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Abstract
A semiparametric model is a class of statistical models, characterized by a finite-dimensional parameter and an

infinite-dimensional parameter. In many cases, we are interested in inference of the finite-dimensional parameter.
The efficiency of the inference is reduced by the nuisance infinite dimensional parameter, and we deem an estimator
semiparametric efficient when the estimator of the finite dimensional parameter minimizes the efficiency loss. We
suggest a general method to implement the semiparametric efficient estimation by representing the projection operator
by the kernel function. Our proposed method does not restrict how the infinite-dimensional parameter is estimated,
and thus our method can enable efficient estimation for a wide range of semiparametric models. We also prove the
guarantee of our method, and conduct some numerical experiments.
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1. Introduction

A semiparametric model is a class of statistical models, characterized by a finite-dimensional parameter
θ ∈ Rp and an infinite-dimensional parameter η ∈ H. p is the number of dimensions of θ, and H is
an Hilbert space. We consider the general scheme ”M-estimator” where the estimator are obtained by
minimizing criteria functions, and denote the criteria function of the semiparametric model as m(Z, θ, η)
with n i.i.d. observations {Zi}ni=1. We obtain the estimators (θ̂, η̂) by optimizing the empirical mean of the
criteria function m(Z, θ, η) as

(θ̂, η̂) = argmax
(θ,η)

1

n

n∑
i=1

m(Zi, θ, η).

The class of semiparametric models includes numerous statistical models, and such models are used in
many fields. As examples, consider the partially linear regression model (Härdle and Liang (2007)) , Cox
regression model (Cox (1972)), single index model (Ichimura (1993)), and so on. Our main interest is to
conduct inference of θ, and we treat η as a nuisance parameter. In many cases, we separately estimate η by
some nonparameteric estimation, and then estimate θ and evaluate the estimator by deriving an asymptotic
distribution of the estimator of θ.

When statistical models have the nuisance parameter η, there is an efficiency loss of the estimator of θ.
When the efficiency loss is minimized, we deem the estimator of θ to be semiparametric efficient estimation.
Its properties are discussed in many literatures; for example, Begun et al. (1983), Bickel et al. (1993), van
der Vaart (2000), Tsiatis (2007), and Kosorok (2007). According to the literatures, when the score function
of θ is orthogonal to the score function of η, we can minimize the efficiency loss from the nuisance parameter
η. To achieve the orthogonality, the efficient score function is defined as

(I −Πθ,η)
∂

∂θ
m(Z, θ, η), (1)

where I is an identity operator and Πθ,η is a projection operator onto a linear space spanned by the score
function of η. The inference of θ with the efficient score function enable the semiparametric efficient esti-
mation.
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To evaluate the efficient score function, some researches provide methods for efficient estimation in
general semiparametric models without the analytical form of the efficient score function. These researches
does not depend on the functional form of the semiparametric models, thus they are acceptable for a wide
range of the semiparametric models. Shen (1997) provides a method for semiparametric models when η
is estimated by a sieve method and the estimation is to be a maximum likelihood estimation. Severini and
Wong (1992) and Ai (1997) provide a method for models that can be decomposed into a specific form. The
method by Ai and Chen (2003) can solve a wide range of semiparametric models by estimating η using the
sieve method.

Our research provides a method to derive the efficient score function by estimating the projection op-
erator Πθ,η without its analytical form. Our method numerically approximates the projection operator in
matrix form and derives the semiparametric efficient score function with n observations. When estimating
the projection operator, we represent the operator by reproducing kernel function. The usage of the ker-
nel function depends on a theory of Reproducing kernel Hilbert space (henceforth RKHS; for details, see
Berlinet and Thomas-Agnan (2004)), and we handle the operator for the semiparametric score function by
a linear combination of terms with the kernel function.

An advantage of our method is that our method can enable semiparametric efficient estimation without
restriction on the estimation method for η, such as using only the sieve method. As long as η is in RKHS, we
can accept any nonparametric estimation method for η, such as empirical distribution or Nadaraya-Watson
estimation. Thus, our method can realize a better convergence rate for η than the sieve method. Moreover,
we can avoid misspecification from the selection of the number of basis for the sieve estimation.

The rest of this paper is organized as follows. Section 2 provides a preliminary theoretical basis for
semiparametric estimation, by drawing theories from existing works. Section 3 is the main part of this
paper, wherein we provide an estimation method for semiparametric efficient estimation and its theoretical
aspects. Section 4 contains numerical experiments, and section 5 concludes. The proofs of all theorems,
lemma, and propositions are given in the supplementary materials.

2. Preliminary

As a short, we provide a general scheme of the semiparametric model. This section discusses the formation
of semiparametric models, the asymptotic normality of a semiparametric estimator, and the semiparametric
efficiency of the same.

2.1 Semiparametric model

Consider a statistical model Pθ,η(Z), where θ and η are parameters. θ is a finite-dimensional parameter
θ ∈ Θ ⊂ Rp, where Θ is a compact parameter space, and p denotes the number of dimensions. η is an
infinite-dimensional parameter η ∈ H, where H is a Hilbert space with norm ∥ · ∥H. We have n i.i.d.
observations {Zi}ni=1 from Pθ,η(Z). For i = 1, . . . , n, Zi ∈ Z , where Z is a sample space. We consider
that m(Z, θ, η) : Z ×Θ×H → R is a known deterministic criteria function. The value of the unique true
parameters (θ0, η0) and the estimator for parameters (θ̂, η̂) satisfy the following,

(θ0, η0) = argmaxE[m(Z, θ, η)],

(θ̂, η̂) = argmax
1

n

n∑
i=1

m(Zi, θ, η). (2)

In most empirical researches, we treat η as a nuisance parameter, and thus we do not care about the
inference of η but are interested in the value of θ. From now on, we discuss the estimation properties of θ.
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2.2 Asymptotic properties of the estimator

In this part, we show the asymptotic properties of the estimator of θ, which is the parameter of interest.
Mainly, we provide the asymptotic normality of θ̂. There are many approaches to show the asymptotic
normality, for instance Bickel et al. (1993), van der Vaart (2000) and Tsiatis (2007). In this research, we
show formulation based on Kosorok (2007).

We first define the following derivatives,

m1(Z, θ, η) :=
∂

∂θ
m(Z, θ, η),

m2(Z, θ, η)[f ] :=
∂

∂η
m(Z, θ, η)[f ].

The first term m1(Z, θ, η) is an ordinal partial derivative with respect to θ. The second term m2(Z, θ, η) is
a Gateaux derivative with respect to the infinite-dimensional parameter η. To implement the derivative, a
derivative path function f : Z → R is needed. Thus, we obtain

∂

∂η
m(Z, θ, η)[f ] = lim

t→ 0

m(Z, θ, η + tf)−m(Z, θ, η)

t
.

In van der Vaart (2000), this is expressed as a one-dimensional submodel. The choice of f is arbitrary, and
we denote a set of possible f as A. How to select f from A is the critical point of the semiparameteric
efficient estimation, and we will discuss later.

Higher-order derivatives are similarly defined as

m11(Z, θ, η) :=
∂

∂θ
m1(Z, θ, η),

m21(Z, θ, η)[f ] :=
∂

∂θ
m2(Z, θ, η)[f ],

m12(Z, θ, η)[f ] :=
∂

∂η
m1(Z, θ, η)[f ],

m22(Z, θ, η)[f1][f2] :=
∂

∂η
m2(Z, θ, η)[f1][f2],

where f1 and f2 are some derivative path functions in A. Also, denote f = (f1, . . . , fp) be a set of p path
functions, and denote m2(Z, θ, η)[f ] = (m2(Z, θ, η)[f1], . . . ,m2(Z, θ, η)[fp]) be a p-dimensional vector.
m12(Z, θ, η)[f ],m21(Z, θ, η)[f ], and m22(Z, θ, η)[f1][f2] are defined in the same say as p× p matrices.

We provide formulation for the estimation of θ. For general semiparametric M-estimators, the estimator
is obtained by optimizing the empirical criteria function (2). We define a score function as

m̃(Z, θ, η)[f ] := m1(Z, θ, η)−m2(Z, θ, η)[f ], (3)

with some set of derivative path functions f . Thus, we obtain the estimator θ̂ by solving the equation

1

n

n∑
i=1

m̃(Zi, θ, η̂)[f ] = 0,

with some f and substituted estimator η̂.
Using second-order derivatives, we define a Hesse matrix Hθ,η[f1, f2] as

Hθ,η[f1, f2] :=E [m11(Z, θ, η) +m12(Z, θ, η)[f2] (4)

+m21(Z, θ, η)[f1] +m22(Z, θ, η)[f1][f2]] .

Using previous notation, we now show the conditions for asymptotic normality.
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Assumption 1. Z is compact and the criteria function m(Z, θ, η) is second-order Gateaux differentiable
with respect to θ and η.

Assumption 2. Assume

∥θ̂ − θ0∥ = oP (1),

∥η̂ − η0∥H = OP (n
−c1),

where c1 is some positive constant.

Assumption 2 requires the consistency of estimators. In this research, we focus on the asymptotic
distribution of the estimators, thus we omit the discussion about the consistency. The sufficient condition to
obtain the consistency is discussed in detail in van de Geer (2000) and Kosorok (2007). The convergence
rate of η̂ is discussed in many literatures. For example, in Tsybakov (2009), when η is contained in the
Sobolev class with order β, the sieve methods provides ∥η̂ − η0∥H = OP (n

−β/(2β+1)).

Assumption 3. For all f1, f2 ∈ Ap, the Hessian Hθ0,η0 [f1, f2] and E[m̃(Z, θ0, η0)[f1]m̃(Z, θ0, η0)[f1]
T ] are

invertible and their determinants are finite.

This assumption is about the regularity condition of the Hesse matrix.

Assumption 4. Let Mn = {(θ, η) : ∥θ − θ0∥ = oP (1), ∥η − η0∥H = OP (n
−c1)} and Fn = {m(Z, θ, η) :

Z ∈ Z, (θ, η) ∈ Mn}. Then, ∫ 1

0

√
logN[](ϵ,Fn, ∥ · ∥2)dϵ < ∞,

where N[](·,F , ∥ · ∥) is a bracketing numbers of F with norm ∥ · ∥.

Assumption 4 yields that the criteria function m(Z, θ, η) satisfies stochastic equicontinuity in Mn. The
class of functions that satisfy the entropy condition is called Donsker, and the criteria function, belonging to
the Donsker class, has asymptotic equicontinuity.

Assumption 5. Let c2 > max{1, 1
2c1

} and δn be a sequence of positive constant converges to 0. For all
(θ, η) ∈ Mn and f ∈ A,

|E[{m1(Z, θ, η)−m1(Z, θ0, η0)} −m11(Z, θ, η)(δθ)−m12(Z, θ, η)[δη/∥δη∥H]
= o(∥δθ∥) +O(∥δη∥c2H),

|E[{m2(Z, θ, η)−m2(Z, θ0, η0)} −m21(Z, θ, η)[f ](δθ)−m22(Z, θ, η)[f ][δη/∥δη∥H]∥δη∥H]|
= o(∥δθ∥) +O(∥δη∥c2H),

where δθ = θ − θ0, δη = η − η0.

Assumption 5 is for local smoothness. This assumption means that the criteria function has higher
smoothness in a small ball around the true parameter (θ0, η0). This kind of condition is common in semi-
parametric literature.

Given the above conditions, the following theorem for asymptotic normality is obtained.

Theorem 1. Consider the estimator in (2). If assumptions 1,2,3,4, and 5 hold, then ∀f1, f2 ∈ Ap,
√
n(θ̂ − θ0) → N (0,H−1

0,f1,f2
Σf1H

−1
0,f1,f2

),

where

H0,f1,f2 = Hθ0,η0 [f1, f2], (5)

Σf1 = E
[
m̃(Z, θ0, η0)[f1]m̃(Z, θ0, η0)[f1]

T
]
. (6)

This result is based on a theorem by Kosorok (2007) and its proof is in appendix.
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2.3 Semiparametric efficient estimation

In this part, we review and formalize a theory of semiparametric efficient estimation, that is discussed by
van der Vaart (2000), Tsiatis (2007), and other researches in great detail. To simplify, we set p = 1, and
conduct the semiparametric efficient estimation. In p > 1 case, we can trivially expand the following
discussion to the multi-dimensional case. Preliminarily, we consider a set of the score function of η as
N = {m2(Zi, θ, η)[f ]|f ∈ A}, and space lin(N ), named a nuisance tangent space.

The score function (3) is affected by the perturbations of θ and η. When conducting the inference of
η, the perturbation of η reduces the efficiency of the inference of θ. Thus, we let the score function (3) be
orthogonal to the perturbation of η, by the proper choice of f , which is arbitrary in previous part. To enable
the efficient estimation, the score function m̃(Z, θ, η)[f ] should be orthogonal to the nuisance tangent space,

m̃(Z, θ, η)[f ] ⊥⊥ m2(Z, θ, η)[f ].

We denote f∗ as the derivative path that satisfies the above orthogonal condition, and we call m̃(Z, θ, η)[f∗]
as an efficient score function. To derive the efficient score function with proper derivative path f∗, it is
necessary to obtain a projection operator to the nuisance tangent space.

To obtain the projection operator to the nuisance tangent space, we denote that

Bθ,η[f ] := m2(Z, θ, η)[f ], (7)

where B : A → lin(N ) is an operator. It is a mapping that takes a derivative path function f as argument,
and returns the score function of η. Denote B∗

θ,η is an adjoint operator of Bθ,η. For efficient estimation, the
following conditions must hold.

Assumption 6. The following conditions hold.

1. Bθ,η is a bounded linear operator.

2. B∗
θ,ηBθ,η is continuously invertible.

3. ∃f∗, ∀f ∈ H, E[m12(Z, θ, η)[f ]−m22(Z, θ, η)[f ][f
∗]] = 0.

From the above assumption, we can denote the projection operator Πθ,η : A → lin(N ) as

Πθ,η = Bθ,η(B
∗
θ,ηBθ,η)

−1B∗
θ,η. (8)

Given the projection operator, we can obtain the efficient score function with f∗ by the following calculation
with some f ;

m̃(Z, θ, η)[f∗] = (I −Πθ,η)m̃(Z, θ, η)[f ]

= (I −Πθ,η)(m1(Z, θ, η)−m2(Z, θ, η)[f ])

= m1(Z, θ, η)−m2(Z, θ, η)[f ]−Πθ,ηm1(Z, θ, η) +m2(Z, θ, η)[f ]

= (I −Πθ,η)m1(Z, θ, η), (9)

where I is an identity operator. Using this operation, we can evaluate the score function in the orthogonal
complement space of the nuisance tangent space. Thus, (I−Πθ,η)m1(Z, θ, η) is the efficient score function,
and we can evaluate it without deriving f∗ directly.

Finally, the semiparametric efficient estimation is enabled given the following estimation equation:

1

n

n∑
i=1

(I −Πθ,η)m1(Zi, θ, η) = 0. (10)

The above estimation equation (10) is orthogonal to the score function of η, thus the estimation avoids the
efficiency loss from the nuisance parameter η.
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2.3.1 Relation with efficient variance bound

For maximum likelihood estimation, m(Z, θ, η) = log(p(Z, θ, η)), and the asymptotic variance from the
efficient score estimation corresponds to a semiparametric efficient variance bound. This is discussed in
detail in van der Vaart (2000).

3. Proposed method

In this section, we suggest a method to implement semiparametric efficient estimation for general semipara-
metric models. For the estimation, our method evaluate the efficient score (9) by estimating the projection
operator (8), and solve the estimation equation (10) with the efficient score. We evaluate the score operator
(7) by representation based on the theory of the reproducing kernel Hilbert space (RKHS). The representa-
tion of the score operator enables us to evaluate the projection operator and construct the efficient estimation
equation.

3.1 Kernel representation

A representation based on the RKHS is a way of representing a component of Hilbert space by a kernel
function. Consider a kernel function satisfying k(z, z′) : Z × Z → R, which satisfies symmetry; wherein
∀z, z′, k(z, z′) = k(z′, z) and positive semi-definite; and wherein ∀zi, ∀{ci} ∈ R,

∑
i,j cicjk(zi, zj) ≥ 0.

Denote Hk is an RKHS with kernel k, with an inner product ⟨·, ·⟩. Aronszajn (1950) shows that kernel
k uniquely determines RKHS Hk. The space has properties: (i) k(·, z) ∈ Hk, (ii) linear hull of {k(·, z)}
is dense in Hk, and (iii) reproducing property, that is ∀f(·) ∈ Hk, f(z) = ⟨f, k(·, z)⟩. These theories are
described in Berlinet and Thomas-Agnan (2004).

Our purpose is to evaluate the projection operator Πθ,η. First, we estimate the score operator Bθ,η by
a representation based on the reproducing kernel. We restrict Bθ,η. Consider some function f ∈ Hk and
Bθ,η[f ] with some fixed θ and η. Then, we consider a class of linear operators,

Tk :=

{
B : Hk → Hk

∣∣∣∣B[f ](·) =
∫
Z
λ(z)k(·, z)f(z)dµ(z),∀f ∈ Hk

}
, (11)

with some function λ(z) ∈ Hk and µ(·) is a measure of z. This is a part of the Fredholm integral operator.
The Fredholm integral operator is an operator with form

B[f ] =

∫
Z
K(·, z)f(z)dµ(z),

with integral kernel function K : Z × Z → R and where K is not necessarily symmetric. When K can be
decomposed as K(z, z′) = λ(z)k(z′, z), the operator defined by K belongs to Tk.

Assumption 7. For all θ, η ∈ Mn, Bθ,η ∈ Tk.

This assumption is critical. A linear bounded operator that satisfies this assumption with restriction
has a finite-dimensional kernel and cokernel, and accepts the decomposition K(z, z′) = λ(z)k(z′, z). A
multiplication kernel satisfies the above assumption by reproductivity, and some semiparametric models
such as partially linear models satisfy it directly.

With fixed f and reproducing k, we construct an estimator of Bθ,η of the following form:

B̂θ,η[f ] =
∞∑
i=1

w′
θ,η,ik(·, zi)f(zi), (12)
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where {w′
θ,η,i} is a set of weights. We now mention the representer theorem described in Schölkopf et al.

(2001). This theorem guarantees that the sum of n kernels is sufficient to optimize an empirical minimization
problem with n observations and penalty. In other words, only n bases can optimize an optimization problem
with n observation. The representer theorem justifies the representation of the function by n kernels, and
we apply it for the operator.

Drawing from the above, we theoretically show that n kernels are sufficient to estimate an operator is an
empirical minimization problem. Define a norm of Bθ,η as ∥Bθ,η∥B =

√∑
iw

2
θ,η,i, and increasing penalty

function Ω(·).

Proposition 1. Consider an optimization problem with n observations and a loss function l(·) : Zn×Tk →
R,

min
B∈Tk

l({Zi}ni=1, B) + Ω(∥B∥B).

Then, the minimizer of the problem is represented by {f(Zi)k(Zi, z)}ni=1.

The proof is in the appendix. Finally, by calculating only n components, {wθ,η,i}ni=1, we evaluate
operator Bθ,η, for n observations and an arbitrary f .

3.2 Operator estimation

In this subsection, we show how to estimate Bθ,η using the kernel, and represent Πθ,η. There are three steps:
(i) obtain numerical functional derivative values {m2(Zi, θ, η)[f ]}ni=1 for n samples with some function f ∈
Hk, (ii) estimate the weight {wθ,η,i}ni=1 with the derivative coefficients as training data, and (iii) construct
Π̂θ,η by using B̂θ,η from the estimated {wθ,η,i}ni=1. Thus, we solve the efficient estimation problem.

(i) Obtain derivatives: Calculate the functional derivative values m2(Z, θ, η)[f ] numerically with obser-
vations {Zi}ni=1 with given (θ, η). Here, the derivative path function f is an arbitrary measurable function.
Then, we derive empirical numerical values of the derivative coefficients as

m̂2(Zi, θ, η)[f ] = lim
t→ 0

m(Zi, θ, η + tf)−m(Zi, θ, η)

t
,

and obtain numerical value of {m̂2(Zi, θ, η)[f ]}ni=1.
(ii) Estimate weights of the estimated operators: We estimate Bθ̂,η̂. In line with the previous proposition,

we represent the estimator as

B̂[f ](z) =
1

n

n∑
i=1

wif(Zi)k(Zi, z), (13)

where {wi}ni=1 denotes some weights. To obtain the weights, we consider the following problem

min
B̂∈Tk

1

n

n∑
i=1

(
m̂2(Zi, θ, η)[f ]− B̂[f ](Zi)

)2
+ κnΩ(∥B∥B), (14)

where κn is a positive finite penalty coefficient, and converges to zero as n → ∞. The penalty term is to
avoid overfitting in the estimation problem. Then, this optimization problem can be rewritten as

min
{w}nj=1

1

n

n∑
i=1

m̂2(Zi, θ, η)[f ]−
1

n

n∑
j=1

wjf(Zj)K(Zj , Zi)

2

+ κnΩ(∥B∥B). (15)
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We rewrite this problem in matrix form:

Y =

m̂2(Z1, θ, η)[f ]
...

m̂2(Zn, θ, η)[f ]

 ,K =

k(Z1, Z1) . . . k(Z1, Zn)
...

. . .
...

k(Zn, Z1) . . . k(Zn, Zn)

 ,

F =

f(Z1)
...

f(Zn)

 ,W =

w1
...
wn

 .

Then, we rewrite problem (14) as

min
W∈Rn

1

n
∥Y −K[F ◦W ]∥22 + κn∥W∥22,

where ◦ means element multiplication. First, we define an extended gram matrix K ∈ Rn×n with elements

Kij = k(Zi, Zj)fj .

From the optimal conditions of the problem, the minimizer can be written as

Ŵ = (K
T
K + κnIn)

−1K
T
Y,

where In is an identity matrix with size n × n. Thus, we can estimate {wi}, which is invariant to f as the
argument.

(iii) Construct operators: Provide the estimator of Πθ,η. We define a weighted gram matrix Gθ,η ∈
Rn×n with elements

Gθ,η,ij = k(Zi, Zj)ŵθ,η,j .

Then, we can evaluate the operator with n observations. Consider the vector of f(Zi). By multiplying Gθ,η,
we obtain an image of f(Zi):

B̂θ,η[f ](Z1)
...

B̂θ,η[f ](Zn)

 = Gθ,η

f(Z1)
...

f(Zn)

 . (16)

We define the estimator of the projection operator as

Π̂θ,η := B̂θ,η(B̂
∗
θ,ηB̂θ,η)

−1B̂∗
θ,η.

Then, the element representation of Π̂ can be given as

Π̂θ,η[f ](Zi) =

n∑
j=1

[Gθ,η(G
T
θ,ηGθ,η)

−1GT
θ,η]ijf(Zj). (17)

Using this form, we can evaluate the value of Πθ,ηf for all f with n observations.
Using this method, we can obtain an estimator of the efficient score:

ˆ̃m(Z, θ, η)[f∗] = (I − Π̂θ,η)m1(Z, θ, η).
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It enables us to rewrite the optimal condition (10) using matrix Gθ,η̂,

0 =
1

n

n∑
i=1

(I − Π̂θ,η̂)m1(Zi, θ, η̂)

=
1

n
[In −Gθ,η̂(G

T
θ,η̂Gθ,η̂)

−1GT
θ,η̂]

m1(Z1, θ, η̂)
...

m1(Zn, θ, η̂)

 . (18)

Then, let the solution of the equation (18) be θ̂∗, and this is our proposed estimator.
Because the estimator from (18) is Z-estimator, we can improve its efficiency by one-step operation if

necessary. For detail, see van der Vaart (2000).

3.3 Theory underlying the method

We provide a theoretical aspect for our method. In this section, we show that B̂θ̂,η̂ and Π̂θ̂,η̂ are consistent
estimators, and that the suggested estimation problem (18) can provide an asymptotic distribution with
efficient variance. The proofs of all lemmas and theorems are in the appendix.

The following assumption is made. Denote λθ,η(z) be a function to represent Bθ,η ∈ Tk, in other words,
Bθ,η[f ] =

∫
λθ,ηk(·, z)f(z)dz.

Assumption 8. The following conditions hold.

1. Kernel function k is continuous, bounded, and positive semi-definite.

2. Let Λn = {λθ,η(z)k(z, z
′)f(z) : z, z′ ∈ Z, (θ, η) ∈ Mn, f ∈ Hk}. Then,∫ 1

0

√
logN[](ϵ,Λn, ∥ · ∥2)dϵ < ∞.

The first condition in the above assumption is a general condition for RKHS theory. The second condi-
tion requires that Λθ,η(Z)k(Z,Z ′)f(Z) is Donsker class, discussed in Assumption 4.

Finally, we show the limit distribution of the suggested optimization problem. Preliminary, we denote
the Hesse matrix and asymptotic variance using the efficient score. Let

H∗ := E [m11(Z, θ0, η0) +m22(X, θ0, η0)[f
∗][f∗]] , (19)

Σ∗ := E[m̃(Z, θ0, η0)[f
∗]m̃(Z, θ0, η0)[f

∗]T ], (20)

Then, the variance of the asymptotic distribution of θ̂ becomes H−1
∗ Σ∗H−1

∗ by Theorem 1.

Theorem 2. Consider the estimation problem (18). If Assumptions 1-8 hold,
√
n(θ̂∗ − θ0) → N (0,H−1

∗ Σ∗H−1
∗ ),

where κn = o(1/
√
n).

The proof is in the appendix.
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3.4 Relation with existing methods

A novelty of our proposed method is that our method can enable semiparametric efficient estimation without
restriction on the estimation method for the infinite dimensional parameters η. The existing methods, such
as Ai and Chen (2003), use the sieve method to estimate η, and implement the semiparametric efficient
estimation based on the properties of the sieve method. In contrast, our method focuses on the estimation of
the operator, thus we can accept any nonparametric estimation method for η, such as empirical distribution
or Nadaraya-Watson estimation. As a result, our method can avoid the difficulty of the sieve method, such as
a selection problem of the number of basis functions, and also can enjoy the benefit of other nonparametric
estimation methods.

4. Numerical Experiment

In this section, we provide results of numerical experiments to show the effectiveness of our method.
Throughout this section, we call our proposed method with the efficient score function as ‘our kernel
method’, and the estimation without the efficient score function as ‘the ordinal method’. Purpose of this
section is to illustrate that our kernel method reduces the variance of the estimator than the ordinal method.
We conduct the experiments using some specific semiparametric models, such as the partially linear model
and the copula model.

4.1 Partially linear model

The partially linear model is a typical semiparametric model. Let Z = (Y,X1, X2), where Y is a respondent
variable, and X1 and X2 are covariates. We assume that the observation is generated from

yi = xT1,iθ + η(x2,i) + ϵi,

where η(·) is an unknown function, and ϵi is a noise variable. When η(·) is nonlinear, this model can treat a
nonlinear relationship between X2 and Y . Since η(·) is an infinite-dimensional parameter, we estimate η(·)
using some nonparametric method.

Usually, the parameters are estimated using the least square method as

(θ̂, η̂) = argmin
1

n

n∑
i=1

[
yi − xT1,iθ − η(x2,i)

]2
. (21)

The estimation of η̂(·) is implemented by the sieve method or the Nadaraya-Watson method.
We estimate θ using the ordinal method and our proposed kernel method. In the ordinal method, we

estimate η by the linear sum of polynomial sieve functions and estimate θ based on η̂. We construct the total
score function m̃ of the partially linear model by differentiating the loss function in (21). Our kernel method
also uses the same method to estimate η(·), and we construct the efficient estimation equation (18), which
is based on m̃ obtained from the ordinary method and a Gaussian kernel. To implement the kernel method,
we select the tuning parameters h = 1.0 and κn = 5.0.

We replicate the estimation 200 times, for different values of θ and for different sample sizes. The mean
and variance of the estimator of θ are in Table 1. For every sample size and parameter value, both methods
provide consistent estimators. Variance is plotted in Figure 1, and the proposed kernel method reduces the
variance of the estimator.
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n Ordinal:Mean(Var) Kernel:Mean(Var)
θ = 1.0
100 0.970(0.102) 0.982(0.085)
200 0.997(0.047) 0.995(0.041)
300 0.995(0.037) 1.000(0.031)
400 1.007(0.026) 1.004(0.024)
500 0.999(0.027) 1.000(0.023)
θ = 3.0
100 3.008(0.122) 2.996(0.105)
200 3.007(0.051) 3.004(0.041)
300 3.008(0.036) 3.004(0.033)
400 3.017(0.021) 3.013(0.020)
500 2.997(0.024) 2.996(0.020)
θ = 5.0
100 4.957(0.080) 4.958(0.079)
200 5.013(0.045) 5.013(0.044)
300 5.033(0.035) 5.032(0.035)
400 4.970(0.025) 4.970(0.024)
500 5.000(0.019) 5.000(0.018)

Table 1: Mean and variance of the estimator of θ in partially linear model, from replication for 200 times
with each different true value of θ. The variance of the estimator is in parentheses.
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Figure 1: Variance of the estimator of θ in partially linear model, from replication for 200 times with each
different true value of θ. Numerical value is from table 1. Blue dashed line is by the ordinal method, and
red solid line is by the proposed kernel method.

4.2 Copula model

We conduct an experiment using a copula model with a Clayton-type copula function. The copula model is
used for representing a relationship between variables. In this case, we consider the copula model for two
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variables. Let Z = (X1, X2). The correlation of X1 and X2 is represented by a joint distribution function.
Let C(x1, x2; θ) → X ×X ×Θ → [0, 1] be a copula function and let the joint distribution function be

F (x1, x2) = C(F1(x1), F2(x2); θ),

where Fj(·) is a univariate distribution function of Xj . Functional forms have been suggested as the copula
function, and an example would be the Clayton-Cook-Johnson function of form

C(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ.

In this model, the distribution function Fj(·) is an infinite-dimensional parameter.
The parameter of interest θ is estimated using the maximum likelihood function as

θ̂ = argmax
1

n

n∑
i=1

log c(F̂1(x1,i), F̂2(x2,i); θ). (22)

F̂j(·) is an estimated distribution function, and c(·, ·; θ) is a pdf of the copula function.
We now provide our proposed method. We estimate θ using the ordinal method and our proposed kernel

method. In the ordinal method, we estimate F1(x1) and F2(x2) using an empirical distribution estimator,
and then substitute them into the copula function to estimate θ. We construct the total score function m̃ of
the copula model by differentiating the loss function in (22). Our kernel method also uses the same method
to estimate F1(x1) and F2(x2), and we construct an efficient estimation equation (18), which is based on m̃
obtained from the ordinary method and a Gaussian kernel. To implement the kernel method, we select the
tuning parameters h = 1.0 and κn = 5.0.

We replicate the estimation 200 times, for different values of θ and for different sample sizes. The
mean and variance of the estimators of θ are in Table 2. When θ is small, both methods provide consistent
estimators. As θ increases, both estimators develop a bias of almost the same size. Variance is plotted in
Figure 2, the proposed kernel method reduces the variance of the estimator.

n Ordinal:Mean(Var) Kernel:Mean(Var)
θ = 3.0
100 3.676(0.231) 3.615(0.167)
200 3.732(0.122) 3.662(0.090)
300 3.705(0.079) 3.610(0.043)
400 3.737(0.063) 3.654(0.049)
500 3.768(0.056) 3.608(0.038)
θ = 4.0
100 4.642(0.402) 4.346(0.306)
200 4.566(0.218) 4.024(0.141)
300 4.703(0.132) 4.085(0.106)
400 4.694(0.102) 4.101(0.068)
500 4.734(0.079) 4.152(0.048)
θ = 5.0
100 5.393(0.668) 5.120(0.620)
200 5.559(0.241) 4.799(0.225)
300 5.587(0.168) 4.619(0.134)
400 5.593(0.145) 4.550(0.084)
500 5.659(0.143) 4.654(0.085)

Table 2: Mean and variance of the estimator of θ in copula model, from replication for 200 times with each
different true value of θ. The variance of the estimator is in parentheses.
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Figure 2: Variance of the estimator θ in copula model, from replication for 200 times with each different
true value of θ. Numerical value is from table 2. Blue dashed line is by the ordinal method, and red solid
line is by the proposed kernel method.

5. Conclusion

We provide a method that enalbes semiparametric efficient estimation for a wide range of semiparametric
models. When the ordinal estimator of θ has root-n consistency and asymptotic normality, our method
enables semiparametric efficient estimation with some assumptions. Unlike other methods, our method
does not restrict how one estimates η. Thus, our method is applicable to a wide range of semiparametric
models.
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