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Abstract 
Adverse events (AEs) from randomized clinical trials are often summarized as a crude 
incidence rate based on the percentage of patients who had at least one occurrence of AE 
or by an exposure-adjusted incidence rates. The AEs that are reported multiple times may 
be inadequately addressed by the crude summary. An approach with mean cumulative 
function (MCF) can assess multiple or reoccurring AEs to subjects. A method was 
proposed by taking the MCF of AEs which is a similar approach to a Cox model. Such 
approaches can assess the AE profiles between the treatment groups, however, the AE 
occurring days from either treatment groups are considered for both treatment groups 
based on the regression model. This may misrepresent the actual occurrence days of AEs. 
Furthermore, the assumption of proportionality between treatment groups is not often 
valid. Therefore, we propose a nonparametric MCF method as an additional approach in 
conjunction with the widely used crude incidence approach.  We investigated the results 
from a randomized Phase 3 study and the results are presented.  Throughout simulation, 
we further investigated s and graphical approaches are presented to compare the semi-
parametric MCF method with our proposed nonparametric MCF method. 
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1. Introduction 
 
As part of safety evaluations of an investigational product from randomized clinical 
trials, the adverse events (AEs) data are collected and summarized. The most widely used 
method evaluating the AEs is crude incidence rates or exposure adjusted incidence rates. 
The patients who reported AEs are counted once for a given term such as System Organ 
Class (SOC), High Level Terms (HLT) or Preferred Terms (PT) even if patients may 
have reported multiple events within the term or reported the event multiple times. With 
such an approach, difference in crude rates between treatment groups could be biased 
when: a) discontinuation rates are different between treatment groups, or b) recurrent 
AEs are not considered. It is wrong to ignore when multiple AEs are reported by a patient 
or same AE is reported multiple times by a patient. As an alternative to the crude 
incidence rate or exposure adjusted incidence rate, a mean cumulative function (MCF) 
approach is used in order to address the recurrent AEs during clinical trials. Lawless and 
Nadeau (1995) explored MCF and discussed details on how to estimate the MCF and its 
robust variance. Siddiqui (2009) evaluated AEs from phase 3 trial in various ways and 
compared the results. Cao and He (2011) applied MCF to the AEs data based on the 
semi-parametric model similar to the proportional hazard model and compared MCFs 
between treatment groups. A semi-parametric MCF approach can compare the overall 
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recurrent AEs rates between the treatment groups based on a Cox model. However, some 
drawbacks from the semi-parametric MCF approach are observed. In this paper, we 
discussed those issues. We applied different approach to the actual AE data from a Phase 
3 randomized study and results are presented in Section 3.  We compared the test results 
from the Fisher’s exact test, semi-parametric MCF and non-parametric MCF. Our 
simulation results that investigated further between the semi-parametric MCF and 
nonparametric MCF are presented in Section 4.  
 

2. Mean Cumulative Function Approaches  
 
2.1 Semi-parametric MCF Approach 
As an alternative to the crude incidence summary, a mean cumulative function approach 
can be used to analyze multiple or repeated AEs to patients.  The recurrent AE data 
consist of the same event or different events occurring at different times for each patient. 
Examples of AE profiles for patients and MCF curve for all patients in a trial are depicted 
in Figure 1. The staircase functions that are indicated by the dotted lines are individual 
patients cumulative AEs profiles. A simplistic way to visualize an MCF for a study is 
depicted by a darker dotted line which is an average curve from all subjects’ cumulative 
AE profiles.  
 

 
Figure 1: Plot of AE Profiles and MCF 

 
 
Cao and He (2011) applied semi-parametric MCF to the AEs data and compared the 
MCFs between treatment groups.  
Assume M(t) is a mean cumulative number of AEs up to time t.  The estimate of MCF at 
time t can be expressed as 
 

𝑀�(𝑡) = 𝑀0(𝑡)𝑒𝑒𝑒 (𝑋′𝛽), 
 

(1)  

where, 𝑀0(𝑡) is a baseline MCF at time 𝑡, X′ is a time invariant covariates vector, and 𝛽 
is a slope for treatment effect. The test for the null hypothesis 𝐻0:𝛽 = 0  can be 
conducted against the alternative hypothesis 𝐻1:𝛽 ≠ 0 . The semi-parametric MCH 
approach may compare the treatment effect fairly easily, however, the AE occurrence 
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days from either treatment groups are considered for both treatment groups based on the 
proportional hazard model. This may misrepresent the actual occurrence days of AEs 
from either treatment groups. As an example, Figure 2 shows the MCF estimates for two 
treatment groups from a semi-parametric model.  
 

 
Figure 2: Example of MCF estimates from a semi-parametric model 

 
These two plots suggest a drawback of this approach: they have exact same pattern of 
staircase jump. Additionally, the assumption of the proportionality between treatment 
groups is not often valid for the AEs data in the clinical trial. 

  
2.2 Non-parametric Mean Cumulative Function Approach 
Let 𝑛𝑗𝑗(𝑠) ≥0 be the number of recurrences for subject 𝑖 within time [0, 𝑡], where 𝑗 = 
treatment group. Then 𝑚𝑗(𝑡) = 𝐸[𝑛𝑗𝑗(𝑡)]  and 𝑀𝑗(𝑡) = ∑ 𝑚𝑗(𝑠)𝑡

𝑠=0 . Subject 𝑗𝑖  is on 
treatment or followed over [0, 𝜏𝑗𝑗], and for notational convenience, we define 𝛿𝑗𝑗(𝑡) =
𝐼(𝑡 ≤ 𝜏𝑗𝑗).  
The total number of recurrences and total number of subjects observed by time 𝑡 , 
respectively, are denoted by 𝑛𝑗∙(𝑡) = ∑ 𝛿𝑗𝑗(𝑡)𝑛𝑗𝑗(𝑡)𝐼

𝑗=1  and 𝛿𝑗∙(𝑡) = ∑ 𝛿𝑗𝑗(𝑡)𝐼
𝑗=1 . If the 

𝑛𝑗𝑗(𝑡) (𝑡 =0, 1, 2,…) are independent Poisson random variables with means 𝑚𝑗(𝑡), the 
maximum likelihood estimate of 𝑚𝑗(𝑡)  is 𝑚�𝑗(𝑡) = 𝑛𝑗∙(𝑡)/𝛿𝑗∙(𝑡) , and the estimate of 
𝑀𝑗(𝑡) for 0 ≤ 𝑡 ≤ 𝜏 is 
 

𝑀�𝑗(𝑡) = �𝑚�𝑗(𝑠)
𝑡

𝑠=0

= �
𝑛𝑗∙(𝑡)
𝛿𝑗∙(𝑡)

𝑡

𝑠=0

 

 

(2)  

Equation (2) is referred to as the Nelson-Aalen estimator (Andersen and Borgan, 1985) 
and it is well known as a non-parametric estimate in counting process. In comparing two 
treatment groups ( 𝑗 = 0, 1 ), the score statistics on the null hypothesis 𝐻0:𝑀0(𝑡) =
𝑀01(𝑡) 𝑓𝑓𝑓 𝑎𝑎𝑎 0 ≤ 𝑡 ≤ 𝜏 is 
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𝑈 = �
𝛿0∙(𝑠)𝛿1∙(𝑠)
𝛿0∙(𝑠) + 𝛿1∙(𝑠) �

𝑛1∙(𝑠)
𝛿1∙(𝑠) −

𝑛0∙(𝑠)
𝛿0∙(𝑠)�

𝜏

𝑠=0

 

 
(3)  

The first term in the summation in equation (3) can be considered as the weight based on 
the number of at risks at time s from two treatment groups. It is analogous to a log-rank 
statistic for testing the equality of survival distributions. A robust variance for a score 
statistic of (3) can be calculated by the following formula 
 

𝑉𝑎𝑓� (𝑈) = ����𝛿𝑗𝑗(𝑠)
𝛿∙∙(𝑠) − 𝛿𝑗∙(𝑠)

𝛿∙∙(𝑠)

𝜏

𝑠=0

�𝑛𝑗𝑗(𝑠)−
𝑛𝑗∙(𝑠)
𝛿𝑗∙(𝑠)

��
2𝐼𝑗

𝑗=1

1

𝑗=0

 

 

(4)  

 where 𝑛𝑗𝑗(𝑠) is the number of recurrences at time 𝑠 for the 𝑖′𝑡ℎ subject of treatment 𝑗 
(𝑗 = 0,1), 𝛿𝑗𝑗(𝑠) indicates whether the subject is observed at time 𝑠, and dots indicate 
summation over the appropriate indices. We can use 𝑈2/𝑉𝑎𝑓� (𝑈) as the test statistic 
which has a Chi-square distribution with a 1 degree of freedom. 
 

3. Case Study 
 
Using the actual AE data from a randomized Phase 3 clinical trial, we compared the 
results from the various methods. This study was conducted for patients who were 
immunocompromised thus high AE rates were expected. We use dummy treatment labels 
Trt A and Trt B throughout this paper. The summary and statistical testing for treatment 
group comparisons were performed on the summary for the SOC term (Table 1). We 
compare the results from three approaches: a Fisher’s exact method for crude rates, semi-
parametric MCF and non-parametric MCF. The summary table also includes crude 
incidence number and percentage by counting patients within the relevant term once, 
95% CI for each treatment group, number of incidence which counts all events within the 
relevant term,  relative risk, and p-values for the treatment groups comparison from each 
method. 
 
Firstly, we assessed the treatment discontinuation rates and the treatment duration to 
ensure for no apparent bias from treatment discontinuation or duration.  The figures 
suggest that the treatment groups were balanced and no suggestion of bias from this 
aspect.  . In general, the difference of discontinuation rate and exposure duration between 
treatment groups could be biased for the AEs analysis. Figure 3 shows the time-to-
discontinuation rates the histogram of treatment durations for two treatment groups. 
These plots indicate good balance between the treatment groups for discontinuation rates 
and exposure durations. 
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Figure 3: Cumulative rate of treatment discontinuation and histogram of treatment 

duration for two treatment groups 
 
 

Overall/SOCs 

Trt A (%)  
 [95% CI] 

<N of AEs> 
 (N=257) 

Trt B (%) 
 [95% CI] 

<N of AEs> 
(N=259) 

Relative Risk 
 (Trt A/Trt B) 
and 95% CI 

P-values 

Fisher’s 
exact  

 

SMCF NMCF 

Overall 247 (96.1%) 
[93.0%, 98.1%] 

<2829> 

255 (98.5%) 
[96.1%, 99.6%] 

<3463> 

0.98 
[0.95, 1.01] 0.112 0.007* 0.122 

Hepatobiliary 
disorders 

23 (8.9%) 
[5.8%, 13.1%] 

<23> 

42 (16.2%)  
[11.9%, 21.3%] 

<61> 

0.55 
[0.34, 0.89] 0.016* <0.001* <0.001* 

Cardiac 
disorders 

43 (16.7%) 
[12.4%, 21.9%] 

<58> 

57 (22.0%) 
[17.1%, 27.6%] 

<76> 

0.76 
[0.53, 1.09] 0.148 0.159 0.014* 

Gastrointestinal 
disorders 

174 (67.7%)  
[61.6%, 73.4%] 

<487> 

180 (69.5%)  
[63.5%, 75.1%] 

<618> 

0.97 
[0.87, 1.10] 0.705 0.038* 0.041* 

Skin and 
subcutaneous 
tissue disorders 

86 (33.5%)  
[27.7%, 39.6%] 

<129> 

110 (42.5%)  
[36.4%, 48.7%] 

<160> 

0.79 
[0.63, 0.99] 0.037* 0.100 0.299 

*: two sided p-value ≤0.05. Numbers in the brackets are the counts of incidences. 
SMCF: Semi-parametric MCF, NMCF: Non-parametric MCF 
 
 
The overall incidence rates and selected SOC terms are included in Table 1. We explore 
details of the distribution for each situation below: 
 

• For Hepatobiliary Disorders, all approaches identified statistical difference 
between the treatment groups with a p-value<0.05. This finding is also supported 
by the relative risk 0.55 and its 95% CI (0.34-0.89). 

 

Table 1: Adverse Events Crude rates, Relative Risks, and P-values by Various Methods 
from a Randomized Clinical Trial 

Treatment A 

Treatment B 
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• For Cardiac Disorders, both Fisher’s test and semi-parametric MCF provided 
non-significant p-values although the nonparametric MCF provided the 
significant p-value.  To further investigate, data distribution is shown in Figure 
4. 

 
Case: P-value<0.05 from only  Non-parametric MCF test – the crude incidences of n=43 
and n=57 patients were not seen statistically different however the plots below suggest 
that the Treatment B has more AEs reported at a later time of the trial. Without the non-
parametric MCF approach, this assessment could have been overlooked. 
 

 
Figure 4: Distributions for number of events and cumulative plot from MCFs 

 (Cardiac disorders) 
 

• For Gastrointestinal Disorders, the widely used Fisher’s exact test provided non-
significant p-value while both MCF methods provided significant p-values. 
Further investigation is done through the data distribution shown in Figure 5. 
 

Case: P-value>0.05 with Fisher’s test however p-value<0.05 from MCF tests 
 

  
Figure 5: Distributions for number of events and cumulative plot from MCFs: 

 (Gastrointestinal disorders) 
 

• For Skin and Subcutaneous Tissue Disorders, only the Fisher’s test provided 
significant p-value and both two MCFs did not provide significant test result. 
Data distribution is shown in Figure 6. 
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Case: P-value<0.05 with a Fisher’s test and p-value>0.05 from MCF tests 
 

  
Figure 6: Distributions for number of events and cumulative plot from MCFs 

 (Skin and subcutaneous tissue disorders) 
 
 
 

4. Simulations 
 
From the case study results presented in the previous section, we experienced a situation 
where the non-parametric MCF method provided significant treatment difference 
although the semi-parametric MCF method did not so. In order to further explore whether 
the sensitivity of the MCF approaches would depend on the proportionality of the data, 
we performed simulations. In the simulation setting, AEs were assumed to occur based 
on a piecewise Weibull distribution with the following form, 
 

𝒇𝒋𝒋(𝒕) = 𝒂𝒋𝒋
𝒃𝒋𝒋

𝒂𝒋𝒋 𝒆
−� 𝒕

𝒃𝒋𝒋
�
𝒂𝒋𝒋

, 

 
(5)  

where, 𝑡 is the time from previous event occurred, 𝑗 = 0,1 is the treatment code (test drug 
or comparator), and 𝑘 = 1,2 is time period (early period or later period in the clinical 
trial). 𝑎𝑗𝑗 and 𝑏𝑗𝑗 are the shape and scale parameters, respectively. 
Four scenarios are considered in this simulation by the combination of the treatment 
group and the time period: 
 

a) No treatment difference in AEs (to check the Type I error rate) 
b) Difference in AEs with proportionality of cumulative function between treatment 

groups 
c) Difference in  AEs without proportionality of cumulative functions: AEs 

occurred frequently in early period in the comparator group 
d) Difference in AEs without proportionality of cumulative functions: AEs occurred 

frequently in later period in the comparator group 
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Figure 7: Simulation example of cumulative plots from MCFs in scenario d) 

  
For these scenarios, the censoring was generated from a uniform distribution. Sample size 
was set at 50/arm, and the semi-parametric and non-parametric MCF approaches were 
applied. Statistical power of two MCFs was calculated and compared from 500 times 
simulation. Table 2 shows the summary of the simulation results from four scenarios. 
The powers from both MCFs approaches were smaller than 5% from the Scenario A, 
which ensures no inflation of a Type I error rate. In the Scenario B, the powers from the 
MCF approaches were similar with 83-84%. This is as expected as the AE proportionality 
between treatment groups was present. From Scenario C, The power from the non-
parametric MCF method was higher than that from the semi-parametric MCF method 
which AEs occurred frequently in earlier period in the comparator group. It suggests that 
the non-parametric MCF method was more sensitive than the semi-parametric MCF 
method in detecting the difference. On the other hand, the semi-parametric MCF method 
was better than non-parametric in Scenario D. Figure 7 shows MCF estimates from one 
of the simulation result from Scenario D. The estimates from the non-parametric MCF 
show no difference in the early part which is consistent to the actual data however the 
estimates from the semi-parametric MCF method suggests treatment difference even 
during the early time period that is influenced by the treatment difference in the later time 
period. 
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Table 2: Summary of the simulation results 
Scenario Treatment Time interval 𝑡 Scale 

parameter 
Power of Semi-
parametric MCF 

Power of Non-
parametric MCF 

Scenario 
a) 

Test drug [Day 1, Day 84] 2 
4.4% 4.2% Comparator [Day 1, Day 84] 2 

Scenario 
b) 

Test drug [Day 1, Day 84] 2 
83.6% 84.8% Comparator [Day 1, Day 84] 0.8 

Scenario 
c) 

Test drug [Day 1, Day 84] 2 

75.6% 80.8% Comparator [Day 1, Day 24] 0.7 
[Day 24, Day 84] 2 

Scenario 
d) 

Test drug [Day 1, Day 56] 2 

66.6% 47.8% Comparator [Day 1, Day 56] 2 
[Day 56, Day 84] 0.1 

* Shape parameter was 1 for all scenarios in the Weibull distribution. 
 
 

5. Discussion and Conclusions 
 
In this paper, we examined strengths and weaknesses of the semi-parametric and non-
parametric MCF approaches using the Phase 3 data and simulations. We presented the 
cases where the crude incidence rates and its treatment groups are found to be not 
significantly different from the Fisher’s exact test however, the recurrence of AE may be 
significantly different between the treatment group and this difference is detected by the 
MCF method.  Therefore, the statistics such as P-values and confidence intervals may not 
adequately explain safety profile of AEs. Based on these results, we concluded that we 
should not limit to one or two approaches when evaluating AEs. In the MCF approaches, 
we need to have caution when presenting AE profiles by graph from semi-parametric 
approach as we discussed in section 2.1. In this work, we don’t concern about possible 
multiplicity issue as the primary focus of the AE analysis is to examine the safety of drug 
thoroughly and not to overlook the AE recurrence.  
We strongly recommend using both non-parametric MCF and semi-parametric MCF 
methods as sensitivity analysis. We also challenge the widely used method of analyzing 
AEs by crude incidence rate alone when statistical inference is made. In order to 
thoroughly evaluate the AEs from clinical trials, we should not limit to one or two 
methods and use different types of available statistical methods. We should also plot the 
data to understand the real pattern of AEs. An example is shown in the Figure 8. The 
crude incidence rates are equal (n=15) from both treatment groups however, their AE 
profiles are drastically different. 
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Figure 8: Example of events where crude incidence is same while complete profile is 

drastically different 
 
In order to thoroughly examine the AE data, we strongly recommend using the MCF 
approach in conjunction with the crude incidence rates. Number of incidences can be also 
informative although it has its limitation. Since the MCF approach is a stochastic 
counting process of a cumulative number of events, it may be an acceptable statistical 
approach for understanding the complete AE profiles of treatments from randomized 
clinical trials. 
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