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Abstract

The Pareto distribution is a heavy tailed distribution with many applications. In this paper

we consider a real world example with heavy tailed observations, which leads us to propose a

mixture truncated Pareto distribution (MTPD) and study its properties. There are difficulties in

the estimation of thresholds of the MTPD. We construct a cluster truncated Pareto distribution

(CTPD) by using a two-point slope technique to estimate the MTPD from a random sample.

The results of Monte Carlo simulations show that the two-point slope technique is useful for

estimating thresholds. Finally, we apply the MTPD and CTPD to the example which we

observed in the beginning and compare the proposed method with existing estimation methods.

The results of log-log plots and goodness-of-fit tests show that the MTPD and the cluster

estimation method produce a good fitting distribution with real world data.

Keywords: Extreme value distribution, goodness-of-fit test, Hill estimator, finite mixture distri-

bution, two-point slope, truncated Pareto distribution.

1. Introduction

There are many real world problems modelled as heavy tailed distributions, especially the Pareto

distribution. However, there are some difficulties in estimation of Pareto distributions. First,

the Pareto distribution has infinite moments in some heavy tailed cases. Therefore the moment

estimation method for the shape parameter cannot be used in these situations. It is a loss for the

estimation process since the moment estimator is a robust estimator. Several authors suggest

using a truncated Pareto distribution which always has finite moments (e.g., Beg, 1981; Aban,

et al., 2006; Coia and Huang, 2014).

The aim of this paper is to explore better modelling methods for complicated heavy tailed

observed real examples, like dangerous storms such as hurricanes, and floods. We would like to

provide better-fit estimated distributions to these extreme weather data sets in order to prepare

for the unknown future.
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Example. Flood Damage in Canada

Floods are events that can damage homes, businesses, and crops. One never knows the

extent to which the flood will damage a city or area, and when it happens the money to fix

the damage needs to be available. The data set for flooding in Canada is from Environment

Canada (2010), http://www.ec.gc.ca/eau-water/default.asp?lang=En&n=02A7110-1, where it

reports the cost that the federal government paid to respective provinces and territories after

major floods. The floods range from 1970 to 1998 in all of Canada. The data includes the top

34 flood damage costs that have been fully paid by the government ( = 34). The top 10 flood

losses in Canada are shown in Table 1. Figure 1 shows the histogram and estimated Pareto and

truncated Pareto distributions by using the maximum likelihood estimate (MLE) of the shape

parameter from the flood damage costs data. Figure 2 is a log-log plot of the data and estimated

Pareto distribution and truncated Pareto distribution.

Table 1. The top 10 flood damage costs in Canada, 1970-1998

Province or Territory Year Damage Cost ($)

Quebec 1983 17,346,772

Manitoba 1979 14,670,604

Manitoba 1974 11,464,005

Manitoba (Winnipeg River) 1993 11,291,186

Quebec 1974 8,670,477

Alberta 1990 8,229,503

Alberta 1988 7,787,911

Quebec 1976 7,582,330

British Columbia 1990 7,343,629

Alberta 1986 6,809,368

Figure 1. Histogram and fitting Pareto and truncated Pareto distributions of top 34 flood

damage costs in Canada, 1970-1998. The green line is the MLE estimated original Pareto

distribution; the blue dash line is the MLE estimated truncated Pareto distribution.
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Figure 2. Log-log plots and fitting Pareto and truncated Pareto distributions of top 34 flood

damage costs in Canada, 1970-1998. The red circles are the data; the green straight line is the

MLE estimated original Pareto distribution; the blue dash line is the MLE estimated truncated

Pareto distribution.

We apply Pareto and truncated Pareto models to fit the flood damage costs data set. The

maximum likelihood estimator (MLE) and the moment estimator for the shape parameter were

used. The results are shown in a log-log plot in Figure 2; at first, we note that the estimated

truncated Pareto curve (blue dash line) fits the data set quite well and fits much better in the

tail than the estimated original Pareto distribution (which is a straight line). But the truncated

Pareto curve does not fit the data uniformly well, especially for the middle and tail data. We

observed that the pattern of data can be classified into three groups, small, medium and large

flood groups. The data in these classes may have different distributions, or by grouping, data

with self similarity may have the same kind of distribution but with different parameters. The

data in these three groups may still be Pareto distributed but with different shape parameters.

In the literature, researchers study similar data sets by using cluster methods; for example, Coia

and Huang (2013) proposed a sieve model.

In this paper, we propose that a new estimation method of a mixture Pareto distribution

will fit our data sets better since the data set seems to be separated into clusters of data points

with different slopes. Through this study we hope to improve on the already known truncated

Pareto distribution to be ready for costly damaged events. We will discuss the flood damage

example mentioned above by the new cluster method in Section 5.

In this paper, we propose a more generalized method, mixture truncated Pareto distribution

(MTPD), in Section 2. In Section 3, we propose a cluster method by using a two-point slope

technique to estimate the MTPD from data which utilizes a cluster truncated Pareto distrib-

ution (CTPD). In Section 4, the results of Monte Carlo simulations confirmed the precision of

estimating group thresholds. In Section 5, we analyze the flood damage costs data by using the

CTPD and two other existing semi-parametric estimation methods in log-log plots (see Figure 4

in Section 5). We also perform Kolmogorov-Smirnov, Anderson Darling, and Cramer-von Mises

goodness-of-fit tests on this data set. The results show that the proposed cluster method is

superior to other existing estimation methods, in this example.
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2. Mixture Truncated Pareto Distribution

Definition 2.1. The probability density function (p.d.f.) and the cumulative distribution func-

tion (c.d.f.) of a random variable  having the Pareto distribution are given respectively by

 (;  ) =


+1
 0   ≤  ∞   0 (2.1 )

 (;  ) = 1−
µ




¶
 0   ≤  ∞   0 (2.2 )

where  is the shape parameter.

When 0   ≤ 1 which is a heavy tailed case, the mean and variance of  are infinite, and

the distribution gets heavier in the right tail as  decreases.

The truncated Pareto distribution (TPD) was originally used to describe the distribution of

oil fields by size. It has a lower limit  an upper limit  and a shape parameter . In fact, it

has been shown that the truncated Pareto distribution fits better than the non-truncated Pareto

distribution for some positively skewed populations (Beg, 1981).

Definition 2.2. The p.d.f. and c.d.f. of a random variable  having the truncated Pareto

distribution are given respectively by

(;   ) =
−−1

1− (

)

 0   ≤  ≤  ∞   0 (2.3 )

 (;   ) = 1− (− − −)
1− (


)

 0   ≤  ≤  ∞   0 (2.4 )

where  and  are the left and right truncation points.

The quantile function of the truncated Pareto distribution is

−1() =
µ
1− 


+





¶− 1


 0 ≤  ≤ 1   0 (2.5 )

The mean, second moment and variance of  are respectively, for 0     ∞

 = () =

⎧⎨⎩
(1−−1−)
(−1)(1−())   6= 1   0;

 ln()

1−()   = 1
(2.6 )

2 =  () =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2−−2−)
(−2)(1−()) − 22(1−−1−)2

(−1)2(1−())2   6= 1  6= 2   0;

(−)
1−() − 2[ln()]2

[1−()]2   = 1;

22 ln()

1−()2 − 44(−1−−1)2
(1−()2)2   = 2

(2.7 )

The th moments are, for  = 1 2 

() =  [] =

⎧⎨⎩
(−−−)
(−)(1−())   6=    0;

 ln()

1−()   = 
(2.8 )
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Finite mixture distributions have been studied for complicated data (Frühwirth-Schnatter,

2006; Everitt, et al., 2011). We consider a vector of group thresholds

T = (0 1  )
  where 0   = 0  1   =  ∞   ∈ R  = 1 2 

Consider a vector Λ = (1 2  )
    0  = 1   We define a mixture truncated

Pareto distribution as follows:

Definition 2.3. The c.d.f. of a random variable  having a mixture truncated Pareto distrib-

ution (MTPD) is given by

 (;TΛ;W) =

X
=1

(; −1  ) 0   ≤  ≤  ∞  = 0  =  (2.9 )

where (; −1  ) is the c.d.f. of the truncated Pareto distribution in (2.4), and the trun-
cation points −1  are related to thresholds T = (0 1  )  and W is a vector of weights

W = (1 2  )
  0   ≤ 1

X
=1

 = 1

The p.d.f. of a mixture truncated Pareto distribution is given by

 (;TΛ;W) =

X
=1

(; −1  ) 0   ≤  ≤  ∞  = 0  =  (2.10 )

where (; −1  ) is the p.d.f. of the truncated Pareto distribution in (2.3).

3. A Cluster Truncated Pareto Distribution Estimator

Consider a random sample 12 from the c.d.f of MTPD in (2.9), to estimate parameter

vectors T Λ W; we let 1 ≤ 2 ≤  ≤  denote its order statistics. We divide

data into  clusters by the domains ( +1)  = 0 1   − 1 T = (0 1  )
  where

0   = 0  1     =  ∞   ∈ R We define a cluster truncated Pareto distribution
(CTPD) as an estimator of the MTPD.

Definition 3.1. The c.d.f. of a random variable  having the cluster truncated Pareto distrib-

ution (CTPD) is given by

(;TΛ;W) =

X
=1

³


´
(; −1  ) 0   ≤  ≤  ∞ (3.1 )

where (;TΛ;W) is a c.d.f. of the MTPD in (2.9), and  is the sample size in the ith

cluster in the ith domain (−1 )

W =
³1


2


 





´
  =




 0   ≤   = 1 2  
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where the ’ depend on the vector C = (0 1  )
  where 0 = 0  1     = 

c is the number of data which are less than or equal to the threshold . The number  is a

function of  and the random sample (12 ) Thus

(;12 ) =

X
=1

(−∞]()  = 1 2  

 =  − −1  = 1 2  

where  is the indicator function of set .

Also  and  all depend on   = 1   in (3.1). The key point of applying the CTPD in

(3.1) is to determine T = (0 1  )
 from the random sample. Here we propose a two-point

slope technique in the log-log plot to estimate thresholds T = (0 1  )
 

Definition 3.2. A two-point slope is defined as

−1(12 ) =

⎧⎨⎩
log(1− +1


)−log(1− 


)

log(+1)−log()
 log(+1)− log() 6= 0  = 1  − 1;

0 log(+1)− log() = 0  = 1  − 1
(3.2 )

Then we construct − 1 order statistics 1−1 ≤ 2−1 ≤  ≤ −1−1 from the absolute

values of the two-point slopes |−1(12 )|   = 1 2  − 1 The cluster threshold
points can be estimated by b1(12 ) b−1(12 ) which are determined by

the  − 1 largest absolute values of the two-point slopes

−+1−1 ≤ −+2−1 ≤  ≤ −1−1 (3.3 )

where  depends upon empirical observations of differences between successive −1’s., when
|−+2−1 − −+1−1| is large compared with previous differences.
We propose seven steps to construct a cluster truncated Pareto distribution as in (3.1):

Step 1: Compute − 1 two-point slopes −1(12 ) in (3.2),  = 1  − 1
Step 2: Determine  by using (3.3); there are two main factors:

1. Determining  depends upon empirical observations of differences between successive

−1’s, when |−+2−1 − −+1−1| is much larger than the previous difference
|−+1−1 − −−1|  (This technique is used on the example in Section 5.)

2. We also ensure that the sample size  within each group is sufficiently large (usually

 ≥ 5).

Step 3: Find the  − 1 estimated threshold points b1 b−1 by using the values of the  − 1
largest absolute slopes of the order statistics of |(12 )| in (3.3),  = 1   − 1,
corresponding to the  − 1 values ©∗1 ∗2  ∗−1ª of the original sample, which now have
been ordered as new order statistics

∗1−1 ≤ ∗2−1 ≤  ≤ ∗−1−1 then we let

JSM2015 - Section on Statistical Computing

1421



b(12 ) = ∗−1  = 1   − 1 and b0 = 1 =  b =  =  (3.4 )

Step 4: DetermineC= (0 1  )
  where 0 = 0  1     =  (;12 ) =P

=1 (−∞]() Thus

 =  − −1  = 1 2  ;b =   = 1   − 1 (Note: we replace  = ∗−1 in (3.4))

and b0 = 1 =  b =  = 

Then we have  clusters:

{ = b0 1} {2 3}  {−1 b =  = }

Table 2. Construction of a cluster truncated Pareto distribution from data

0 = 0 1 −2 −1  = 

|______ 1____|__......__|____ −1__|_________|b0 b1 b−2 b−1 b
= 1 = 1 = −1 = 

=  = 

Step 5: Construct f(; bTΛ;cW) =
P
=1

¡



¢ e(;b−1b ) in (3.1).
Step 6: Estimate . We suggest using the estimator b in (3.5), (3.6) and (3.7) in Remark 1.
Step 7: Construct an estimator c(; bTbΛ;cW) =

P
=1

¡



¢ b(;b−1b b) for (3.1).
Remark 1. There are three estimation methods for the shape parameters  given by

1. Hill Estimator : The Hill (1975) MLE b is defined as

b =

"
−1

X
=1

{ln−+1 − ln−}
#−1

 (3.5 )

where  is the ith smallest order statistic, and  is the cut off point

2. Moment Estimator : A moment estimator b can be obtained by solving

1



X
=1

 =
b (1− − 1− )
(b − 1)(1− ( ) ) (3.6 )

where 0   ≤  ≤  ∞ b  0.

3. MLE method : The Aban MLE b (Aban et al, 2006) for  is obtained by solving
b + (


)b ln( )

1− (

) −

X
=1

[ln−+1 − ln ] = 0 (3.7 )
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4. Simulations

One of the most difficult parts of estimating a mixture truncated Pareto distribution is dividing

the data set into appropriate groups. In Section 3, we propose a two-point slope method to

determine group thresholds of the data. Now we would like to examine the accuracy of this

technique. We construct a cluster truncated Pareto distribution function in (3.1) for 1 ≤  ≤ 10
and three groups ( = 3). The  values were set at 1 = 1, 2 = 4, 3 = 7, and 4 = 10; and

1 = 2 2 = 5 3 = 05; and 1 = 16 2 = 13 3 = 12 Then the c.d.f. of the cluster

truncated Pareto distribution is

(;TΛ;W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0   1

01778(2−1)
2

 1 ≤   4

05163− 3634790
5

 4 ≤   7

35611− 80989
05

 7 ≤   10

1  ≥ 10

(4.1 )

We generated  = 1000 random samples from (4.1) of size  = 100, and found  − 1 two-
point slopes for each 1000 random samples. The corresponding vectors, C, W, and T, were

found accordingly by using a two-point slope technique. Figure 3 shows the boxplot of the

estimated threshold limits. In this figure we can see that the two-point slope estimator seems

to be very accurate with minimal variance. The only threshold limit with variance is 3 = 7;

the other three threshold limits have little variance. Table 3 shows the means and RMSE (root

of the mean square error) of the estimated four threshold limits.

Figure 3. Boxplots of the estimated threshold limits using two-point slopes with  = 1000

simulated datasets of size  = 100 from a cluster truncated Pareto distribution.

Table 3. The means and RMSEs of the estimated threshold limits in the simulations

Threshold 1 2 3 4

True   1 4 7 10

Mean 1.0311 4.4250 7.2940 9.9215

RMSE 0.0445 1.6072 1.2806 1.1112
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5. Applications

Now we apply the proposed cluster method to the flood damage example in Section 1.

5.1. Cluster Method

By using 33 two-point slopes defined in (3.2) and the seven steps in Section 3, we construct

 = 3 clusters. We select  − 1 = 2 of the ten largest absolute values of the two-point slopes in
(3.2) to ensure   0 and appropriate  values as

3133 = 124657; 2533 = 41745.

Then we determine b’s,  = 0 1 2 3 and  = 3 groups as©
 = b0 = (1) (1)

ª

©
(1+1) (2)

ª

©
(2+1) 

b3 = () = 
ª


where b0 = (1) = 1030 b1 = (1) = 41513 b2 = (2) = 73436 b3 = () = 173468;

0 = 0 1 = 16 2 = 26 3 = 34;

1 = 16 2 = 10 3 = 8; 1 + 2 + 3 =  = 34;

then we have an estimated CTPD in (3.1) as

c(; bTbΛ;cW) =

3X
=1

³


´ b(;b−1b b)
Table 4 shows the construction of the CTPD from the data.

Table 4. Construction of a CTPD from the flood damage data.

0 = 0 1 = 16 2 = 26 3 = 34

|___1 = 16___|___2 = 10___|___3 = 8___|b0 b1 b2 b3
= 1030 = 41513 = 73436 = 173468

Once the thresholds were decided based on the two-point slope method, four truncated Pareto

distribution functions were created.

Table 5 provides the comparison between the estimation methods of the Canadian flood loss

dataset: Pareto distribution using Hill’s estimator, the truncated Pareto distributions (TPD)

using both Aban’s estimator and the Moment estimator, and the new MTPD method. The

table compares the estimation methods through b, b, median, 5% Value-at-Risk, and 1% Value-
at-Risk.

Table 5. Comparisons of the estimation methods on the flood damage example.

Estimation Method b b Median 5% Value-at Risk 1% Value-at Risk

Pareto() 0.7244 ∞ 2681.76 64410.33 594167.01

TPD() 0.1085 5413.77 3795.23 14726.64 16783.97

TPD() 0.1838 5168.64 3526.63 14460.35 16718.54b1=0.1680
Cluster b2=1.7282 5122.54 4309.75 13092.99 16250.19b3=1.3281
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Figure 4 shows the log-log plot for the dataset of Canadian flood damage costs ( = 34).

The four estimation methods were used to construct distribution functions that were plotted

on the same log-log scale. Visually, the same trend occurs as in Figure 2. The original Pareto

distribution function does not fit the data well as it does not curve to take the most extreme

values into account. The truncated Pareto distribution with the Aban estimator seems to have

a better fit than the original Pareto distribution, but still does not follow the data well in the

tail of the data. The new mixture truncated Pareto distribution seems to fit the data the best.

Figure 4. Flood damage data log-log plot and the estimated distribution functions. The orig-

inal Pareto distribution with Hill’s estimator is the green straight line, the truncated Pareto

distribution with Aban’s estimator is the blue dash line and the MTPD is the red line.

Figure 5. Histogram of the flood damage data with the estimated original Pareto density function

is the green line, the Aban estimated truncated Pareto density function is the blue dash line,

and the estimated mixture Pareto density function is the red line.

Figure 5 shows the histogram of the Flood damage data with three estimated probability

density functions. We see that the mixture Pareto distribution models the data better as it
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has peaks where the data increases whereas the estimated original Pareto and the estimated

truncated Pareto distribution do not follow those peaks.

5.2. Goodness of Fit Tests

In this section we conduct three goodness of fit tests, Kolmogorov-Smirnov, Anderson Darling,

and Cramer-von Mises tsets. All three tests are based on the distance between the empirical

distribution function and the proposed distribution function: original Pareto distribution in (2.1)

or truncated Pareto distribution in (2.3) or mixture truncated Pareto distribution in (2.10).

Each test considers the same null and alternative hypothesis:

0 :  () =  ∗()  1 :  () 6=  ∗()

where  () is the unknown true distribution of the sample data and  ∗() is one of our proposed
four estimated distributions:

1) Pareto distribution in (2.1) with Hill estimator b in (3.5);

2) Truncated Pareto distribution (TPD) in (2.3) with Aban estimator b in (3.7);
3) Truncated Pareto distribution in (TPD) (2.3) with moment estimator b in (3.6);

4) Cluster truncated Pareto distribution in (3.1) with moment estimator b() in (3.6).

We ran a test for each estimated distribution as  ∗()

Table 6. Goodness of fit tests  = 34 for the flood damage example

Goodness-of-Fit Tests

Method K-S Test A-D Test C-v-M Test

Test Statistic p-value Test Statistic p-value Test Statistic p-value

Pareto() 0.1945 0.1290 2.7048 0.0388 0.4151 0.0659

TPD() 0.1003 0.7224 1.4119 0.1990 0.0516 0.8663

TPD() 0.1170 0.5979 1.4110 0.1992 0.0721 0.7390

Cluster 0.0803 0.8500 1.2075 0.2647 0.0196 0.9973

Note: In this paper, we use "" to denote the best values in the tables.

Table 6 gives the values of the test statistics and p-values of three goodness-of-fit tests. The

cluster truncated Pareto distribution has the smallest test statistics (i.e., the smallest errors)

and the largest p-values. This means the cluster truncated Pareto distribution has the best fit

to the Canadian flood damage costs data.

Table 7. Errors of goodness-of-fit tests  = 34 for flood damage example

Goodness-of-Fit Tests

Method Absolute Error (AE) Integrated Error (IE)

 = 34  = 20  = 10  = 34  = 20  = 10

Pareto() 0.1945 0.1945 0.1664 0.1007 0.0911 0.0894

TPD() 0.1003 0.0907 0.0750 0.0412 0.0423 0.0445

TPD() 0.1170 0.1170 0.0893 0.0399 0.0366 0.0338

Cluster 0.0803 0.0803 0.0603 0.0216 0.0223 0.0199
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In Table 7, we took the  largest data in the sample. The absolute error and integrated error

are defined by

 = sup

| ∗()− ()|  −∞   ∞ (5.1 )

 =
1

( −−+1)

"Z 

−+1
(()−  ∗())2

#12
 (5.2 )

Table 7 gives absolute errors and integrated errors of the five estimation methods in  =

34 20 10 cases. The cluster truncated Pareto distribution has the smallest errors in all 6 cases.

This means the cluster method is superior in fitting the flood damage costs data compared with

the other existing methods.

6. Conclusions

In this paper, we found that the estimated mixture Pareto distribution has better fitting than

only one single estimated Pareto or truncated Pareto distribution, for a complicated data set with

heavy tailed and cluster properties. The new method based on the two-point slope technique

breaks the data into different groups.

Summary of some useful results in this paper are as follows:

1. Truncated Pareto models are useful for analyzing real world data.

2. The results of the goodness-of-fit tests show that the cluster truncated Pareto distribution

is a better model for fitting data than just using a single Pareto distribution model.

3. The results of simulations show that the two-point slope technique is innovate and useful,

and seems to be an accurate method to determine the thresholds.

4. This method has the best fit in the flood damage costs data set of examples compared to

the existing methods as seen by the goodness-of-fit tests.
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