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ABSTRACT 

Normal distributions, arguably the most pervasive constructs in statistics, provide 
us with very important data distribution patterns.  As such, they are among the most 
fundamental concepts introduced in a basic statistics course.  Not only are they 
immensely useful thanks to the Central Limit Theorem derived by Laplace in 1778, but 
they also afford a very convenient way of establishing the idea of continuous 
distributions without using calculus.   

The normal distributions have, of course, vastly significant applications and 
numerous examples are given in introductory texts of those that are related to such wide-
ranging topics from anatomy to finance.  One very important application, however, 
usually goes unmentioned: physical quantities that are expected to be the sum of several 
independent processes (such as measurement errors), often have a distribution that is 
approximately normal.    

Ironically, the development of the normal distributions can, in fact, be traced 
back to the formal study of errors, starting with Roger Cotes’ (1682 – 1716), and 
continuing on with many distinguished scholars such as Daniel Bernoulli (1700 – 1782), 
Thomas Bayes (1701 – 1761), Thomas Simpson (1710 – 1761), Johann Heinrich Lambert 
(1728 – 1777), Joseph Louis Lagrange (1736 – 1813), Pierre-Simon Laplace (1749 – 
1827), culminating finally in the works of Carl Friedrich Gauss (1777 – 1855).    

We claim that this historical progression has important pedagogical implications.  
In fact, we will conclude our paper by the assertion that it is much more natural and 
pedagogically much sounder to introduce the concept of normality following this 
historical progression.  

Another approach to the historical development of the normal distribution would 
be to follow Abraham de Moivre (1667 – 1754) and introduce it as an approximation to 
the binomial distribution as articulated in his 1733  paper Approximatio ad summam 
terminorum binomii (a+b)n in seriem expansi.  This path, which is equally illuminating 
and edifying, will be pursued in a different paper.   

For considerations of space, the historical development given in this paper omits 
most of the derivational details.  For a much more detailed approach with mathematical 
derivations see Stahl (2006).   
 

1. A BRIEF HISTORY OF MEASUREMENT ERRORS  

A meticulous analysis of measurement errors was first necessitated by the 
existence of several distinct numerical estimates of the same quantity in astronomical 
observations (Placket 1958), and dates all the way back to Hipparchus (190BCE – 
120BCE) and Ptolemy (90CE – 168CE).   

Some centuries later, the idea of taking repetitive measurements of the same 
quantity was incorporated into the practice of astronomy by Tycho Brahe (1546 – 1601): 
after taking several repeated measurements of a quantity, one would somehow use them 
to arrive at a single numerical value.   

There was, however, no consensus among scholars of the time either on how 
many such measurements should be taken or on how to obtain a representative value.  If 
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𝑥1, 𝑥2, … , 𝑥𝑛 were the measures, astronomers sometimes used the number that would 
minimize the function  

𝑓(𝑥) = (𝑥 − 𝑥1)2 + (𝑥 − 𝑥2)2 + ⋯ + (𝑥 − 𝑥𝑛)2 
i.e., the mean of these observations.  At other times, they used the number that would 
minimize the function 

𝑓(𝑥) = |𝑥 − 𝑥1| + |𝑥 − 𝑥2| + ⋯ + |𝑥 − 𝑥𝑛| 
i.e., the median of these observations.1   

Sometimes the representative value was obtained by inexplicable even rather 
enigmatic methods (Plackett 1988).  For example, Kepler, who had obtained the values  

1340 23′ 39",  1340 27'  37", 1340 23′ 18",  1340 29′48" 
for the right ascension of Mars, used the representative value of 1340 24′33", which is 
neither the mean (1340  26′ 5.5") nor the median (1340 25′ 38") of these numbers 
(Donahue 1992).    

Galileo (1564-1642) noted in his famous Dialogue Concerning the Two Chief 
Systems of the World—Ptolemaic and Copernican published in 1632 that all 
measurements would be hampered with errors (Hald 1990).  He went on to claim that 
these errors would be distributed symmetrically about zero and that small errors would 
occur more frequently than large errors  

“ . . . it is plausible that the observers are more likely to have erred little 
than much . . . ” [Drake  1967, p. 308]. 

a clear harbinger of the bell shaped curve. 
The beginnings of a formal study of the theory of errors may be traced back to 

Roger Cotes’ Opera Miscellanea.  In this work that was published posthumously in 
1722, Roger Cotes made the following suggestion (given here in modern language and 
notation): If 𝑥1, 𝑥2, … , 𝑥𝑛 are values obtained from subsequent observations, and 
𝑤1, 𝑤2, … , 𝑤𝑛 are the weights reciprocally proportional to the displacements which may 
arise from the errors in the single observations, as the representative value one should 
choose the center of gravity, which is the weighted average (Cotes 1722).   

This, in fact, can be thought of as the early stages of the method of least squares: 
We want to represent the data 𝑥1, 𝑥2, … , 𝑥𝑛, by the 𝑥 value that minimizes the function 

𝑓(𝑥) = 𝑤1(𝑥 − 𝑥1)2 + 𝑤2(𝑥 − 𝑥2)2 + ⋯ + 𝑤𝑛(𝑥 − 𝑥𝑛)2 
Since we have  

𝑓′(𝑥) = 2𝑤1(𝑥 − 𝑥1) + 2𝑤2(𝑥 − 𝑥2) + ⋯ + 2𝑤𝑛(𝑥 − 𝑥𝑛) 
solving the equation 𝑓′(𝑥) = 0, we obtain 

𝑥 =
𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛
 

 
In a memoir prepared in 1755 (printed 1756), where the axiom that positive and 

negative errors are equally probable was posited, Thomas Simpson discussed several 
possible distributions of error.  He first considered the uniform distribution and then the 
discrete and the continuous symmetric triangular distribution (Simpson 1756).  

                                                           
1
 In fact, the eventual pronouncement to favor mean over the median had an unassailable role 

on the evolution of the normal distribution. 
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Figure 1. The Symmetric Triangular Distribution of Simpson on [−1, 1]: 𝑓(𝑥) =  1 − |𝑥| 

 
In 1751, the Croatian astronomer/physicist/mathematician Ruder Boškovic (1711 

– 1787), together with Christopher Maire (1697-1767), an English Jesuit, began to 
measure an arc of two degrees between Rome and Rimini, and later wrote a book to 
describe this process.  In this 1755 work, De Litteraria expeditione per pontificiam 
ditionem ad dimetiendos duos meridiani gradus a PP. Maire et Boscovicli, Boškovic 
proposed that the true value of a series of observations would be that which minimizes 
the sum of absolute errors; of course, in modern terminology this proposed value would 
be the median of the observations.      

Johann Heinrich Lambert in his 1765 book Anlage zur Architectonic proposed 
the semi-ellipse as a distribution of errors: 

𝑓(𝑥) =  
1

2
√1 − 𝑥2 

where −1 ≤ 𝑥 ≤ 1.  
 

 
Figure 2. Graph of  𝑓(𝑥) =  

1

2
√1 − 𝑥2 , Lambert’s Error Distribution 

 
Pierre-Simon Laplace (1774) made the first attempt to deduce a rule for the 

distribution of errors using probabilistic principles, and claimed that the frequency of an 
error could be expressed as an exponential function of its magnitude once its sign was 
disregarded.  He also stipulated that this function must be symmetric in 𝑥 and monotone 
decreasing for 𝑥 > 0.  

This distribution is now known as the Laplace distribution.  A random variable 
has a Laplace distribution with parameters 𝜇 and 𝜈 if its probability density function is 
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𝑓(𝑥|𝜇, 𝜈) =
1

2𝜈
exp (−

|𝑥 − 𝜇|

𝜈
) 

=
1

2𝜈
{

exp (−
𝜇 − 𝑥

𝑣
)      𝑖𝑓 𝑥 < 𝜇

exp (−
𝑥 − 𝜇

𝑣
)      𝑖𝑓 𝑥 ≥ 𝜇

 

Here, 𝜇 is the mean and 2𝜈2 is the variance.   

 
 

Figure 3. Graph of 𝑓(𝑥) =  
1

2
𝑒−|𝑥|, the Laplace Distribution with 𝜈 = 1 and 𝜇 = 0  

 
If 𝜇 = 0, for 𝑥 ≥ 𝜇 = 0,  this reduces to an exponential distribution scaled by  1

2
.   

Whereas the normal distribution is expressed in terms of the squared difference 
from the mean, as the expression for the above defined density function indicates, the 
Laplace density is expressed in terms of the absolute difference from the mean.  
Consequently, the Laplace distribution has fatter tails than the normal distribution.    
Moreover, it is not differentiable at 𝑥 = 0, but there is no indication that Laplace was in 
any way disturbed by this fact.  In fact, as we shall see, his second proposed curve has a 
more drastic singularity at 𝑥 = 0. 

Three years later, possibly unhappy with the first distribution he suggested, 
Laplace proposed an alternative curve (See Gillispie 1979 for a reprint of his article): 

𝑓(𝑥) =
1

2𝛼
ln (

𝛼

|𝑥|
) 

for −𝛼 ≤ 𝑥 ≤ 𝛼, where 𝛼 is the supremum of all the possible errors.  This function has a 
discontinuity at 𝑥 = 0. 
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Figure 4. Graph of Laplace’s Second Error Function with 𝛼 = 1, 𝑓(𝑥) =

1

2
ln (

1

|𝑥|
). 

 
For more details see Bidwell (1923). 

Shortly thereafter, in 1777, Daniel Bernoulli wrote in a paper titled Dijudicatio 
maxime probabilis plurium observationam discrepantium atque versimillima induction 
inde formanda (The most probable choice between several discrepant observations and 
the formation therefrom of the most likely induction) 

… the observations are added together and the sum divided by the 
number of observations; the quotient is then accepted as the true value of 
the required quantity, until better and more certain information is 
obtained. In this way, if the several observations can be considered as 
having, as it were, the same weight, the center of gravity is accepted as 
the true position of the object under investigation.   

He also notes that errors are not equally likely: 
But is it right to hold that the several observations are of the same weight 
or moment or equally prone to any and every error? Are errors of some 
degrees as easy to make as others of as many minutes?  Is there 
everywhere the same probability?  Such an assertion would be quite 
absurd, which is undoubtedly the reason why astronomers prefer to reject 
completely observations which they judge to be too wide of the truth, 
while retaining the rest and, indeed, assigning to them the same 
reliability. 

 
For more details see the translation of this paper by Allen (1961). 

Based on these, Bernoulli suggested the semi-ellipse as such a curve, which, 
following a scaling argument, he then replaced with a semicircle. 

The famous French mathematician and physicist Joseph Louis Lagrange was also 
interested in the study of error distributions and in 1781 suggested two functions for this 
purpose.  The first is now known as the raised cosine distribution.  The raised cosine 
distribution is a continuous probability distribution supported on the interval [𝜇 − 𝜃, 𝜇 +
𝜃] with probability density function  

𝑓(𝑥|𝜇, 𝜃) = {
1

2𝜃
(1 + cos (

𝑥 − 𝜇

𝜃
𝜋))      𝑖𝑓 𝜇 − 𝜃 ≤ 𝑥 ≤ 𝜇 + 𝜃

0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Its mean is 𝜇 and its variance is (𝜋2−6

3𝜋2 ) 𝜃2 
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Figure 5. Graph of the Standard Raised Cosine Distribution (𝜇 = 0 and 𝜃 = 1), 𝑓(𝑥) =

1

2
(1 + cos 𝜋𝑥) 

 
Lagrange’s second suggestion was the logarithmic distribution, a discrete 

distribution with probability mass function   

𝑓(𝑘) = −
1

ln(1 − 𝑝)

𝑝𝑘

𝑘
 

for 𝑘 ≥ 1, and 0 < 𝑝 < 1, which would be a decreasing sequence of points from the 
maximum value of − 𝑝

ln(1−𝑝)
  attained at 𝑘 = 1. 

Since  

− ln(1 − 𝑝) = 𝑝 +
𝑝2

2
+

𝑝3

3
+ ⋯ 

it is easy to show that  

∑ 𝑓(𝑘) = 1

∞

𝑘=1

 

Moreover, clearly,  

𝜇 = −
1

ln(1 − 𝑝)

𝑝

1 − 𝑝
 

and  

𝜎2 =
−𝑝(𝑝 + ln(1 − 𝑝))

(1 − 𝑝)2𝑙𝑛2(1 − 𝑝)
 

 
The next important development had its roots in a celestial event, namely the 

discovery of Ceres, claimed to be a new planet by its discoverer the Italian priest and 
astronomer Giuseppe Piazzi (1746 – 1826).   Inopportunely, before enough observations 
were made to establish its orbit precisely, Ceres disappeared behind the sun and was not 
expected to reemerge for an extended period of time.  Not willing to wait that long, 
astronomers started suggesting areas of the sky to be searched.  Gauss proposed an area 
of the sky quite different from those suggested by the other astronomers, which in fact, 
turned out to be the right area.  See Teets and Whitehead (1999) for more details.   

Gauss explained that he used the least squares criterion to locate the orbit that 
best fit the observations (Davis, 1963).  For, Gauss claimed, a theory of measurement 
errors must be based on the following three assumptions: 

 
1. Small errors are more likely than large errors. 
2. For any real number 𝜖 the likelihood of errors of magnitudes −𝜖 and 𝜖 are equal. 
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3. In case of repeated measurements of the same quantity, the most likely value of the 
quantity being measured is the average of these repeated measurements. 

 
On the basis of these assumptions and using nothing beyond elementary calculus, 

Gauss proved that the probability density function for the error (that is, the error function) 
should be 

𝑓(𝑥) =
𝐶

√𝜋
𝑒−𝐶2𝑥2  

with the constant 𝐶 > 0.  This, of course, is the renowned normal distribution 2 (or the 
bell curve, o the Gaussian curve) with mean at zero and standard deviation  1

𝐶√2
 . 

  Actually, this result was implicitly stated in the Central Limit Theorem published 
by Laplace in 1810 (Gillispie 1979), which implied that if the error curve of a single 
observation is symmetric, then the error curve of the sum of several observations was 
indeed approximated by a Gaussian curve.  Hence if one assumes that the error involved 
in an individual observation is the aggregate of a large number of errors, then this 
theorem predicts that the random error that occurs in that individual observation is 
controlled by a Gaussian curve: error, in modern terminology, is approximately normally 
distributed. 

2. CONCLUSION  

As the research in the field of mathematics education unambiguously and 
unmistakably demonstrates, most modern pedagogues soundly endorse the use of 
historical development of concepts in mathematics classes; they agree that this approach 
contributes immensely to students’ appreciation of mathematics as well as their 
comprehension of theories and/or models of varying degrees of complexity.    BUT NOT 
IN STAT. 

That the inclusion of the historic development of ideas has significant 
pedagogical benefits in the teaching of mathematics is elaborated, for instance, in Wilson 
and Chavuot (2000).  They claim that this approach to teaching 

… sharpens problem-solving skills, lays a foundation for better 
understanding, helps students make mathematical connections, and 
highlights the interaction between mathematics and society (Wilson & 
Chauvot 2000, p. 642).  

Jankvist (2009) mentions that history as a pedagogical tool can give new 
perspectives of the material and can be of patent assistance in the cognitive difficulties 
students may encounter as they learn a particular mathematical topic. 

We should also assert that integrating the history of the topic into classroom 
lectures has an added utility:  it humanizes the subject matter.  In other words, it puts a 
human face to mathematics which otherwise would be  

… closed, dead, emotionless and all discovered (Bidwell 1993,  p. 461). 
In addition to the benefits specified above, Jankvist (2009) identifies more gains 

that can be had by using the history of mathematics: increased motivation- through 
generating interest and excitement and decreased intimidation - and the realization that 
mathematics is a human creation.  In fact, as expounded in Marshall and Rich, 

                                                           
2
 The use of the term normal is probably due to the influence of Karl E. Pearson who said in 1920  

Many years ago [in 1893] I called the Laplace-Gaussian curve the normal curve, 
which name, while it avoids the international question of priority, has the 
disadvantage of leading people to believe that all other distributions of 
frequency are in one sense or another abnormal (Pearson 1920). 
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… history has a vital role to play in today’s mathematics classrooms. It 
allows students and teachers to think and talk about mathematics in 
meaningful ways.  It demythologizes mathematics by showing that it is 
the creation of human beings.  History enriches the mathematics 
curriculum.  It deepens and broadens the knowledge that students 
construct in mathematics class (Marshall and Rich 2000, p. 706). 

 
Moreover, this pedagogical approach helps students understand that any theory in 

any study area including one that is as esoteric and arcane as mathematics, indeed goes 
through many false starts, progresses and regresses before it eventually reaches an 
acceptable level that is mutually agreed upon by the community of mathematicians.   It 
also attests that many different people from many diverse and dissimilar cultures 
contribute to it.  So, students get to understand that no theorem or result is born in the 
polished form it is presented in the textbooks, and no theorem or result is in the realm of 
a few geniuses who never make mistakes.  Indeed, scientific progress is a collective effort 
that moves along a path, parts of which are marked with erroneous turns.     

Clearly, the above mentioned problems related to mathematics classes are 
analogously prominent in statistics classes as well.  There also we need to help students 
develop their problem solving skills.  Statistics is also conceived as closed, dead, 
emotionless, all discovered, and intimidating by most students.   It is, in parts, also 
perceived to be esoteric and arcane.  A majority of students tend to think that a few 
intelligent people came up with these ideas and possibly except for a few simple 
applications, the future progress of the subject matter remains in the domain of those 
people.   

Thus, I hypothesize that all the above arguments made in favor of incorporating 
historic development of concepts into mathematics classes are equally valid for statistics 
classes as well:  students in statistics classes would benefit equally well from an infusion 
of historic development of processes into these courses.   

It would contribute immensely to students’ appreciation of statistics and their 
comprehension of concepts of varying degrees of complexity.    It can be used to sharpen 
problem-solving skills, to help students make statistical connections, and to show the 
interaction between statistics and society to paraphrase Wilson & Chauvot (2000).   It can 
be used as a tool to give new perspectives of the material.  It can be used to humanize the 
subject matter.   It helps with increased motivation- through generating interest and 
excitement and decreased intimidation – and with the realization that statistics is a human 
creation.  To paraphrase Marshall and Rich (2000), it allows students and teachers to 
think and talk about statistics in meaningful ways.  It demythologizes statistics by 
showing that it is the creation of human beings.   

If we look at the particular example given in this paper, we can easily see that we 
can use this pedagogical approach to show students that ideas in statistics were not 
created in a vacuum by a few intelligent people.  They were and still are created 
collectively by many scholars from many different cultural and economic backgrounds as 
means to answer societal and scientific needs of the times.  They go through many false 
starts, progresses and regresses before they eventually reach an acceptable level that is 
mutually agreed upon by the community of statisticians.     

Yet, most of us do not make a conscientious effort to include the historical 
development of the topics we cover in our classes.  Major points made for this omission 
are that such a coverage is not directly related to the basic ideas we want to convey to the 
students or that we do not have enough time for such “digressions” in our already loaded 
schedules.  However such customary (and by now quite predictable) objections are rather 
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insubstantial and can easily be refuted, for example, by the present paper, a discussion 
which should not take more than one lecture and is an excellent example of the “real-life” 
uses of the normal distribution.     
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