information on that variable is 
missing. In a matched pair design, the individual matched to an eliminated individual will 
also be eliminated.” If “variable” in this quotation is taken to mean exposure, then 
Breslow and Day are recommending that one should remove all incomplete pairs from 
the analysis. 

Several methods have been proposed and compared for the 1:1 incomplete 
matching situation, (e.g., Haber and Chen 1991, Huberman and Langholz 1999a, b, 
Miller and Looney 2012); however, only Li et al. (2004) have compared the performance 
of methods for estimating the OR in the 1:n matching situation when the exposure data 
for the case and the matched controls are incomplete, and they considered only 1:4 
matching under very limited simulation conditions. Therefore, it is of great interest to 
examine the robustness of previously proposed methods under various missing exposure 
data scenarios. In this study, we are concerned only with whether or not exposure data 
were available for all cases and each control matched to them. Possible “missingness” of 
the matching criteria themselves (age, race, sex, etc.) is of no interest to us. We assume 
that all possible matching was successfully carried out. 

The methods designed to handle incomplete 1:1 matched data fall into one of the 
following categories: (1) disregard the incomplete pairs and analyze the remaining 
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complete pairs; (2) disregard the complete pairs and analyze the incomplete pairs as 
independent data; (3) ignore the matching, pretend all cases and controls are independent 
and perform the “unmatched” analysis; (4) use the missing indicator (MI) method 
(Huberman and Langholz 1999a), which makes use of all data but is computationally 
difficult; and (5) the Miller and Looney (ML) method (2012). The choice of method (1) 
or (2) is dependent on which subset is larger, complete pairs or incomplete pairs. Only 
the MI and ML methods make use of all available data and take into account the 
dependence among the completely matched pairs. An advantage of discarding incomplete 
pairs is its ease of calculation. When the incomplete pairs are ignored, methods for 
analyzing the completely matched pairs are readily available in commonly used statistical 
software programs and relatively easy to implement. However, for most case-control 
studies, the cases are rare events and ignoring the incomplete pairs is counterproductive 
because of the reduction in sample size. 

Conditional logistic regression can be used to test for conditional independence 
between case status and exposure status of the matched pairs, provided all of the pairs are 
complete. The estimate obtained from the conditional logistic model maximizes the 
likelihood function and is the natural log of the odds ratio. The logistic regression model 
was initially intended for use with prospective studies; however, case-control studies can 
also be analyzed using similar models, if the likelihood function in the retrospective case-
control setting is the same as that for a prospective study, differing only by a constant 
term for the linear predictor (Moreno et al. 1996). For a detailed discussion, see Chapter 3. 
An advantage of using conditional logistic regression is that statistical software is readily 
available to perform the required maximum likelihood estimation (PROC LOGISTIC in 
SAS® and the survival package in R). In a 1:1 matched study with complete data, 
conditional logistic regression can be viewed as a special case of unconditional logistic 
regression (Agresti 2007, pp.249-250), and provides results that are equivalent to the 
Mantel-Haenszel estimator. Another advantage of using any type of logistic regression 
model is that the estimated regression coefficients can be used to estimate the log odds 
ratio, and such estimates can be readily adjusted for the effects of confounding variables. 

Maximum likelihood methods have also been used to directly estimate the odds 
ratio for incompletely matched case-control studies (Campbell 1984, Haber and Chen 
1991, Jewell 1984). However, several of the maximum likelihood methods require use of 
the Estimation-Maximization algorithm and are computationally intensive when 
evaluating the likelihood function (Campbell, 1984; Haber and Chen, 1991).  

The missing indicator method is an extension of traditional conditional logistic 
regression and introduces a missing indicator explanatory variable, which takes on the 
value 1 when the matched pair is incomplete and the value 0 when the matched pair is 
complete (Huberman and Langholz 1999a, Li, Song, and Gray 2004). Note that, for our 
purpose, a case-control pair is termed “complete” if the exposure status is known for both 
the case and the control; the pair is “incomplete” if the exposure status is unknown for 
either the case or the control. The missing indicator method was found to produce slightly 
greater bias and lower confidence interval coverage probability than conditional logistic 
regression when the exposure status of the matched cases and controls was assumed to be 
independent (Li, Song, and Gray, 2004). One notable disadvantage of the missing 
indicator method is its computational intensity (Miller and Looney 2012). Furthermore, 
when the missing control exposure values are case-exposure-dependent (e.g., a control 
matched to an exposed case is more likely to be exposed), the missing indicator method 
cannot appropriately handle the missing exposure values in the estimation of the odds 
ratio (Li, Song, and Gray, 2004). 

The Miller-Looney (ML) method is calculated using a simple linear combination 
of the odds ratio estimate based on the complete pairs and the odds ratio estimate based 

JSM2015 - Section on Statistics in Epidemiology

1535



on the incomplete pairs. It was shown to have superior performance when compared with 
several previously proposed methods for dealing with incomplete 1:1 matched data 
(Miller and Looney 2012). It is described in more detail in Section 2.6. In this 
dissertation, the ML method will be extended to the 1:n matching situation and its 
performance will be evaluated under several incomplete data scenarios. 

The purpose of this study is to compare and contrast several of the above-
mentioned methods in 1:n matched case-control studies with incomplete matched data 
using a large-scale simulation study. These results will enable investigators to choose the 
most appropriate statistical method(s) when analyzing data from such case-control 
studies. 

2. Methods 
2.1 Inference for the Odds Ratio Based on Unmatched Data 

 
 Let ψ denote the true odds ratio. Let a,b,c,d denote the cell entries in Table 1.  
The sampling distribution of the usual estimate of the odds ratio is highly skewed, unless 
the sample size is extremely large. For example, when ψ = 1, ̂  cannot be much smaller 

than ψ (since 0 ˆ ), but it could be much larger with substantial probability. To deal 
with the skewness, statistical inference for the odds ratio often uses its natural logarithm, 
̂ln .The sample log odds ratio, ̂ln , has a less skewed sampling distribution that is 

approximately normal. Its approximating normal distribution has a mean of ln ψ and an 

approximate standard error of
1 1 1 1

   SE
a b c d

 (Woolf 1955). It is obvious that as 

the cell counts increase, the SE decreases. 
 Because the sampling distribution for ̂ln  is closer to normality than that of 

̂ , it is preferable to construct a confidence interval for ln ψ and then back-transform to 
obtain confidence limits for ψ. A large-sample confidence interval for  ln ψ  is given by 

2  /
ˆln z ( SE ),where zα/2 denotes the upper α-percentage point of the standard normal. 

The confidence interval for  ψ  is consequently  2 2   / /ˆ ˆln z ( SE ) ln z ( SE )e ,e .   

 If either b or c is equal to zero, the sample odds ratio ad/bc is undefined. If either 
a or d is zero, the sample odds ratio is zero. In any of these situations, we will use the 

“slightly amended” estimator
  
  

0 5 0 5

0 5 0 5


 


 
a . d .

ˆ ,
b . c .

 in which ½ is added to each cell 

count (Agresti 2007, pp.31-32). Inference for  ψ  is then performed in the usual way using 

cell entries of 
1 1 1 1

2 2 2 2
   a ,b ,c ,d .  We will use the amended estimator any time any 

of the cell counts are zero. 
 

2.2 Mantel-Haenszel Method 
 

 Mantel and Haenszel (1959) described a stratification-based method which 
estimates a summary odds ratio from a series of 2x2 tables. Suppose that cases and 
controls are stratified based on one or more variables into k  subgroups or strata. Let the 
observation in the i'th stratum be written as in Table 3.  
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Table 3. Exposure Status Among Cases and Controls Using Mantel-Haenszel 
Method in the ith Stratum 

 
 Cases Controls Total
Exposure  
Yes( )    

No( )    
Total    

 
The Mantel-Haenszel (M-H) estimator of the odds ratio, adjusted for the effect of the 

stratification variable, is calculated as 1

1

 








k

i i i
i

kmh

i i i
i

a d / n
ˆ .

b c / n
 An approximate test of the 

hypothesis of no association ( 0: 1 H ) can be carried out as follows. For the i'th 

subgroup, the mean and variance of ai under H0 is given by   1 1 i i
i

i

n m
E a

n
and 

   
1 2 1 2

2 1



i i i i

i

i i

n n m m
V a .

n n
 

The M-H test of 0: 1 H  against the two-sided alternative 1: 1 H is carried out using 

the test statistic

2

2

1
| ( ) |

2 .
( )



    
 


i i

mh

i

a E a

V a
The

1

2
correction for continuity is 

introduced so that the p-value based on 2mh  more closely approximates the value based on 

the exact conditional test (Li, Simon, and Gart 1979). The statistic 2mh has an approximate 
chi-square distribution with one degree of freedom under H0. For a one-sided test, the 

approximate unit normal deviate 2  mhz  may be used.   

 Miettinen (1974, 1976) proposed a test-based method for obtaining approximate 
confidence limits for the true odds ratio using the M-H method. An approximate 100(1-

α)% confidence interval for ψ is given by /2

2
ˆexp 1 ln .

ˆ
 


  
  
    mh

mh

z
 

 The M-H estimate ̂ mh  can be determined as a weighted average of the stratum-
specific odds ratios, assuming that none of the bi  or ci equals zero. In the i'th stratum, the 

odds ratio is estimated as  i
ˆ ad / bc. Using the weights given by , i i

i

i

b c
w

n
̂ mh can also 

be written as
ˆ

ˆ .


  


i i

mh

i

w

w
 Since within each subgroup, the ranges of the stratification 

variables are restricted by design, cases and controls do not differ by very much on the 
stratification variables. Therefore,  i

ˆ  is relatively free from potential confounding bias. 

As a weighted average, ̂ mh  is also relatively free of confounding bias. 
 

2.3 1:n Matched M-H Method 
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 Let nj(+) denote the number of matched sets where the case is exposed and 
exactly  of the controls are exposed. Let  nj(-) denote the number of matched sets where 
the case is not exposed and exactly j of the controls are exposed. By extending the 
method used for finding the M-H estimate with two matched controls per case, the 

estimate with c matched controls per case is given by 02

0

( ) ( )
ˆ

( )
 



 







mh

c

j
j

c

j
j

c j n

jn
(Miettinen 

1970). Let 1( ) ( )   j j jm n n denote the number of completely matched sets with 

exactly j exposed persons, where n-1(+) ≡ 0. Then the test statistic based on 2̂
mh

can be 

expressed as follows (Pike and Morrow 1970): 

2

1 2
2

3

1
| |

2
,

   
 mh

T T

T
where 

1

1
0

( ),




   
c

i j
j

T a n 2
0

( ) ,
1

 
 

c
j

i
j

jm
T E a

c
 and  

 23
0

( 1 )
( ) .

1

 
 


 

c
j

i
j

j c j m
T V a

c
 

The test statistic 2mh  is approximately distributed as chi-square with one degree of 

freedom under 0: 1 H . An approximate 100(1-α)% confidence interval for  ψ  is given 

by /2

2
ˆexp 1 ln .

ˆ
 


  
  
    mh

mh

z
 

 
2.4 Conditional Logistic Regression 

 
In the 1:1 matched setting, suppose there are q matched pairs, 1,2,..., ,h q and 

hi  is the probability of the i'th subject in the h'th pair with the event (i = 1, 2). Suppose 

that hiz  represents the set of explanatory variables for the i'th subject in the h'th matched 
pair. In traditional conditional logistic regression, multiple explanatory variables may be 
present (e.g., the exposure variable plus any confounders). However, for the purpose of 
this dissertation, we only consider one explanatory variable, i.e., exposure status. 
 The likelihood for the vector of explanatory variables having values h1z  given 

that subject h1 is the case (e) and having values 2hz  given that subject h2 is the control 

 e  is 2Pr( | ) Pr( | ).e eh1 hz z   

The sum of this likelihood 2Pr( | ) Pr( | )e eh1 hz z  and that for its counterpart, the 

likelihood for the vector of explanatory variables having values h1z  given the control and 

being 2hz given the case, is given by 2 2Pr( | ) Pr( | ) Pr( | ) Pr( | )e e e eh1 h h1 hz z z z  and 
therefore the conditional likelihood for a particular matched pair having the observed 
pairing of explanatory variables h1z  with the case e  and the explanatory variables 

2hz with the control e  is 2

2 2

Pr( | ) Pr( | )
.

Pr( | ) Pr( | ) Pr( | ) Pr( | )
e e

e e e e
h1 h

h1 h h1 h

z z

z z z z
. 

Applying Bayes’ Theorem to each of the six terms in the above expression, the 

conditional likelihood becomes 2

2 2

Pr( | ) Pr( | )
.

Pr( | ) Pr( | ) Pr( | ) Pr( | )
e e

e e e e
h1 h

h1 h h1 h

z z

z z z z
. 
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 If we assume a logistic model for hi , the probability of the exposure status of the 
i'th subject in the h'th matched pair being either e or e , then appropriate substitutions can 
be made into the conditional likelihood: 

exp( ' )
,

1 exp( ' )
 

i
hi

h

hi

γ z

γ z
where the ikzh are values of the 1,2,...,k t  explanatory variables for 

the i'th subject in the h'th matched pair, and the γk  are the corresponding coefficients of 
the zk. 

Substituting hi  for Pr( | )e h1z  and (1 ) hi  for Pr( | )e h1z  gives 

1

1 2

exp( ' )
,

exp( ' ) exp( ' )
h

h h

γ z

γ z γ z
, which is the same as 

 
 

1 2

1 2

exp '( )
.

1 exp '( )


 

h h

h h

γ z z

γ z z
The conditional 

likelihood for the entire data is then 
 
 

1 2

1 1 2

exp '( )
.

1 exp '( )


 

q

h

h h

h h

γ z z

γ z z
For this conditional 

likelihood, matched pairs with k kh1 h2z z for all k are uninformative, and so the concordant 
matched pairs can be excluded from the analysis. 

To extend this likelihood to the 1:n  matched setting, the conditional likelihood is 

 
1

0
1 1

1 exp '( ) ,


 

    
 

q n

i
h i

h hγ z z  where 1,2,...,i m  indexes the controls and i = 0 

corresponds to the case. The maximization of this likelihood can be performed with the 
“clogit” function the “survival” package of R (R Core Team 2015, Therneau and 
Grambsch 2000, Therneau 2015). 

 
2.5 Fleiss’ Method 

 
 Let r denote the number of controls matched to a particular case, which may vary 
from as low as 1 (matched pairs) to as high as n (1:n matching, i.e., 1 case matched with  
n controls). The analysis first stratifies all cases according to the value of r, as follows: 
 

Table 4. Frequency of Exposure Using Fleiss’ Notation 
Number of Controls exposedStatus of case
0 1 …  

Exposed   …  
Unexposed   …  

 
Thus, ( )

1

r

jZ  represents the number of matched sets with r controls where both the case and 

exactly j of the controls were exposed. Similarly, ( )

0

r

jZ   represents the number of matched 

sets with r controls where the case was unexposed and exactly j of the controls were 
exposed.  
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 Define ( ) ( )

1
0

1
( )

1 

 
 

r
r r

j
j

A r j Z
r

and ( ) ( )

0
0

1
.

1 


 

r
r r

j
j

B jZ
r

 Fleiss’ estimator of the 

odds ratio is given by

( )

1

( )

1

ˆ . 








n
r

r
nF

r

r

A

B
The large sample variance estimate 

is  
( )

1
2

( )

1

ˆln , 




 
  





n
r

r
F n

r

r

C
V

A

where 
 

( ) 2 ( ) 2 2 ( )

2 1 0
0 0

1
ˆ( ) .

1


 

 
     

 
r r

r r r

j mh j
j j

C r j Z j Z
r

 

 
2.6 Missing Indicator Method 

 
The Missing Indicator method introduces an indicator variable for all matched 

data that is set to 1 if there is a missing exposure value and 0 otherwise. Missing exposure 
values are then replaced with 0 in the data. Both exposure and the missing indicator 
variable are entered into a conditional logistic regression model. 
 

2.7 Proposed Method 

Let β = ln ψ. Then 
0

ˆ ˆ , 


 
n

p i i
i

w  where w0 = weight assigned to the estimator 

based on any unmatched case and controls, 0̂ = log of the "usual" ad/bc odds ratio 
estimator based on any unmatched case and controls, wi = weight attached to the matched 

estimator based on all complete 1:i matches, and ̂ i  = log odds ratio estimator based on 
all complete 1:i matches using conditional logistic regression, 1,..., .i n   

Each weight wi is given by the reciprocal of the estimated variance of that 
estimator divided by the sum of the reciprocals of the estimated variances of all 

estimators. If 1̂
ˆ,..., n  are independent, unbiased estimators of an unknown parameter θ,  

then the minimum variance unbiased linear combination of 1̂
ˆ,..., n  is given by

0
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 1,...,i n  (Hodges and Lehmann 1970, pp. 288, 306-308). The 

variance of the proposed estimator is given by    
1

1
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For any of the estimators of β = ln ψ, an approximate 100(1-α)% confidence 

interval (CI) for β is found using 2  /
ˆ ˆz SE( )  and then the endpoints are 

exponentiated to find a 100(1-α)%  CI for  ψ . 
 

3. Motivating Example 
 

To illustrate the different methods of estimating the odds ratio with incompletely 
matched 1:n data, we adapt an example from Breslow and Day (1980, p. 178) that is 
based on a study by Mack et al. (1976) that examined the association between estrogen 
(exposure, defined as any nonzero dose) and endometrial cancer. Data for a total of 59 5-
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tuples were collected, where each 5-tuple consisted of four controls matched to a case of 
endometrial cancer. In our hypothetical example, data for 26 sets of 5-tuples are 
complete, i.e. the exposure status for the case and the four matched controls are known. 
Data for 33 5-tuples are incomplete. Four of these 5-tuples have missing exposure data 
for one of the four controls. For the remaining 29 5-tuples, the exposure status is known 
for either the case or one of the controls, but not for any of the remaining 4 subjects in the 
5-tuple. 
  The data can be summarized in the following tables: 
 

Table 5. No Missing Exposure Status 
(Complete 5-tuples) 

 
Number of controls exposedStatus of case
0 1 2 3 4 

Total

Exposed 0 0 11 9 0 20 
Unexposed 1 0 3 1 1 6 
Total 1 0 14 10 1 26 

 
So, for example, there were 11 5-tuples in which the case was exposed and 2 of the 4 
matched controls were exposed. The remaining two controls were not exposed. 
 

Table 6. The Exposure Status is Missing for One of the Controls 
 

Number of controls exposed Status of case
0 1 2 3 

Total

Exposed 1 3 0 0 4 
Unexposed 0 0 0 0 0 
Total 1 3 0 0 4 

 
So, for example, there are three 4-tuples in which the case was exposed and one of the 
three matched controls was exposed. The other two matched controls were not exposed.  
 

Table 7. Only the Exposure Status of the Case or One of the Controls is Known 
 

Number of controls exposedStatus of case
0 1 Unknown 

Exposed - - 2 
Unexposed - - 6 
Unknown 4 17 - 

 
In other words, 2 of the cases were exposed and 6 were unexposed. Of the 21 controls, 17 
were exposed and 4 were not. 
 

3.1 Matching Ignored 
The matching ignored estimator ignores the fact that matching was used and 

assumes that cases and controls are all independent of each other. Woolf’s method is used 
to find an approximate confidence interval (CI) for ψ. To apply this method, all 59 5-
tuples are broken down into individual cases and controls and reconstructed as the 
following canonical 2x2 table: 
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Table 8. Canonical 2x2 Table for Motivating Example 
 

 Cases Controls Total
Exposure  

Yes  26 82 108 

No  12 55 67 

Total 38 137 175 
 
The matching ignored estimator ̂ n is calculated as (26·55)/(12·82) = 1.453. 

Then, ˆ ˆln ln(1.453) 0.374.   N N  The approximate standard error of ̂N  is given by 

1 1 1 1
0 390

26 55 12 82
    . . The 95% confidence interval for ̂N is then 0.374 ± 

1.96(0.390) = (-0.391, 1.138). Therefore, ˆ 1.453, N , with 95% confidence interval 

. Note that the same results would have been obtained 
had logistic regression or Mantel-Haenszel been used, treating the cases and controls as 
independent. 

There are two advantages of using the matching ignored estimator: it is easy to 
calculate and it makes use of all available data. However, this estimator ignores the fact 
that matching was used, which typically increases the bias of the estimated OR. 

 
3.2 Matched-Data Only Methods 

 
Conditional Logistic Regression (CLR) 

The CLR estimate is calculated using all cases with at least one matched control. 
In the example, the 29 unmatched subjects were ignored, and the 5-tuples that had 
complete exposure information for all 4 controls and the 5-tuples that had missing 
exposure data for one of the 4 matched controls were included when estimating the odds 
ratio. The results of this analysis are given in Table 10. 

 
Mantel-Haenszel (M-H) 
 The M-H odds ratio estimate is calculated using the same data as the CLR 
estimate. The results are given in Table 10. 
 
Fleiss 
 The Fleiss odds ratio estimate is calculated using the same data as the M-H and 
CLR estimates. The results are given in Table 10. 
 

3.3 Unmatched Data Only 
 

 All matched n-tuples are ignored and the logistic regression method is applied to 
the n-tuples where the exposure status is known for either the case or one the controls, 
but not both. For the motivating example, we used logistic regression to estimate the odds 
ratio for the 29 unmatched subjects. These subjects were broken down into individual 
cases and controls and reconstructed as the following canonical 2x2 table: 
 

Table 9. Canonical 2x2 Table for Unmatched Cases in Motivating Example 
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 Cases Controls Total
Exposure  

Yes  2 17 19 

No  6 4 10 

Total 8 21 29 
 
The unmatched estimator ̂U is calculated as (2·4)/(6·17) = 0.078. Then,  
ˆ ˆln ln(0.078) 2.546.    U U  The approximate standard error of ̂U  is given by 

1 1 1 1
0 988

2 17 6 4
    . . The 95% confidence interval for ̂U is then -2.546 ± 

1.96(0.988) = (-4.482, -0.609). Therefore, ˆ 0.078, U , with 95% confidence interval 

.  
 

3.4 Matched and Unmatched Combined Estimator 
 

 The matched and unmatched combined estimator makes use of all data, and is a 
weighted average of any one of the matched estimators and the "unmatched only" 
estimator. In the example, this estimator uses all 175 observations. The combined 

estimator of the log odds ratio is given by where is the matched 

data only estimator obtained using either CLR, M-H, or Fleiss method, and is the 
unmatched subjects only estimator. 
  

3.5 M-tuples Only Estimators 
 

 The M-tuples only estimates are intermediate steps needed for the proposed 
estimator (Section 2.7). Either the CLR, M-H, or Fleiss method is used to obtain the 
matched estimate separately for all complete pairs, all complete 3-tuples, all complete 4-
tuples, etc. In the example, the odds ratios based on the complete 1:3 matches (four 4-
tuples, 16 observations), and complete 1:4 matches (26 5-tuples, 130 observations) were 
calculated. Because there were no unexposed cases in the 4-tuples, 0.5 was added to each 
cell when estimating and performing inference for the odds ratio, as proposed by Agresti 
(2007, pp. 31-32). 
 

3.6 Missing Indicator Estimator 
 The Missing Indicator (MI) estimate uses all available data. The results of this 
analysis are given in Table 10. 
 

3.7 Proposed Estimator 
 The proposed estimator is a weighted average of all available matched-data-only 
estimators and the "unmatched only" estimator. Each weight is given by the reciprocal of 
the estimated variance of that estimator divided by the sum of the reciprocals of the 
estimated variances of all estimators (see Section 2.7). In the example, we used CLR to 
estimate the odds ratio for the complete 5-tuples. We used Agresti’s method as described 
in Section 2.1 for the 4-tuples, and logistic regression for the unmatched data. This 
estimator makes use of all the data, unlike any of the other estimators, with the exception 
of the unmatched estimator and the missing indicator estimator.  
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3.8 Summary of Results 
 

Table 10. Comparisons of Estimation Results for Motivating Example 

Method 
Sample 
Size   95% CI 

Matching Ignored 175 0.374 0.390 1.453 0.676-3.121 
Matched Only (CLR) 146 1.150 0.509 3.158 1.165-8.564 
Matched Only (CMH) 146 1.179 0.521 3.250 1.171-9.023 
Matched Only (Fleiss) 146 1.179 0.517 3.250 1.180-8.948 
Unmatched Subjects Only 
(LR) 

29 -2.546 0.988 0.078 0.011-0.543 

Matched(CLR)+Unmatched 
(“Combined” Estimator) 

175 0.374 0.453 1.454 0.599-3.530 

5-tuples Only (CLR) 130 0.796 0.515 2.216 0.807-6.084 
5-tuples Only (CMH) 130 0.869 0.546 2.385 0.818-6.956 
4-tuples Only (Agresti) 16 1.898 0.997 6.670 0.945-47.100 
Missing Indicator method 175 0.352 0.385 1.422 0.669-3.023 
4-tuples(Agresti)+5-tuples 
(CLR)+Unmatched 
(Proposed Estimator) 

175 0.396 0.415 1.486 0.658-3.354 

 
Four estimation methods used all 175 observations: the "matching ignored" 

estimator, the “combined” estimator, the Missing Indicator method, and our proposed 
method. All other methods are either intermediate results (5-tuples only, 4-tuples only), 
or do not include the entire data set (matched only, unmatched subjects only). Out of the 
four estimators that used all the data, the missing indicator estimator yielded the smallest 
standard error and the narrowest confidence interval, followed closely by the proposed 
method. Notice the confidence interval of the "matching ignored" estimator lies 
completely inside the CI of the proposed estimator. However, using the "matching 
ignored" estimator is not recommended because the dependence among the matched 
cases and controls is not taken into account in the analysis. We hope to show in a 
simulation study that the proposed estimator is the preferred estimator under most 
conditions. 
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