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ABSTRACT 

 

In this paper we investigate the problem of obtaining lower tolerance bounds for a future observation 
from a Weibull population at field use (design) stress level, using Type II censored data from an 
accelerated life test having two levels of higher than design stress levels. The scale parameter of the life 
distribution is assumed to have an inverse power relationship with the stress level.  We use the Maximum 
Likelihood Predictive Density method to derive a predictive density for a future observation as described 
by Jayawardhana and Samaranayake (2003).  The use of a lower percentile point of the predictive density 
as a lower tolerance bound is investigated using Monte Carlo simulation.  The results show that 
reasonable tolerance bounds can be provided using the predictive density for different levels of tolerance, 
tolerance content, sample sizes, and acceleration factor.  We propose a percentile point of the predictive 
density with corrected content as the lower tolerance bound. An example using the data from Zhang et al. 
(2012) is demonstrated. 

 

I. INTRODUCTION 

Concept of tolerance interval was first introduced by Shewhart in 1931 in his book Economic 
Control of Manufactured Product and statisticians have ever since worked on tolerance limits under 
different scenarios.   Statistical tolerance intervals have wide applications in engineering, manufacturing, 
occupational exposure, pharmaceutical development, and numerous other areas (Hoffman, 2010).  A 
tolerance interval will cover a certain proportion of the population with a given confidence.  For example, 
a manufacturer would like to know with certain confidence (95%), that at least a certain percentage (90%) 
of a product will operate longer than a specified time.  Thoman, Bain, and Antle (1970) propose a method 
to find lower tolerance limits for a Weibull distribution using a method that involves finding a lower 
confidence limit for a function of the shape and scale parameters and the proportion (content) of the 
tolerance.  Lawless (1975) discuss a method to construct tolerance bounds using a pivotal quantity for 
complete or Type II censored data from Extreme-value and Weibull distributions.  Mann and Fertig 
(1977) discuss tolerance intervals for Extreme-Value and Weibull distributions using efficient unbiased 
quantile estimators.  Verdemann, S.B. (1992) provides a motivational example of designing a gas tank 
large enough to guarantee 99% of the automobiles of a certain model will have at least 400 mile cruising 
range.  This is a question of determining a tolerance interval for a 0.99 fraction of the mileage distribution 
of such automobiles. An interval [ , ]L U  is called a p  content,   confidence tolerance interval for a 
cumulative distribution function F  if the statistics L and U , based on a random sample from F  satisfy 

    P F U F L p    where, if possible, equality replaces the last inequality.  The statistics L  and 
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U  are called lower and upper tolerance limits respectively.   Fernholz & Gillespie (2001) define a 
corrected content tolerance interval as follows: 

 Definition:  For given parameter values p  and   on  0,1 , a   confidence p  content 

 corrected tolerance interval is an interval of the form [ , ]L U if     *P F U F L p     

 holds for some data-dependent *p  in which the sample comes from the distribution function F . 

 The value *p  will be called the corrected content.  

       The objective of this paper is to provide lower tolerance intervals when the underlying 
distribution is Weibull and the data is obtained using accelerated life testing, with the Weibull scale 
parameter is related to the level of stress according to the inverse power law.  In accelerated life testing 
products are subject to higher levels of stress than the nominal use level of stresses such as humidity, 
mechanical load, pressure, temperature, voltage, vibration, and use rate.  Data collected under higher 
levels of stress are used to extrapolate the results to the design level of stress.  Jayawardhana and 
Samaranayake (2003) derive a predictive density under the following assumptions and using the 
Maximum Likelihood Predictive Density method proposed by Lejeune and Faulkenberry (1982).   

1. Product life has a Weibull distribution with cumulative density function 

( ) 1 exp x
F x





   
    

   

; for 0x  , where 0   and 0  . 

2. The scale parameter   is related to the stress by 1
0V

   , where 0 0  , 1 0  , and V  is 
the level of stress or possibly a transformed level of stress.  This model is known as the inverse 
power law model. 

3. The shape parameter   of the Weibull distribution is a constant. 
4. The lifetimes of the units are independent of each other. 

 
They consider the case where acceleration involves two higher than nominal stress levels L and 

H,  with D, L, and H respectively denoting the design, low, and high stress levels.  The high stress is 
chosen as high as possible but within limits that ensure that the assumed physical model is reasonably 
accurate.  The low stress level is chosen to be between the design stress level and high stress level so as to 
provide good estimates for 0  and 1  but still sufficiently high enough to yield an adequate number of 
failures within a reasonable time (see Meeker and Hahn, 1985).  Jayawardhana and Samaranayake (2003) 
let D , L , and H  be the values of the scale parameter at design, low, and high stress levels 
respectively.  They let nL  and nH  items be subjected to the low and high stresses and the experiment is 
continued until rL  and rH  items fail under low and high levels respectively.  They let xL1 , xL2 , …, 
xLrL  and xH1 , xH2 , …, xHrH  be the ordered failure times for the low and high stress levels respectively 
and let Z  to be a future observation at the design level of stress.   

The 100 p  th percentile point of the distribution of Z  is derived to be  

     
  1 1

1
ˆˆ ˆ 1ˆ ˆˆ 1 1L Hr r

p L L H Hz V A V A p
         

  
, 
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where  
ˆ ˆ

1

L

L

r

L L L L Lj

j

rA x n r x 



    and  
ˆ ˆ

1

H

H

r

H H H H Hj

j

rA x n r x 



   .   All the parameters with hats are 

estimates. Using the data from each level of acceleration, they estimate   separately and propose a 

combine estimate of   as ˆ L L H H

L H

r r

r r

 






.  The authors also propose the estimate for 1  given by 

   
    

1

ˆ ˆln ln
ˆ ˆ ln ln

L H H L

L H

r A r A

V V








.   Simulation studies have shown that the percentile estimate is slightly 

liberal and therefore they propose an ad-hoc adjustment to replace L Hr r  by 4L Hr r   to modify the 

percentile point to    
  1 1

1
ˆˆ ˆ 1 4ˆ ˆˆ 1 1L Hr r

p L L H Hz V A V A p
          

  
.     

Turning to the problem at hand, let the  -content  -level lower tolerance bound for the future 

observation be given by ˆ
pz where   

ˆ
pZ

P f z dz p 



 
 
 
 
 .   Fernholz & Gillespie (2001) proposed the 

content corrected tolerance intervals for distributions which slightly violated normality. It is well known 
that a lower tolerance limit can be interpreted as a lower confidence interval of a percentile point.  Our 
objective is to lower the percentile point estimate so that it acts as the lower confidence limit for the 
percentile.        

A simulation study was conducted to find out what value of *p  should be used to have the 
desired (fixed) levels of   and  , for a given value of p .  In all the simulations we kept L H Hn n r  .  

For computational convenience the ratio L L

L

n r

n


was defined as the Censoring Factor and L D

H D

V V

V V




 was 

defined as the Acceleration Factor.  In real life accelerated tests the items subject to higher level of 
stresses fail fairly quickly and some of the items subject to lower level of stress may not even fail within 
reasonable time period.   Therefore for simulation purposes the censoring was done only at the lower level 
of stress.  Stress levels were carefully selected so that the distance between the higher and lower stress 
levels are as large as possible.  The physical conditions dictate the higher levels of stress; for example 
excessive voltage can burn an electronic component instantaneously.   So the upper level of stress has 
physical limitations.  On the other hand the lower limit should he high enough to cause some failures to 
collect data for the study in a timely manner.  Simulation results show that the results are reasonable 
under certain conditions such as  2L DV V  and  3 L D H DV V V V   . 

One can derive the lower tolerance limit as a lower confidence limit for a percentile point.  Using 

the definition of the p  content   confidence tolerance interval  
 1 2, ,..,

;
nL x x x

P f x dx p 
 

  
  

 , a 

simple derivation will produce the result  1 2 1, ,.., n pP L x x x Z 
    .  If one can find out the 

(1 ) th percentile of the distribution of the  1 p th percentile of Z , it will be equal to the required 
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tolerance limit.  An estimate of the   1 p th percentile of Z  is given by 

      
1

ˆ1ˆ ˆˆ ˆ 4
1

ˆ ˆˆ 1L Hr r
p L L H HZ V A V A p

  
 


   
  

.   

Calculation of the lower confidence limit for this percentile point is difficult due to the 
complexity of the estimates.  In this study we use the content corrected tolerance interval proposed by 
Fernholz & Gillespie (2001).  For parameter values p  and   on (0, 1), a  -confidence p -content 

corrected lower tolerance interval is an interval of the form [ , ]L   if   *1P F L p     holds for 

some data dependent *p  in which the sample coming from the distribution function F .  Our approach 

attempts be to find this *p  .  

II. CALCULATING 
*p  

According to our simulations, we propose the value of the  *1 p to be the positive root of the 

following quadratic equation:   

     
2* *1  1  AccFac  CenFac Constant- 1- 0a p b p c d        .  

For convenience, let us use *1 p = *q .  Tables at the end of the paper provides the coefficients of the 

terms  
2*q , *q , AccFac, and CenFac.  Tables also provide the corresponding values for the Constant 

term. For a given value of  , one can find the appropriate *p  using this method.    

III. EXAMPLE 

Zhang et al. (2012) reports an accelerated life testing data set in which the stress is the electric 
current, nominal level of stress is 0 3.20 I mA , and four accelerated levels of stresses 1 9.64 I mA , 

2 12.36 I mA ,  3 17.09 I mA and 4 22.58 I mA .  For this example we use the accelerated stress 
levels 1I  and 3I  since these two were kept as constant stress levels. 

Estimates of   and 1  are invariant of the units and therefore we converted the failure time to weeks for 
computational ease.    

Stress Failure time /hours 

1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  

1I  1691.5 2084.67 2100.32 2374.5 2421.5 2586 2621.5 2680.5 2868 2879.5 

3I  601.50 689.67 697.33 716.50 785.50 854.50 889.50 1115.67 1131.33 1251.50 
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Let DV =1, 
9.64 3.0125
3.2LV   , 

17.09 5.3406
3.2HV   , Ln =10, Hn =10, Lr =10, Hr =10, p =0.90, and 

  0.90.  Then Censoring Factor (CenFac) = L L

L

n r

n


=

10 10 0
10


  and Acceleration Factor (AccFac) = 

L D

H D

V V

V V




= 

3.0125 1 0.4636
5.3406 1





.  From Table 1, a = 6.743, b = 3.2665, c = 0.3782, d =0.0125, and 

Constant= -0.1572.  Though this data violates the best conditions learned form the simulation study, 
namely 2L DV V  and  3 L D H DV V V V   , we continue the example as a demonstration of the 
method.  Now,  

   
2* *  AccFac  CenFac Constant- 1- 0a q b q c d      . 

Plugging the values to the quadratic equation we get, 

       
2* *6.743 +3.2665 q 0.3782 0.4636 0.0125 0 -0.1572- 1-0.90 0q     and 

 
2* *6.743 +3.2665 q 0.081866 0q   . 

Positive root of this equation is 0.024, and therefore *q =0.024 and *p =0.976.  Following the method 
described in Jayawardhana and Samaranayake (2003), the simple estimators of   using stress level  1I  

and 3I  respectively are: 
 10 1.262

7.034
820.9212 5.6788

10 8

L  
 

   
 

 and 3.744L  .  In our method 

we assumed that   is a constant regardless of the stress level.  Even though the available data violates 
this assumption we continue the example for the demonstration purposes.  Using the weighted average of 

the two estimates we get 
   10 7.034 10 3.744ˆ 5.389

20



  .  Zhang et al. (2012) estimated the shape 

parameter at the accelerated stress levels 1I  and 3I  as 6.5764 and 4.2754 respectively.  An average of 

their estimates is 5.4259.  Other quantities can be estimated as ˆ
LA  22264140, ˆ

HA 132210, and 

1̂ 1.6614.  Then the 90% confident, 90% content lower tolerance limit can be calculated as  

      
             

1
ˆ1ˆ ˆˆ ˆ 4

1

1
5.38911.6614 5.389 1.6614 5.389 24

ˆ ˆˆ 1

        3.0125 22264140 5.3406 132210 0.976 1

         45.6377
        7667 

L Hr r
p L L H HZ V A V A p

weeks

hours

  
 





   
  

   
  




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IV. CONCLUSIONS 

We propose an easy to use method to find lower tolerance interval for Weibull life distributions 
under accelerated life testing scenario.  Under certain conditions the proposed method works well. 
Accurate estimation of   and 1  is critical to the accuracy of the result.  Jayawardhana and 
Samaranayake (2003) prescribe the estimation method for the two parameters.  There are some limitations 
to this method.  Jayawardhana and Samaranayake reports that when the difference between the high level 
of stress and the low level of stress relatively smaller respect to the difference between the low level of 
stress and the design level of stress, the estimation of the parameter 1  is not very reliable.  When the 
Acceleration Factor is greater than 0.3, proposed method does not work well in finding a reasonably 
accurate lower tolerance bound.  This is mostly due to the estimation errors of the parameters of the 
predictive distribution.  The current study is limited to the content values ( p ) 0.90, 0.95, and 0.99. 
Another limitation on this method is that this method works well only for 0.80 0.975  .  The values 
of are not very useful in practice but it would have been better if the method is accurate up for 
0.80 0.99  .   
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Table 1 

 

Coefficients of the Quadratic Equation for 90% Content 

L Hn n  a  b  c  d  Constant 

10 6.743 3.2665 0.3782 0.0125 -0.1572 

20 29.376 1.6137 0.3462 0.0211 -0.1630 

30 51.875 -0.8771 0.3412 0.0484 -0.1281 

40 76.198 -3.7683 0.3163 0.0347 -0.0505 

50 93.152 -5.9698 0.3153 0.0572 -0.0035 

60 114.570 -8.7772 0.2874 0.0393 0.0876 

70 125.650 -10.2035 0.2909 0.0600 0.1180 

80 141.422 -12.4653 0.2664 0.0431 0.1965 

 

Table 2 

 

Coefficients of the Quadratic Equation for 95% Content 

L Hn n  a  b  c  d  Constant 

10 6.679 7.2132 0.3024 -0.0275 -0.1100 

20 70.512 5.9575 0.2843 -0.0069 -0.1578 

30 149.284 1.9177 0.2909 0.0200 -0.1443 

40 232.790 -2.7148 0.2697 0.0112 -0.0910 

50 300.417 -6.9999 0.2748 0.0333 -0.0505 

60 380.170 -12.0250 0.2502 0.0186 0.0261 

70 425.050 -15.1557 0.2582 0.0384 0.0582 

80 491.020 -19.4557 0.2367 0.0241 0.1288 
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Table 3 

 

Coefficients of the Quadratic Equation for 99% Content 

L Hn n  a  b  c  d  Constant 

10 -436.140 38.0123 0.1339 -0.0611 -0.0111 

20 1375.430 29.2763 0.1350 -0.0310 -0.0554 

30 3186.310 12.6143 0.1390 -0.0141 -0.0539 

40 4577.110 0.1260 0.1260 -0.0414 -0.0407 

50 5786.470 -13.6466 0.1306 -0.0029 -0.0277 

60 6803.100 -23.9968 0.1148 -0.0007 -0.0083 

70 7372.090 -31.6350 0.1207 0.0031 -0.0021 

80 8044.790 -38.7033 0.1087 -0.0018 0.0133 
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