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Abstract 

A new transformed two-sample t-test has been proposed for testing equality of two population means for 
skewed distributions. The method involves transformations of skewed distributions to normality by means 
of a univariate normal goodness-of-fit approach. The performance of the proposed test is compared with 
untransformed t-test, the non-parametric analogue of t-test via Wilcoxon rank sum test and Box-Cox 
transformed t-test where transformation parameter is estimated by the maximum likelihood method using 
real-life examples and simulation. It reveals that the proposed new test is appropriate for estimating the 
level of significance and is more powerful than the untransformed t-test, Wilcoxon rank sum test and 
Box-Cox transformed t-test via maximum likelihood method for skewed distributions.  
 

 

Key Words: Two-sample t-test, Wilcoxon test, transformation, Goodness-of-fit, power of the test. 
 

 

1. Background 

 

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑚) and 𝑌 = (𝑌1, 𝑌2, … 𝑌𝑛) be two independent random samples from two 
populations having means 𝜇𝑥 = 𝐸(𝑋) and 𝜇𝑦 = 𝐸(𝑌), respectively. We wish to test the null hypothesis 

𝐻01: 𝜇𝑥 = 𝜇𝑦 
that is, the two populations two samples are obtained have the same mean. For testing 𝐻01, the standard 
statistical models usually assume that the two population distributions are normal with the common 
unknown variance 𝜎2. Under this assumption, a pooled estimator of 𝜎2 is given by 

𝑆𝑝
2 =

(𝑚 − 1)𝑆𝑥
2 + (𝑛 − 1)𝑆𝑦

2

𝑚 + 𝑛 − 2
 

where 𝑆𝑥
2 and 𝑆𝑦

2 are sample variances of the two samples 𝑋 and 𝑌, respectively. Under 𝐻01, the test 
statistic 𝑇 given by 

𝑇 =
�̅� − �̅�

𝑆𝑝√ 1
𝑚 +

1
𝑛

 

follows Student’s t-distribution with 𝑚 + 𝑛 − 2 degrees of freedom. This test is uniformly most powerful 
unbiased test (see, e.g., Lehmann 1994), and is omnipresent in statistical practice for making inference 
about the equality of the two population means.  
 In real life, the assumption of normality is often invalid or unmet. As such, one option is to use the 
nonparametric analog of t-test, namely, Wilcoxon rank sum test (Wilcoxon 1945) which does not require 
the normality of the data for the validity of the inference. Alternately, one may use the t-test to 
transformed data following an appropriate transformation.  
__________________________________________ 
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With transformation an option, the common practice is to re-express the data to achieve the normality and 
then implement t-test (e.g., see Mosteller and Tukey 1977; Atkinson 1985). In an oft-cited paper, Box and 
Cox (1964) suggested a power transformation for non-negative observations to achieve normality. Since 
then, Box-Cox transformation has widely been used for of the problems of statistical inference. 
  

In this article, a new method is proposed to estimate the Box-Cox transformation by means of the 
univariate normal goodness-of-fit approach. The idea is to the combine the Box-Cox transformed data 
from two samples to fit into a normal distribution to estimate the transformation parameter, and then 
implement the t-test to the transformed data. The new transformed t-test outperforms existing transformed 
t-test, and the nonparametric Wilcoxon rank sum test or the Student’s t-test in the violation of the 
normality.  

 

2. Methods 

 

In this section, we review some popular tests for comparing two groups with respect to their locations 
(means or medians). Section 2.1 presents a brief review of nonparametric Wilcoxon rank sum test for the 
completeness of the comparison. A Box-Cox transformed 𝑡-test achieved via a maximum likelihood 
method (MLM) is discussed in section 2.2. The new transformation using the univariate normal 
goodness-of-fit is discussed in section 3. Examples from a real-life situation and a simulated data appear 
in section 4 to demonstrate the application and performance of the proposed test as compared with the 
other tests described. A simulation study is carried out in section 5 to compare the finite sample 
performance of all tests considered in this article. Results and discussion from examples and simulation 
study appear in section 6. The conclusions of the study appear in section 7. 
 

2.1 Wilcoxon Rank Sum Test 

The nonparametric Wilcoxon rank-sum test, also known as the Mann-Whitney U test, is well-known and 
preferable to the two-sample t-test when the two populations the samples come from depart from 
normality. Let 𝑋 = {𝑋1, … , 𝑋𝑚}  and 𝑌 = {𝑌1, … , 𝑌𝑛} be two independent samples from distributions with 
continuous cdfs 𝐹𝑥 and 𝐹𝑦 having location parameters 𝜇𝑥  and 𝜇𝑦,  respectively. Let us also consider the 
following two definitions (for more details, see Desu and Raghavarao 2004; Tamhane and Dunlop 2000): 
 

Definition 1: The random variable 𝑋 is stochastically larger than 𝑌 if 
𝑃(𝑋 > 𝑢) ≥ 𝑃(𝑌 > 𝑢) or, equivalently, 𝐹𝑥(𝑢) ≤ 𝐹𝑦(𝑢) 

for all real numbers 𝑢 with a strict inequality for at least some 𝑢. The situation may also be denoted by 
𝐹𝑥 < 𝐹𝑦 or 𝜇𝑥 > 𝜇𝑦. 
 

Definition 2: Two random variables 𝑋  and 𝑌 have identical distributions if 
𝑃(𝑋 > 𝑌) = 𝑃(𝑋 < 𝑌) = 1/2  

This situation is denoted by  𝐹𝑥 = 𝐹𝑦 and it follows that when 𝑋 and 𝑌 have identical distributions, they 
will have the same median or mean, say, 𝜇𝑥 = 𝜇𝑦. Therefore, one can test the equality of two population 
medians using 𝐻02:  𝐹𝑥 = 𝐹𝑦 or, equivalently, 𝐻02:  𝜇𝑥 = 𝜇𝑦. 
  

In order to test 𝐻02, the Mann-Whitney (𝑈) test compares each 𝑋𝑖 ∈ 𝑋 with each 𝑌𝑗 ∈ 𝑌 and is 
defined as follows: 

𝑈𝑦𝑥 = # of pairs (𝑋𝑖, 𝑌𝑗) for which 𝑋𝑖 > 𝑌𝑗 
It follows that 𝑈𝑦𝑥 = ∑ 𝑅𝑖

𝑚
𝑖=1 −

𝑚(𝑚+1)

2
, where 𝑅1 < 𝑅2 < ⋯ < 𝑅𝑚 are the ordered ranks of "𝑚” 𝑥-

observations in the combined sample. On the other hand, the Wilcoxon rank sum test (𝑊) is defined in 
terms of “sum of 𝑋 ranks in the combined sample”: 𝑊𝑥 = ∑ 𝑅𝑖

𝑚
𝑖=1 . It is easy to verify that 𝑊𝑥 and 𝑈𝑦𝑥 are 
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connected by the equation 𝑊𝑥 =  𝑈𝑦𝑥 +
𝑚(𝑚+1)

2
. In view of this relationship, one can use either of the 

statistics 𝑊𝑥 or 𝑈𝑦𝑥, or similarly defined 𝑊𝑦 or 𝑈𝑥𝑦 for testing 𝐻02. For example, given a level of 
significance 𝛼, the inference procedure using Wilcoxon rank sum statistic can be made as follows: 
 

1) Reject 𝐻02 against 𝐻2𝑎: 𝐹𝑥 < 𝐹𝑦 (𝜇𝑥 > 𝜇𝑦) if 𝑊𝑥 is larger i.e., 
 𝑝-value = 𝑃(𝑊 ≥ 𝑊𝑥) ≤ 𝛼. 

2) Reject 𝐻02 against 𝐻2𝑏:  𝐹𝑥 > 𝐹𝑦 (𝜇𝑥 < 𝜇𝑦) if 𝑊𝑦 is larger i.e., 
𝑝-value = 𝑃(𝑊 ≥ 𝑊𝑦) ≤ 𝛼. 

3) Reject 𝐻02 against 𝐻2𝑐:  𝐹𝑥 < 𝐹𝑦 𝑜𝑟 𝐹𝑥 > 𝐹𝑦 (or 𝜇𝑥 ≠ 𝜇𝑦)  using 
𝑊𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑊𝑥 , 𝑊𝑦) or 𝑊𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑊𝑥 , 𝑊𝑦)  if the 𝑝-value = 2𝑃(𝑊 ≤ 𝑊𝑚𝑖𝑛) =

2𝑃(𝑊 ≥ 𝑊𝑚𝑎𝑥  ) ≤ 𝛼. 
 

2.2 Box-Cox Transformed Test 

An alternative to Wilcoxon rank sum test, one can use the Box-Cox transformation (Box and Cox 1964) 
to achieve normality before applying t-test when the data deviate from normality. Let 𝑋 = (𝑋1,…, 𝑋𝑚) 
and 𝑌 = (𝑌1,…, 𝑌𝑛) be non-negative random variables having the common variance, deviating from 
normality. Given a scalar 𝜆, the Box-Cox power transformation to the sample 𝑋,  𝑋(𝜆), is defined by 

𝑋𝑖(𝜆) = {
(𝑋𝑖

𝜆 − 1)/𝜆,      if 𝜆 ≠ 0

log(𝑋𝑖),              if 𝜆 = 0
              (1) 

The transformation to 𝑌𝑗, 𝑌𝑗(𝜆) is defined in a similar way. 
 
Let 𝑋(𝜆) = 𝑚−1 ∑ 𝑋𝑖(𝜆)𝑚

𝑖=1  be the mean of the transformed sample 𝑋(𝜆). Let  𝑌(𝜆) be defined similarly. 
Let 𝑆2(𝜆) be the pooled maximum likelihood estimate (MLE) of the common variance to the transformed 
data given by 

𝑆2(𝜆) = {1/(𝑚 + 𝑛)} [∑{𝑋𝑖(𝜆) − 𝑋(𝜆)}
2

𝑚

𝑖=1

+ ∑{𝑌𝑗(𝜆) − 𝑌(𝜆)}
2

𝑛

𝑗=1

] 

 
Given the transformation (1) is successful to transform the data to fit a normal model, the profiled log-
likelihood function for the transformation parameter 𝜆 is 
 
𝑙(𝜆)= −{(𝑚 + 𝑛)/2} log 𝑆2(𝜆) + 𝜆{∑ log 𝑋𝑖

𝑚
𝑖=1 + ∑ log 𝑌𝑗

𝑛
𝑗=1 } 

Box and Cox (1964) proposed to estimate  by the MLE, �̂�𝑙. Then, the two-sided transformed t-test is to 
reject 𝐻01: 𝜇𝑥 = 𝜇𝑦 if |𝑇(�̂�𝑙)|  is greater than the Student’s t critical value 𝑡𝛼/2,𝑚+𝑛−2, where 𝑇(�̂�𝑙) =

𝑋(�̂�𝑙)−𝑌(�̂�𝑙)

𝑆(�̂�𝑙)√1/𝑚+1/𝑛
. 

  
The theoretical aspects of the Box-Cox transformed data analysis described above have been reported 

in literature. For examples, Hinkley (1975) and Hernandez and Johnson (1980) investigated the 
asymptotic properties of the parameter estimates; Bickel and Doksum (1981) critically examined the 
behavior of the asymptotic variances of the parameter estimates for regression and analysis of variance 
situations; Chen and Loh (1992) and Chen (1995) proved that the Box-Cox transformed -t test is 
typically more efficient asymptotically than the t-test without transformation. The use of transformed t-
test is also justified by Chen and Islam (2007) by fitting a t distribution to transformed data. 
 
 
 

JSM2015 - Section on Statistical Computing

1468



 

3. The New Proposed Transformed t-test 

 

Viewing the transformation to normality as the problem of normal goodness-of-fit, we propose a new 
transformation which is straightforward and easy to implement using any standard statistical software. 
The idea is to apply a univariate normal goodness-of-fit to the transformed data and then apply t-test to 
the transformed data. This method is expected to be a better approach than trying to achieve the normality 
by maximizing the likelihood function 𝑙(𝜆) described in previous section. 
 
Given the transformation 𝑋(𝜆) is successful or nearly successful in achieving normality, it is expected 
that 𝑍𝑥(𝜆) =

𝑿(𝜆)−𝜇𝑥(𝜆)

𝜎𝑥(𝜆) 
= (𝑍1,𝑥(𝜆), 𝑍2,𝑥(𝜆), … , 𝑍𝑚,𝑥(𝜆))  represents a random sample from a N(0,1) 

distribution. With the similar argument, 𝑍𝑦(𝜆) =
𝒀(𝜆)−𝜇𝑦(𝜆)

𝜎𝑦(𝜆) 
= (𝑍1,𝑦(𝜆), 𝑍2,𝑦(𝜆), … , 𝑍𝑛,𝑦(𝜆))  represents a 

random sample from a N(0,1) distribution. Then, by combining the two samples together, 𝑍𝑥,𝑦(𝜆) =

(𝑍𝑥(𝜆), 𝑍𝑦(𝜆)) represents a sample 

𝑍𝑥,𝑦(𝜆) = (𝑍1,𝑥(𝜆), 𝑍2,𝑥(𝜆), … , 𝑍𝑚,𝑥(𝜆), 𝑍1,𝑦(𝜆), 𝑍2,𝑦(𝜆), … , 𝑍𝑛,𝑦(𝜆)) 
of size 𝑁 = 𝑚 + 𝑛 from a N(0,1) distribution, which for the simplicity of the presentation is written as: 

𝑍(𝜆) = (𝑍1(𝜆), 𝑍2(𝜆), … , 𝑍𝑁(𝜆)) 
  

We propose to estimate  by  �̂�𝑛 in a way that 𝑍( �̂�𝑛) is as close as possible to the true N(0,1) 
distribution. Viewing this problem as a goodness-of-fit to normal distribution, we test the hypothesis: 
𝐻0: 𝑍1(𝜆), 𝑍2(𝜆), … , 𝑍𝑁(𝜆) is coming from a N(0,1) distribution, against 
𝐻1: 𝑍1(𝜆), 𝑍2(𝜆), … , 𝑍𝑁(𝜆) is not a N(0,1) distribution. 
 
Following Shapiro and Wilk (1965), we use the test statistic 𝑊𝑍(𝜆) to test 𝐻0, which is given by 

𝑊𝑍(𝜆) =
[∑ 𝑎𝑖𝑍(𝑖)(𝜆)𝑁

𝑖=1 ]
2

∑ (𝑍𝑖(𝜆)−𝑍�̅�(𝜆))2𝑁
𝑖=1

, where 

𝑍(𝑖)(𝜆), 𝑖 = 1, … , 𝑁 represents the ith order statistic of the sample 𝑍(𝜆), 
𝑍�̅�(𝜆) = (∑ 𝑍𝑖(𝜆)𝑁

𝑖=1 )/𝑁 is the sample mean, 

(𝑎1, … , 𝑎𝑁) =
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)1/2 , 
𝑚 = (𝑚1, … , 𝑚𝑁)𝑇 , 
𝑚𝑖 = 𝐸 (𝑍(𝑖)(𝜆)) , 𝑖 = 1, … , 𝑁, is the expected value of the ith order statistic 𝑍(𝑖)(𝜆), 
𝑉 = (𝑣𝑖,𝑗) is the variance-covariance matrix of order 𝑁 × 𝑁, and 
𝑣𝑖,𝑗 = 𝐶𝑜𝑣 (𝑍(𝑖)(𝜆), 𝑍(𝑗)(𝜆)) , 𝑖, 𝑗 = 1, … 𝑁, is the covariance between ith and jth order statistics. 
  

While the value of 𝑊𝑍(𝜆) lies between zero and one, the small value of 𝑊𝑍(𝜆) leads to the rejection 
of normality, whereas a value close to one indicates normality. In other words, given a level of 
significance 𝛼 one may reject the null hypothesis if 𝑝-value 𝑝(𝜆) = 𝑃(𝑊 ≤ 𝑤𝑍(𝜆)) ≤ 𝛼 and accept 
otherwise. We propose to estimate 𝜆 by observing the maximum 𝑝-value associated with 𝑊𝑍(𝜆) over all 
possible values of  to achieve the desired normality of the transformed data. In other words, the new 
estimate �̂�𝑛 using the goodness-of-fit to N(0,1) distribution satisfies the equation 

𝑝( �̂�𝑛) = max
𝜆∈[𝑎,𝑏]

𝑃(𝑊 ≤ 𝑤𝑍(𝜆)) 

Once �̂�𝑛 is obtained, we re-express the original samples and apply Student’s t-test to the transformed data. 
  

It is to be noted that, due to the popularity of Shapiro and Wilk test for assessing normality of the 
sample, any standard statistical software such as SAS, SPSS, STATA, R, etc. has functions or procedures 
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to implement this test. In this article, we employed the software R in all examples and simulation to 
obtain the optimum �̂�𝑛. The search for �̂�𝑛 is made over the interval [-1,1] with an increment of 0.1 written 
hereafter as 𝜆 ∈ {−1: 0.1: 1}. 
 
Below is an algorithm for the estimate �̂�𝑛 and the transformed test using �̂�𝑛. 
Given 𝑋 and  , and a fixed 𝜆: 

1) Obtain the transformations to 𝑋 and 𝑌, 𝑋(𝜆) and 𝑌(𝜆)  using equation (1). 
2) Estimate 𝑍𝑥(𝜆) =

𝑿(𝜆)−�̅�(𝜆)

𝑆𝑥(𝜆) 
 and 𝑍𝑦(𝜆) =

𝒀(𝜆)−�̅�(𝜆)

𝑆𝑦(𝜆) 
, where 𝑆𝑥(𝜆) and 𝑆𝑦(𝜆) are estimated using 

the transformed data by 𝑆𝑥(𝜆) = √∑ (𝑥𝑖(𝜆) − �̅�(𝜆))2𝑚
𝑖=1 /𝑚  and 

𝑆𝑦(𝜆) = √∑ (𝑦𝑗(𝜆) − �̅�(𝜆))
2𝑛

𝑗=1 /𝑛. Note, the term 𝑋(𝜆) − �̅�(𝜆) allow element-wise subtraction 

of sample mean �̅�(𝜆) from the vector 𝑋(𝜆) and similar operation applies to 𝑌(𝜆) − �̅�(𝜆). These 
operations are allowed by any standard statistical software. 

3) Combine the two samples together to form 𝑍(𝜆) = (𝑍1(𝜆), 𝑍2(𝜆), … , 𝑍𝑁(𝜆)), where 𝑁 = 𝑚 + 𝑛. 
4) Compare 𝑍(𝜆) with the N(0,1) distribution using the Shapiro-Wilk goodness-of-fit and find the 𝑝-

value. 
5) Repeat steps (1) through (4) for all 𝜆 ∈ {−1: 0.1: 1}. 
6) Select the maximum 𝑝-value among all 𝑝-values from steps (1) through (5). 
7) Identify the �̂�𝑛 corresponding to the maximum 𝑝-value in step (6). 
8) Obtain 𝑋(�̂�𝑛) and 𝑌(�̂�𝑛). 
9) Perform usual t-test on the basis of transformed data in step (8) and decide about the acceptance 

or rejection of the null hypothesis comparing with critical value of 𝑡 distribution. 
 

4. Applications 

 

In this section, we will present two examples, one with real life data and the other with simulated data to 
show application and performance of various tests in making inference about acceptance or rejection of 
the equality of two population means. 
 

Example 1 (Remission times of leukemia patients): The data for this example are remission times, in 
weeks, for 40 leukemia patients randomly assigned in two treatments 𝑋 and 𝑌, and appear in Lawless 
(2003). We wish to test the equality of location parameters (means or medians) using various tests 
discussed in this article. 
 

𝑋: 1 3 3 6 7 7 10 12 14 15 18 19 22 26 28 29 34 40 48 49 
𝑌: 1 1 2 2 3 4 5 8 8 9 11 12 14 16 18 21 27 31 38 44 

 
 The summary statistics for the sample of treatment 𝑋 are: mean=19.55 and skewness=0.66; for the 
sample 𝑌, mean=13.75 and skewness=1.05. From the values of the skewness, both treatments 𝑋 and 𝑌 
seem to have positively skewed distributions. We also carry out a test to see if 𝑋 and 𝑌 actually come 
from skewed distributions. To this end, we apply the Kolmogorov-Smirnov goodness-of-fit to 𝑋 and 𝑌 to 
see if they come from exponential distributions, with means 𝜇𝑥 = 19 and 𝜇𝑦 = 14. The result of 
Kolmogorov-Smirnov test to 𝑋 is: 𝑘𝑠 = 0.1214 and 𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.9298, which indicates that the sample 
data on treatment 𝑋 come from an exponential distribution with mean 𝜇𝑥 = 19. In a similar way, we 
conclude that the data on treatment 𝑌 come from an exponential distribution with mean 𝜇𝑦 = 14 (𝑘𝑠 =

0.0853, 𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.9986). 
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The calculated value of the various test statistics along with the corresponding 𝑝-values for the 
remission time data are reported in Table 1 to evaluate the performance of the inference being made. It 
follows that all four tests accept the null hypothesis of equality of the two treatment means.  

 

Table 1 Test statistics and 𝑝-values for various tests for remission times data 
Tests Test statistic 𝑝-value �̂� 

𝑡 1.3376 0.1890 - 
𝑤 250.50 0.1759 - 

𝑡(𝑙) 1.4071 0.1675 0.3 
𝑡(𝑛) 1.4071 0.1675 0.3 

𝑡: Student’s 𝑡 test; 𝑤: Wilcoxon test; 𝑡(𝑙): transformed 𝑡 test by a maximum likelihood method; 𝑡(𝑛): 
new transformed 𝑡 test by a normal goodness-of-fit method. 
 
Example 2 Data for this example come from two simulated samples from a gamma 𝐺(2,1) distribution 
and are given below: 

𝑋: 1.06 1.88 3.68 1.13 2.08 4.84 1.42 1.29 0.37 2.43 
𝑌: 0.93 1.94 1.05 2.94 1.15 1.93 3.45 1.55 1.14 1.28 

 
1.65 1.69 2.28 0.91 2.68 

      
For the convenience of the presentation, we round up the values of the simulated data to two decimal 
places and applied various tests on the rounded data. The summary statistics of two simulated samples are 
as follows: for sample 𝑋, mean=2.02 and skewness=1.17; for sample 𝑌, mean=1.77 and skewness=0.89.  
  

Since the samples 𝑋 and 𝑌 come from the same parent distribution 𝐺(2,1) with identical mean and 
variance, we expect that various test statistics would be able to assess the equality of the two means with 
stronger evidence. The results of various tests with corresponding 𝑝-values are reported in Table 2. 

 

Table 2 Test statistics and 𝑝-values for various tests for simulated data from 𝐺(2,1) distribution 
Test Test statistic 𝑝-value �̂� 

𝑡 0.5840 0.5649 - 
𝑤 80.000 0.8065 - 

𝑡(𝑙) 0.1514 0.8810 0.2 
𝑡(𝑛) 0.0217 0.9829 0.0 

 
On the basis of the results of various tests in Table 2, it follows that all four tests provide evidence to 
accept the null hypothesis of the equality of two means. It is to be noted that the proposed 𝑡(𝑛) test 
provides the strongest evidence in favor of the null hypothesis, with a 𝑝-value of 0.9829. 

 

5. Simulation Study 

 

In this section, we carry out a simulation study to compare the finite sample performance of the various 
tests described in this article, along with the proposed t-test.  All simulations are performed by using the 
statistical software R, with values of 𝜆 ∈ {−1: 0.1: 1}. The samples 𝑋 and 𝑌 are simulated from 𝐺(𝛼, 𝛽) 
population where 𝛼 is the shape parameter and 𝛽 is the scale parameter. Note that the skewness of 
𝐺(𝛼, 𝛽) distribution is 𝛾1 = 2 √𝛼⁄ . In simulations, we choose different values of the parameter 𝛼 to allow 
varying levels of skewness of the simulated samples. We fix the value of the parameter 𝛽 at 1 since it 
does not affect the skewness of the simulated data. Under alternative, we choose different values of the 
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mean difference, ∆= 𝜇𝑥 − 𝜇𝑦 arbitrarily from the set {0.15, 0.25, 0.50, 0.65, 0.85, 1.25} to ensure a 
testing power away from 0 and 1 for the purpose of the comparisons. In all simulations, the Monte Carlo 
size is 5,000. The power of various tests is estimated from the proportion of rejection of null hypothesis 
under alternative over a Monte Carlo simulation of size 5,000 at 5% level of significance.  
 

In a similar manner, the level of significance is estimated from the proportion of the rejection of the 
null hypothesis over a Monte Carlo simulation of size 5,000 at 5% level of significance when the null 
hypothesis is true. Table 3 provides the values of the parameter 𝛼 used in the simulation of samples 𝑋 and 
𝑌 to allow varying values of the skewness. 
 

Table 3 Values of 𝛼 and 𝛾1 used in simulations of 𝑋 and 𝑌 
Shape 

parameter 
𝛼 

Skewness 
𝛾1 

0.25 4.0 
0.5 2.8 
1 2.0 
2 1.4 
10 0.6 

 
Table 4 provides estimated power of the simulation study for varying values of shape parameter 
𝛼, sample sizes (𝑚, 𝑛) and the mean difference ∆= 𝜇𝑥 − 𝜇𝑦. Table 5 provides estimated rejection rates 
under the null distribution at 5% level of significance, along with mean and standard deviation of the 
estimated transformation parameter 𝜆 by maximum likelihood (�̂�𝑙) and univariate goodness-of-fit 
technique (�̂�𝑛). 
 

6. Result Discussions 

 

The result of example 1 in section 4 suggests that all four tests applied to compare the remission time of 
leukemia patients with respect to the location parameters (means or medians) lead to the identical 
conclusion of equality of two locations with 𝑝-values of 0.1890 (Student’s 𝑡), 0.1759 (Wilcoxon test) and 
0.1675 (both transformed tests). However, given the fact that the remission time of leukemia patients 
come from skewed distributions (treatments 𝑋 and 𝑌 seem to follow exponential distributions with means 
𝜇𝑥 = 19 and 𝜇𝑦 = 14, as confirmed by Kolmogorov-Smirnov test), one may be doubtful about the 
conclusion of the Student’s 𝑡-test. The Wilcoxon test is an alternative to overcome this problem, which 
does not require the normality of the parent population the sample comes from. It is to be noted that the 
Wilcoxon test assumes that the two distributions are identical, and is a popular alternative to Student’s 𝑡-
test for comparing two populations with respect to locations (medians). On the other hand, the conclusion 
of both transformed 𝑡 tests appears to be valid because transformations were intended to achieve 
normality.  
 
Looking at the results of example 2, it is evident that the new test 𝑡(𝑛) provides the strongest evidence (𝑝-
value=0.9829) among all tests in favor of the null hypothesis when 𝑋 and 𝑌 actually come from the 
gamma 𝐺(2,1)  distribution with identical mean = 2 and variance = 2. The second strongest evidence is 
given by 𝑡(𝑙), following Wilcoxon test and Student’s 𝑡-test. In order to provide justifiable confidence in 
the performance of several tests, the common practice is to carry out a simulation study where results can 
be compared from the repetition of the tests applied to known distributions and parameters. To this end, 
let us have a critical look at the simulation results.  
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Table 4 Simulated power of various tests at 5% significance level over 5,000 samples 

𝛼 (𝑚, 𝑛) 
∆= 0.15 ∆= 0.25 

𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) 𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) 

 
(10,10) 0.173 0.478 0.584 0.657 0.341 0.656 0.766 0.817 

 
(15,15) 0.199 0.668 0.761 0.872 0.399 0.838 0.911 0.965 

 
(20,20) 0.219 0.799 0.873 0.958 0.463 0.936 0.968 0.993 

0.25 (25,25) 0.255 0.879 0.934 0.985 0.506 0.971 0.990 0.999 

 
(15,10) 0.169 0.577 0.702 0.809 0.362 0.740 0.852 0.888 

 
(20,15) 0.212 0.722 0.822 0.937 0.413 0.874 0.941 0.980 

 
(25,20) 0.241 0.825 0.908 0.977 0.481 0.944 0.978 0.996 

  
∆= 0.15 ∆= 0.25 

 
(10,10) 0.078 0.180 0.230 0.270 0.159 0.324 0.396 0.462 

 
(15,15) 0.097 0.264 0.332 0.426 0.200 0.469 0.551 0.678 

 
(20,20) 0.120 0.354 0.422 0.550 0.241 0.599 0.668 0.807 

0.50 (25,25) 0.131 0.420 0.505 0.646 0.263 0.705 0.769 0.890 

 
(15,10) 0.080 0.241 0.311 0.431 0.173 0.392 0.490 0.645 

 
(20,15) 0.102 0.299 0.387 0.538 0.224 0.528 0.629 0.793 

 
(25,20) 0.124 0.388 0.490 0.648 0.257 0.626 0.726 0.868 

  
∆= 0.50 ∆= 0.65 

 
(10,10) 0.222 0.301 0.362 0.403 0.346 0.452 0.516 0.569 

 
(15,15) 0.303 0.458 0.525 0.609 0.453 0.620 0.700 0.784 

 
(20,20) 0.379 0.591 0.647 0.740 0.553 0.772 0.811 0.886 

1 (25,25) 0.424 0.682 0.740 0.825 0.638 0.849 0.892 0.941 

 
(15,10) 0.259 0.390 0.467 0.561 0.399 0.538 0.627 0.729 

 
(20,15) 0.326 0.517 0.600 0.703 0.503 0.689 0.763 0.859 

 
(25,20) 0.397 0.615 0.707 0.806 0.600 0.793 0.852 0.923 

  
∆= 0.65 ∆= 0.85 

 
(10,10) 0.181 0.196 0.236 0.255 0.274 0.301 0.348 0.376 

 
(15,15) 0.250 0.304 0.347 0.372 0.381 0.450 0.502 0.541 

 
(20,20) 0.313 0.399 0.445 0.475 0.484 0.587 0.641 0.681 

2 (25,25) 0.365 0.472 0.530 0.570 0.565 0.678 0.730 0.774 

 
(15,10) 0.212 0.254 0.312 0.344 0.316 0.371 0.439 0.485 

 
(20,15) 0.269 0.330 0.395 0.435 0.430 0.509 0.582 0.632 

 
(25,20) 0.334 0.421 0.485 0.526 0.522 0.627 0.689 0.737 

  
∆= 0.85 ∆= 1.25 

 
(10,10) 0.087 0.073 0.093 0.100 0.129 0.121 0.138 0.145 

 
(15,15) 0.107 0.104 0.121 0.125 0.190 0.183 0.207 0.216 

 
(20,20) 0.131 0.132 0.141 0.149 0.239 0.236 0.256 0.265 

10 (25,25) 0.157 0.159 0.172 0.178 0.283 0.289 0.308 0.317 

 
(15,10) 0.097 0.091 0.105 0.115 0.146 0.148 0.164 0.174 

 
(20,15) 0.120 0.116 0.133 0.141 0.210 0.204 0.232 0.240 

 
(25,20) 0.149 0.146 0.163 0.169 0.246 0.249 0.273 0.283 
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Table 5 Estimated rejection rates at 5% level, along with average and standard deviation (S.D) of �̂� 

  
Level of significance Average S.D 

𝛼 (𝑚, 𝑛) 𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) �̂�𝑙 �̂�𝑛 �̂�𝑙 �̂�𝑛 

 
(10,10) 0.031 0.041 0.051 0.054 0.136 0.170 0.062 0.081 

 
(15,15) 0.036 0.048 0.056 0.056 0.137 0.167 0.053 0.075 

 
(20,20) 0.037 0.050 0.053 0.054 0.137 0.163 0.050 0.061 

0.25 (25,25) 0.042 0.051 0.055 0.056 0.136 0.163 0.048 0.055 

 
(15,10) 0.035 0.052 0.055 0.056 0.137 0.168 0.056 0.087 

 
(20,15) 0.040 0.047 0.050 0.054 0.138 0.166 0.050 0.065 

 
(25,20) 0.039 0.051 0.053 0.055 0.136 0.164 0.049 0.058 

 
(10,10) 0.042 0.045 0.054 0.055 0.194 0.226 0.102 0.171 

 
(15,15) 0.038 0.036 0.045 0.051 0.200 0.228 0.078 0.115 

 
(20,20) 0.040 0.044 0.047 0.050 0.204 0.227 0.065 0.088 

0.50 (25,25) 0.041 0.045 0.047 0.049 0.204 0.226 0.058 0.077 

 
(15,10) 0.042 0.044 0.050 0.054 0.198 0.227 0.087 0.132 

 
(20,15) 0.043 0.047 0.052 0.053 0.203 0.228 0.070 0.100 

 
(25,20) 0.040 0.043 0.047 0.051 0.203 0.227 0.061 0.081 

 
(10,10) 0.040 0.040 0.046 0.051 0.241 0.271 0.170 0.254 

 
(15,15) 0.047 0.045 0.052 0.055 0.249 0.273 0.130 0.177 

 
(20,20) 0.045 0.048 0.049 0.053 0.253 0.271 0.109 0.139 

1 (25,25) 0.043 0.047 0.047 0.049 0.257 0.273 0.096 0.118 

 
(15,10) 0.049 0.051 0.057 0.058 0.246 0.274 0.149 0.208 

 
(20,15) 0.050 0.049 0.052 0.054 0.250 0.272 0.117 0.153 

 
(25,20) 0.044 0.047 0.050 0.053 0.255 0.273 0.102 0.128 

 
(10,10) 0.040 0.039 0.047 0.053 0.269 0.293 0.273 0.377 

 
(15,15) 0.052 0.046 0.054 0.054 0.271 0.289 0.211 0.270 

 
(20,20) 0.046 0.045 0.051 0.054 0.282 0.297 0.175 0.209 

2 (25,25) 0.048 0.048 0.050 0.051 0.289 0.302 0.155 0.181 

 
(15,10) 0.044 0.044 0.048 0.051 0.269 0.287 0.236 0.307 

 
(20,15) 0.049 0.045 0.052 0.055 0.280 0.297 0.194 0.239 

 
(25,20) 0.052 0.049 0.053 0.054 0.279 0.291 0.164 0.193 

 
(10,10) 0.047 0.042 0.050 0.053 0.260 0.238 0.565 0.653 

 
(15,15) 0.043 0.038 0.046 0.048 0.276 0.276 0.475 0.542 

 
(20,20) 0.045 0.044 0.048 0.051 0.304 0.302 0.414 0.462 

10 (25,25) 0.051 0.051 0.052 0.053 0.299 0.307 0.374 0.414 

 
(15,10) 0.044 0.043 0.048 0.052 0.276 0.264 0.508 0.586 

 
(20,15) 0.052 0.048 0.055 0.056 0.282 0.280 0.443 0.503 

 
(25,20) 0.049 0.046 0.051 0.054 0.292 0.295 0.391 0.437 

   
 From simulation results presented in Table 4, it follows that the new transformed test 𝑡(𝑛) provides 
the maximum power for all sample sizes, equal (𝑚 = 𝑛) and unequal (𝑚 ≠ 𝑛), among all four tests 
considered. We consider equal sample sizes (𝑚 = 𝑛) at 10, 15, 20 and 25. Note that the lower value of 
the shape parameter 𝛼 corresponds to the higher value of the skewness. To evaluate the performance for 
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varying values of skewness, we consider values of 𝛼 from 0.25 to 10 with arbitrary increases to its values 
to cause skewness to decrease from 4 to 0.6 as appeared in Table 3. From the reported results of Table 4, 
it follows that all tests demonstrate higher power as mean difference ∆ and sample size increase.  The new 
test 𝑡(𝑛) has always performed best in terms of estimated testing power; the second best has been the 𝑡(𝑙) 
test. However, as expected, the nonparametric test w has demonstrated higher power than the Student’s 𝑡-
test.  Also, the differences in power among four tests have decreased as the skewness of the distribution 
has decreased. It makes sense because Wilcoxon and transformed tests are expected to perform better for 
skewed distribution; the higher the skewness, the better is their performance with respect to the testing 
power.  
 
 Regarding the simulated rates under the null hypothesis, it follows from the result of Table 5 that the 
estimated level of significance is lower than the nominal significance of 5% for Student’s 𝑡 throughout 
the simulation, with estimated values ranging from 0.031 to 0.052, under null hypothesis. Indeed, the 
estimated levels of significance seem to be underestimated for all sample sizes for highly skewed 
distributions (𝛼 = 0.25, 0.50) and approach the nominal level as the skewness decreases (𝛼 = 1, 2, 10).  
The estimated rejection rates for Wilcoxon test is close to the nominal level of 5%, with estimated values 
ranging from 0.036 to 0.052, under null hypothesis. On the other hand, the estimated rejection rates for 
both versions of transformed tests are comparable at 5% level of significance, with estimated values 
ranging from 0.045 to 0.057 for 𝑡(𝑙) test, and 0.048 to 0.058 for 𝑡(𝑛) test, under null hypothesis. 
 
 The estimated average and standard deviation of �̂�𝑙 and �̂�𝑛 over 5,000 simulations under null 
hypothesis are also reported in Table 5, where the search for �̂�𝑙 and �̂�𝑛 is made in the interval [-1,1] with 
an increment of 0.1. It follows that the average and standard deviation of �̂�𝑙 and �̂�𝑛 depend on the levels 
of skewness of the distributions, with standard deviation of both decreasing with the increase of the 
sample sizes for a given value of skewness. In terms of average and standard deviation values of �̂�𝑙 and 
�̂�𝑛 , similar conclusions apply under the alternative hypothesis where powers are calculated and therefore, 
are not reported in Table 4 to avoid redundancy.  
 

7. Conclusions 

 

This article proposes a new transformed 𝑡-test where the Box-Cox transformation to normality is achieved 
via a univariate normal goodness-of-fit test. To this end, we i) apply Shapiro and Wilk test to the 
combined standardized transformed samples to fit into the N(0,1) distribution, ii) estimate the best 
transformation to normality by observing the maximum 𝑝-value from the Shapiro and Wilk test for all 
possible values of 𝜆 ∈ {−1: 0.1: 1} and iii) apply student’s 𝑡-test to the best normal transformed samples 
to compare location parameters (means). The performance of the new test over Student’s 𝑡-test, Wilcoxon 
test and an existing transformed 𝑡-test achieved via likelihood method has been justified by two examples 
and simulations where data comes from skewed distributions (gamma distribution). It is evident that the 
new test is appropriate for estimating the level of significance and is more powerful than other three tests 
considered for skewed distributions. It is also clear that higher the skewness, the better are the 
transformed 𝑡-tests in terms of the testing power, with the new transformed 𝑡(𝑛) test performing the best. 
It makes sense because if the data is less skewed or almost no skewed at all, the power transformation will 
not be needed or appropriate. It follows that the power of all tests is sensitive to the mean difference and 
sample size; the power of all tests increases with the increase in the mean difference of two population 
means and the size of the samples. Because of the simplicity of the applications of the new test, 
researchers can practice the proposed test as an alternative to nonparametric Wilcoxon test for its better 
power under alternative hypothesis and a reasonable estimate of level of significance under the null 
distribution. Overall, the Wilcoxon test is better in power than the Student’s 𝑡-test and transformed 𝑡-tests 
are better than the Wilcoxon test with the new proposed test 𝑡(𝑛) demonstrating the highest power. If 
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researchers are too concern about the estimated level of significance, they might consider Wilcoxon test 
because of its robustness. However, if power is of the concern, the new test performs the best. 
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