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Abstract

The Pareto distribution is a heavy tailed distribution with many applications. In this paper
we consider a real world example with heavy tailed observations, which leads us to propose a
mixture truncated Pareto distribution (MTPD) and study its properties. There are difficulties in
the estimation of thresholds of the MTPD. We construct a cluster truncated Pareto distribution
(CTPD) by using a two-point slope technique to estimate the MTPD from a random sample.
The results of Monte Carlo simulations show that the two-point slope technique is useful for
estimating thresholds. Finally, we apply the MTPD and CTPD to the example which we
observed in the beginning and compare the proposed method with existing estimation methods.
The results of log-log plots and goodness-of-fit tests show that the MTPD and the cluster
estimation method produce a good fitting distribution with real world data.

Keywords: Extreme value distribution, goodness-of-fit test, Hill estimator, finite mixture distri-
bution, two-point slope, truncated Pareto distribution.

1. Introduction

There are many real world problems modelled as heavy tailed distributions, especially the Pareto
distribution. However, there are some difficulties in estimation of Pareto distributions. First,
the Pareto distribution has infinite moments in some heavy tailed cases. Therefore the moment
estimation method for the shape parameter cannot be used in these situations. It is a loss for the
estimation process since the moment estimator is a robust estimator. Several authors suggest
using a truncated Pareto distribution which always has finite moments (e.g., Beg, 1981; Aban,
et al., 2006; Coia and Huang, 2014).

The aim of this paper is to explore better modelling methods for complicated heavy tailed
observed real examples, like dangerous storms such as hurricanes, and floods. We would like to
provide better-fit estimated distributions to these extreme weather data sets in order to prepare
for the unknown future.
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Example. Flood Damage in Canada

Floods are events that can damage homes, businesses, and crops. One never knows the
extent to which the flood will damage a city or area, and when it happens the money to fix
the damage needs to be available. The data set for flooding in Canada is from Environment
Canada (2010), http://www.ec.gc.ca/eau-water/default.asp?lang=En&n=02A7110-1, where it
reports the cost that the federal government paid to respective provinces and territories after
major floods. The floods range from 1970 to 1998 in all of Canada. The data includes the top
34 flood damage costs that have been fully paid by the government (n = 34). The top 10 flood
losses in Canada are shown in Table 1. Figure 1 shows the histogram and estimated Pareto and
truncated Pareto distributions by using the maximum likelihood estimate (MLE) of the shape
parameter from the flood damage costs data. Figure 2 is a log-log plot of the data and estimated
Pareto distribution and truncated Pareto distribution.

Table 1. The top 10 flood damage costs in Canada, 1970-1998

|| Province or Territory || Year ” Damage Cost ($) ||
| Quebec | 1983 I 17,346,772 ||
| Manitoba | 1979 | 14,670,604 ||
| Manitoba | 1974 | 11,464,005 ||
| Manitoba (Winnipeg River) || 1993 I 11,291,186 ||
[ Quebec | 1974 I 8,670,477 |
| Alberta | 1990 I 8,229,503 ||
| Alberta || 1988 [ 7,787,911 ||
| Quebec | 1976 [ 7,582,330 ||
| British Columbia | 1990 I 7,343,629 ||
| Alberta | 1986 I 6,809,368 ||
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Figure 1. Histogram and fitting Pareto and truncated Pareto distributions of top 34 flood
damage costs in Canada, 1970-1998. The green line is the MLE estimated original Pareto
distribution; the blue dash line is the MLE estimated truncated Pareto distribution.
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Figure 2. Log-log plots and fitting Pareto and truncated Pareto distributions of top 34 flood
damage costs in Canada, 1970-1998. The red circles are the data; the green straight line is the
MLE estimated original Pareto distribution; the blue dash line is the MLE estimated truncated
Pareto distribution.

We apply Pareto and truncated Pareto models to fit the flood damage costs data set. The
maximum likelihood estimator (MLE) and the moment estimator for the shape parameter were
used. The results are shown in a log-log plot in Figure 2; at first, we note that the estimated
truncated Pareto curve (blue dash line) fits the data set quite well and fits much better in the
tail than the estimated original Pareto distribution (which is a straight line). But the truncated
Pareto curve does not fit the data uniformly well, especially for the middle and tail data. We
observed that the pattern of data can be classified into three groups, small, medium and large
flood groups. The data in these classes may have different distributions, or by grouping, data
with self similarity may have the same kind of distribution but with different parameters. The
data in these three groups may still be Pareto distributed but with different shape parameters.
In the literature, researchers study similar data sets by using cluster methods; for example, Coia
and Huang (2013) proposed a sieve model.

In this paper, we propose that a new estimation method of a mixture Pareto distribution
will fit our data sets better since the data set seems to be separated into clusters of data points
with different slopes. Through this study we hope to improve on the already known truncated
Pareto distribution to be ready for costly damaged events. We will discuss the flood damage
example mentioned above by the new cluster method in Section 5.

In this paper, we propose a more generalized method, mixture truncated Pareto distribution
(MTPD), in Section 2. In Section 3, we propose a cluster method by using a two-point slope
technique to estimate the MTPD from data which utilizes a cluster truncated Pareto distrib-
ution (CTPD). In Section 4, the results of Monte Carlo simulations confirmed the precision of
estimating group thresholds. In Section 5, we analyze the flood damage costs data by using the
CTPD and two other existing semi-parametric estimation methods in log-log plots (see Figure 4
in Section 5). We also perform Kolmogorov-Smirnov, Anderson Darling, and Cramer-von Mises
goodness-of-fit tests on this data set. The results show that the proposed cluster method is
superior to other existing estimation methods, in this example.

1418



JSM2015 - Section on Statistical Computing

2. Mixture Truncated Pareto Distribution

Definition 2.1. The probability density function (p.d.f.) and the cumulative distribution func-
tion (c.d.f.) of a random variable Y having the Pareto distribution are given respectively by

{e%

a
fe(y;y,0) = yCZH, 0<y<y<oo, a>0, (2.1)
Fp(y;'y,a)—1<%> , 0<y<y<oo, a>0, (2.2)

where « is the shape parameter.

When 0 < a < 1, which is a heavy tailed case, the mean and variance of Y are infinite, and
the distribution gets heavier in the right tail as o decreases.

The truncated Pareto distribution (TPD) was originally used to describe the distribution of
oil fields by size. It has a lower limit 7, an upper limit » and a shape parameter «. In fact, it
has been shown that the truncated Pareto distribution fits better than the non-truncated Pareto
distribution for some positively skewed populations (Beg, 1981).

Definition 2.2. The p.d.f. and c.d.f. of a random wvariable X having the truncated Pareto
distribution are given respectively by

a,yax—(x—l
f(ﬂﬁ%Vaa):Wv 0<y<z<v<oo, a>0, (2.3)

7a(x7a - Vﬁa)’
1__(l>a )

v

F(z;v,v,a) =1— 0<y<z<v<oo, a>0, (2.4)

where v and v are the left and right truncation points.
The quantile function of the truncated Pareto distribution is

1
1_ —a
F_l(u)=< “+“> , 0<u<l, a>0. (2.5)

e o
The mean, second moment and variance of X are respectively, for 0 < vy < v < o0,

a( 170(_’/1701) .
oG oF L a>0;

m=EE) = (2:6)
=G/ =1,
a,ya(,YZfa_VZfa) . a272a(,ylfa_ylfa 2 .
@ DG/~ @iy eF L aF2 a>0;
vV— 2 n(v 2
of =Var(X) = { 2570 — T a=1 (27

2y’ In(v/y) _ Ay t-vTh?

(e ) R (e CYI L @=2
The mth moments are, for m = 1,2, ...
a,ya(,yrnfa_ymfa .
o a=Gm . aFm a>0;
pomy = EXTI =00 (2.8)
Tom o =m.
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Finite mixture distributions have been studied for complicated data (Frithwirth-Schnatter,
2006; Everitt, et al., 2011). We consider a vector of group thresholds

T :(to,tl,...,tk)T, where 0<a=tyg<ti..<tp=b< oo, a,beR k=1,2,..

Consider a vector A = (ay,az,...,a)", a; >0, i = 1,...,k. We define a mixture truncated
Pareto distribution as follows:

Definition 2.3. The c.d.f. of a random variable X having a mixture truncated Pareto distrib-
ution (MTPD) is given by

k
Fyrp(x; T,A; W) = Zwiﬂ(x;ti,l,ti,ai), 0<a<z<b<oo, a=ty b="1tg, (2.9)
i=1

where F;(x;t;—1,t;, ;) is the c.d.f. of the truncated Pareto distribution in (2.4), and the trun-

cation points t;_1,t;, are related to thresholds T = (to,t1,...,tx)%, and W is a vector of weights
k
W = (wy,ws, ..., wi)", 0 <w; <1, Zwi =1.
i=1

The p.d.f. of a mizture truncated Pareto distribution is given by

k
fMTp(:c;T,A;W) = Zwifi(:c;ti_l,ti,ai), O<a<z<b<oo, a=ty b=1t, (210)
=1

where fi(x;ti—1,t;, ;) is the p.d.f. of the truncated Pareto distribution in (2.3).

3. A Cluster Truncated Pareto Distribution Estimator

Consider a random sample X3 X3 ..., X, from the c.d.f of MTPD in (2.9), to estimate parameter
vectors T, A, W; we let X;, < Xp, < .. < X, , denote its order statistics. We divide
data into k clusters by the domains (t;,¢;11), i = 0,1,...k — 1, T = (to,t1,...,t;)T, where
O<a=ty<ti <..<tp=0>b<o0o, a,be R We define a cluster truncated Pareto distribution
(CTPD) as an estimator of the MTPD.

Definition 3.1. The c.d.f. of a random variable X having the cluster truncated Pareto distrib-
ution (CTPD) is given by

k
Fo(z; T, A; W) = Z (&) Fi(z;tio1,ti, o), 0<a<a<b<oo, (8.1)
n
i=1
where Fo(x; T,A; W) is a c.d.f. of the MTPD in (2.9), and n; is the sample size in the ith
cluster in the ith domain (t;—1,t;).

niy ng np\ 7T n; .
W = (_ — —> , w; = —l7 0<TL2 §n7 1= 1,2,...,k,
n

s g eeny
n o n n
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where the n;’s depend on the vector C = (cg,c1,...,ci)T, where 0 = ¢y < ¢ < ... < cx = n,
¢; is the number of data which are less than or equal to the threshold t;. The number c; is a
function of t; and the random sample (X1, Xo,...X,). Thus

cilti; X1, X, .. X,) = ZI(,OO’ti](Xj), i=1,2,..,k,
j=1

Nn; =¢ —Ci—1, 1= 1, 2, ...,]ﬂ,

where I is the indicator function of set A.

Also ¢; and n; all depend on t;, i =1,...,k in (3.1). The key point of applying the CTPD in
(3.1) is to determine T = (tg,t1,...,tx)” from the random sample. Here we propose a two-point
slope technique in the log-log plot to estimate thresholds T = (tg,t1, ..., tx) 7.

Definition 3.2. A two-point slope is defined as

log(1— 1) —log(1—< .
Sin-1(X1, X2, ..., Xpn) = IOEEXHZTL))*loi((Xi,:g’ log(Xi+1,n) —log(Xin) #0, i=1,....n — 13
0, log(Xit1,n) —log(Xin)=0,i=1,...,n—1.
Then we construct n — 1 order statistics S1 -1 < S2.p—1 < ... <551 n—1 from the absolute
values of the two-point slopes |S; n—1(X1, X2, ..., X,))|, ¢ = 1,2, ...,n — 1. The cluster threshold
points can be estimated by #1 (X1, Xa, ...; Xn), oo te—1 (X1, X2, ..., X,,) which are determined by
the k — 1 largest absolute values of the two-point slopes

Sn—tt1,n-1 < Sn—kg2n-1 < oo < Sn_in—1, (3.9)
where k depends upon empirical observations of differences between successive S; ,—1’s., when
|Sn—k+2,n—1 — Sn—k+1,n—1] is large compared with previous differences.

We propose seven steps to construct a cluster truncated Pareto distribution as in (3.1):
Step 1: Compute n — 1 two-point slopes S; ,—1(X1, X2,..., Xp,) in (3.2), i=1,...,n— L
Step 2: Determine k by using (3.3); there are two main factors:

1. Determining k depends upon empirical observations of differences between successive

Sin-1's, when |Sp_g+2,n—1 — Sn—k+1,n—1] is much larger than the previous difference
|Sn—k+1,n—1 — Sn—k,n—1]. (This technique is used on the example in Section 5.)

2. We also ensure that the sample size n; within each group is sufficiently large (usually

Step 3: Find the k£ — 1 estimated threshold points fl, ...,?k,l by using the values of the k — 1
largest absolute slopes of the order statistics of |S;(X1, Xa, ..., X,)| in (8.8), i = 1,....,n — 1,
corresponding to the k — 1 values {Xf, X3, ...,X,:_l} of the original sample, which now have
been ordered as new order statistics

Xip1 S X5 1 <. < Xp 11, then welet
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Step 4: Determine C = (cg, ¢1, ..
Z?:l I(foo,ti] (Xj) Thus
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X)) =X{q,i=1,..,k—1, and to = X1, = a, t) = Xnn =b. (3.4)
o)l where0 =cp < ¢ < ... <cp =n, ¢i(ti; X1, Xo, .oy X)) =

Ci —Ci—1, 1= 1,2, veey k};
Xeims 0 =1,...,k —1, (Note: we replace X,
Xl,n = a, %\k = Xn,n =0b.

n=Xjp_1 10 (3.4))

Then we have k clusters:

{a = i\07 ---7Xcl,n}7 {Xcz,na "'aXC&n}v A {Xckfl,ny "'7z\k = Xn,n = b}

Table 2. Construction of a cluster truncated Pareto distribution from data

cp=0 c1 Ch—2 Ch—1 CcL=n

| ______ nl____‘__oooooo__|____ nk;_l__‘ _____ N ___|

to t1 tk—2 tr—1 tr

= XL” = C1,n = Xck717n - Xn,n
=a =b

— ~ —~ k ~ N~
Step 5: Construct Fo(z; T,A;W) = 3 (%) Fi(x;ti1, b, 04), in (3.1).

1=

Step 6: Estimate «;. We suggest using the estimator @ in (3.5), (3.6) and (3.7) in Remark 1.
o~~~ k ~ o~ o~

Step 7: Construct an estimator Fo(z; T,A; W) = 3 (%) Fi(x;ti—1,t;, @), for (8.1).

i=1

Remark 1. There are three estimation methods for the shape parameters «; given by

1. Hill Estimator : The Hill (1975) MLE Qg is defined as

-1

T
aHill = TﬁlZ{lan—i—&-l,n —In Xn—r,n} 5 (35)
i=1
where X; ,, is the ith smallest order statistic, and r is the cut off point.
2. Moment Estimator : A moment estimator a; can be obtained by solving
1 Sas~naM (Al=8n _ g l-anm
=3 x = 2 0} v_) (3.6)
nls @ — D= (D),

where 0 < v < X; <v<oo, aypy >0.

3. MLE method : The Aban MLE @ apan (Aban et al, 2006) for « is obtained by solving

n

— Z[ln Xn—it1,n —Iny] =0,
i=1

n n(%)aAban ln(%)

1— (_Z_)aAban

" 3.7
Q Aban ( )
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4. Simulations

One of the most difficult parts of estimating a mixture truncated Pareto distribution is dividing
the data set into appropriate groups. In Section 3, we propose a two-point slope method to
determine group thresholds of the data. Now we would like to examine the accuracy of this
technique. We construct a cluster truncated Pareto distribution function in (8.1) for 1 <2 <10
and three groups (k = 3). The ¢ values were set at t; = 1, t = 4, t3 = 7, and t4 = 10; and
a1 =2, a0 =5, az = 0.5; and wy = 1/6, wy = 1/3, ws = 1/2. Then the c.d.f. of the cluster
truncated Pareto distribution is

0, T <1,
%{f?*l), 1<x<4,
Fo(z; T,A;W) = ¢ 05163 — 3834190 4 < 4 < 7, (4.1)
3.5611 — 29989 7 < 3 < 10,
1, z > 10.

We generated m = 1000 random samples from (4.1) of size n = 100, and found n — 1 two-
point slopes for each 1000 random samples. The corresponding vectors, C, W, and T, were
found accordingly by using a two-point slope technique. Figure 3 shows the boxplot of the
estimated threshold limits. In this figure we can see that the two-point slope estimator seems
to be very accurate with minimal variance. The only threshold limit with variance is t3 = 7;
the other three threshold limits have little variance. Table 3 shows the means and RMSE (root
of the mean square error) of the estimated four threshold limits.

0 True t4=110
L

g . I_LI
LLie t3=7

1 o 1
o L]

P True 12=4 o

F L]

Truetl=] - o
0
I 2 E] 4 3 8 7 g
tr=1 t2=4 13=7 =10

Figure 3. Boxplots of the estimated threshold limits using two-point slopes with m = 1000
simulated datasets of size n = 100 from a cluster truncated Pareto distribution.

Table 3. The means and RMSEs of the estimated threshold limits in the simulations

[ Threshold |t [ t2 [ ts [ta |
[ True t value || 1 | 4 |7 [10 ]
| Mean [ 1.0311 || 4.4250 || 7.2940 || 9.9215 ||
| RMSE | 0.0445 [[ 1.6072 || 1.2806 | 1.1112 ||
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5. Applications

Now we apply the proposed cluster method to the flood damage example in Section 1.

5.1. Cluster Method

By using 33 two-point slopes defined in (3.2) and the seven steps in Section 3, we construct
k = 3 clusters. We select k — 1 = 2 of the ten largest absolute values of the two-point slopes in
(8.2) to ensure o > 0 and appropriate n; values as

531733 = 124657, 525733 = 4.1745.
Then we determine ¢,’s, i = 0, 1, 2, 3, and k = 3 groups as

{a =10 =Xy, Xen) }s {X(er11)s 00 Xien) } 5 { X(eat1)s oor B3 = Xmy = b},

where tg = X1y = 1030, 1 = X(.,) = 4151.3, & = X(,,) = 7343.6, t3 = X(,,) = 17346.8;
co = 0,c =16, co =26, cg = 34;
ny = 16, ny =10, n3 =8; n1 +no +n3z =n = 34;

then we have an estimated CTPD in (3.1) as
3
— A~ o~ n; ~ ~ ~
Fo(x; T, A, W) = Zl (#) Fi(z;ti-1,ti, q;).
Table 4 shows the construction of the CTPD from the data.
Table 4. Construction of a CTPD from the flood damage data.

COZO 01:16 02:26 03:34
|___7’L1 = 16___‘___77,2 = 10___|___n5 = 8___|
to t £ t3
= 1030 =4151.3 = T7343.6 = 17346.8

Once the thresholds were decided based on the two-point slope method, four truncated Pareto
distribution functions were created.

Table 5 provides the comparison between the estimation methods of the Canadian flood loss
dataset: Pareto distribution using Hill’s estimator, the truncated Pareto distributions (TPD)
using both Aban’s estimator and the Moment estimator, and the new MTPD method. The
table compares the estimation methods through @, i, median, 5% Value-at-Risk, and 1% Value-
at-Risk.

Table 5. Comparisons of the estimation methods on the flood damage example.

| Estimation Method | Q | m | Median | 5% Value-at Risk | 1% Value-at Risk |
Parcto( i 0.7244 50 | 2681.76 64410.33 594167.01
TPD(Apan) 0.1085 5413.77 | 3795.23 14726.64 16783.97
TPD (moment) 0.1838 | 5168.64 | 3526.63 1446035 16718.54
a1=0.1680
Cluster ao=1.7282 | 5122.54 | 4309.75 13092.99 16250.19
a3—1.3281
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Figure 4 shows the log-log plot for the dataset of Canadian flood damage costs (n = 34).
The four estimation methods were used to construct distribution functions that were plotted
on the same log-log scale. Visually, the same trend occurs as in Figure 2. The original Pareto
distribution function does not fit the data well as it does not curve to take the most extreme
values into account. The truncated Pareto distribution with the Aban estimator seems to have
a better fit than the original Pareto distribution, but still does not follow the data well in the
tail of the data. The new mixture truncated Pareto distribution seems to fit the data the best.

In(P{X>x))

=4

I Pareto == == T.Pareto Mixture Pareto  © T}.nal

Figure 4. Flood damage data log-log plot and the estimated distribution functions. The orig-
inal Pareto distribution with Hill’s estimator is the green straight line, the truncated Pareto
distribution with Aban’s estimator is the blue dash line and the MTPD is the red line.
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Figure 5. Histogram of the flood damage data with the estimated original Pareto density function
is the green line, the Aban estimated truncated Pareto density function is the blue dash line,
and the estimated mixture Pareto density function is the red line.

Figure 5 shows the histogram of the Flood damage data with three estimated probability
density functions. We see that the mixture Pareto distribution models the data better as it
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has peaks where the data increases whereas the estimated original Pareto and the estimated
truncated Pareto distribution do not follow those peaks.

5.2. Goodness of Fit Tests

In this section we conduct three goodness of fit tests, Kolmogorov-Smirnov, Anderson Darling,

and Cramer-von Mises tsets. All three tests are based on the distance between the empirical

distribution function and the proposed distribution function: original Pareto distribution in (2.1)

or truncated Pareto distribution in (2.3) or mixture truncated Pareto distribution in (2.10).
Each test considers the same null and alternative hypothesis:

Hy: F(z)=F*(z) vs Hy:F(z)# F*(x),

where F(x) is the unknown true distribution of the sample data and F*(x) is one of our proposed
four estimated distributions:

1) Pareto distribution in (2.1) with Hill estimator agr in (3.5);

2) Truncated Pareto distribution (TPD) in (2.3) with Aban estimator & pan in (3.7);
3) Truncated Pareto distribution in (TPD) (2.8) with moment estimator & in (3.6);
4) Cluster truncated Pareto distribution in (8.1) with moment estimator a;(;) in (3.6).

We ran a test for each estimated distribution as F*(x).

Table 6. Goodness of fit tests n = 34 for the flood damage example

Goodness-of-Fit Tests
Method K-S Test A-D Test C-v-M Test
Test Statistic | p-value Test Statistic p-value Test Statistic | p-value
Pareto( i) 0.1945 0.1290 2.7048 0.0388 0.4151 0.0659
TPD(apan) 0.1003 0.7224 1.4119 0.1990 0.0516 0.8663
TPD (ymoment) 0.1170 0.5979 1.4110 0.1992 0.0721 0.7390
Cluster 0.0803%¢st | 0.8500%¢5T | 1.2075%¢5F | 0.2647%¢5T [ 0.0196%¢5t | 0.9973%¢s?

Note: In this paper, we use "****" to denote the best values in the tables.

Table 6 gives the values of the test statistics and p-values of three goodness-of-fit tests. The
cluster truncated Pareto distribution has the smallest test statistics (i.e., the smallest errors)
and the largest p-values. This means the cluster truncated Pareto distribution has the best fit
to the Canadian flood damage costs data.

Table 7. Errors of goodness-of-fit tests n = 34 for flood damage example

Goodness-of-Fit Tests
Method Absolute Error (AE) Integrated Error (IE)
r=34 | r=20 | r=10 r=34 | r=20 | r=10
Pareto g:11) 0.1945 0.1945 0.1664 0.1007 0.0911 0.0894
TPD (4pan) 0.1003 0.0907 0.0750 0.0412 0.0423 0.0445
TPD (snoment) | 0-1170 0.1170 0.0893 0.0399 0.0366 0.0338
Cluster 0.0803%¢5% | 0.0803%¢5% | 0.0603%¢5% | 0.0216P¢5% | 0.0223%¢5 | 0.0199%¢5
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In Table 7, we took the r largest data in the sample. The absolute error and integrated error
are defined by
AE = sup|F*(z) — Sp(z)|, —oo <z < o0, (5.1)

1/2

1 Xn,n
IE = / (Sp(z) — F*(z))%dz| . (5.2)
(Xn,n - Xn—r+1,n) [ Xn—rtin
Table 7 gives absolute errors and integrated errors of the five estimation methods in r =
34,20, 10 cases. The cluster truncated Pareto distribution has the smallest errors in all 6 cases.
This means the cluster method is superior in fitting the flood damage costs data compared with
the other existing methods.

6. Conclusions

In this paper, we found that the estimated mixture Pareto distribution has better fitting than
only one single estimated Pareto or truncated Pareto distribution, for a complicated data set with
heavy tailed and cluster properties. The new method based on the two-point slope technique
breaks the data into different groups.

Summary of some useful results in this paper are as follows:

1. Truncated Pareto models are useful for analyzing real world data.

2. The results of the goodness-of-fit tests show that the cluster truncated Pareto distribution
is a better model for fitting data than just using a single Pareto distribution model.

3. The results of simulations show that the two-point slope technique is innovate and useful,
and seems to be an accurate method to determine the thresholds.

4. This method has the best fit in the flood damage costs data set of examples compared to
the existing methods as seen by the goodness-of-fit tests.
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