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Abstract
Timing of combinational antiretroviral therapy (cART) initiation is important in HIV/Tuberculosis

(TB) co-infection. Early initiation during TB treatment increases drug toxicity, the risk of inflam-

matory immune reconstitution, and cost burden; late initiation increases risk for morbidity and mor-

tality associated with HIV/AIDS. Evidence from recent RCTs and observational studies generally

supports early initiation. However, existing studies do not give specifics about optimal initiation

time or precise recommendations for those with CD4>100. We use data from a large observational

cohort to gain more detailed information about treatment effects in practical settings. We formulate

a causal structural model that flexibly captures the joint effects of treatment initiation time and treat-

ment duration using smoothing splines, and develop methods for fitting the model to observational

data with complicated censoring patterns where both treatment and outcome are event times and

subject to censoring. Our methods can generate survival curves corresponding to specific treatment

times; and can separately characterize effects of timing and duration on treatment. We fit the model

to data from 4903 individuals in a large HIV treatment program in Kenya, and use it to estimate

optimal initiation times by CD4 subgroups. Our findings are consistent with RCTs but have “higher

resolution” in the sense of generating CD4-specific rules that can be used to complement current

treatment guidelines.
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1 Introduction
1.1 Overview and objectives

Integration of combined antiretroviral therapy (cART) with tuberculosis (TB) treatment has
received significant attention in the care management of patients coinfected with TB and
human immunodeficiency virus (HIV). The World Health Organization (WHO) guidelines
recommend concomitant treatment of the two diseases (WHO 2013). However, the op-
timal timing of cART initiation during the TB treatment period is difficult to determine
(Abdool Karim et al. 2011, Severe et al. 2010). Initiating cART too early increases the
potential drug toxicity and the risk of TB-associated immune reconsititution inflammatory
syndrome (IRIS) (Breen et al. 2004, Burman et al. 2007, Havlir et al. 2011). On the other
hand, late initiation of cART increases risk for morbidity and mortality associated with
AIDS (Abdool Karim et al. 2010).

The CD4 cell count serves as the major laboratory indicator of immune function in
HIV-infected patients, and it is an important factor in determining the urgency of cART
initiation. Evidence from randomized controlled trial (RCT) (Abdool Karim et al. 2010
2011, Blanc et al. 2011, Havlir et al. 2011) and observational studies (Franke et al. 2011,
Velasco et al. 2009, Westreich et al. 2012) generally support early initiation of cART for
patients with low CD4 count. However, these studies do not give precise recommendations
for those with CD4 greater than 100, nor do they give specifics about optimal starting time
for different types of patients. These studies generally compare groups of individuals and
several regimes, not the actual timing. Furthermore, the sample sizes of the RCT studies
are smaller than large observational cohorts.

Our objective is to draw inferences about the effect of timing of cART initiation on
mortality. We investigate the issue using data drawn from the electronic medical records
(EMR) system of the Academic Model Providing Access to Healthcare (AMPATH), a pro-
gram delivering HIV care in western Kenya (Einterz et al. 2007). The AMPATH program
has developed its own treatment guideline in consultation with the Kenyan National AIDS
and STI Control Program (NASCOP); see Table 2. The data have rich information, but the
observational nature of the data poses complications for our analysis. First, treatment initia-
tion time is not randomly allocated. Second, in many cases we have incomplete information
on exposure, outcome, or both. In the maximum information setting, we would observe for
all patients cART initiation time first, and then death time. However, some patients died
before initiating cART, which censors cART initiation time. For other patients, incomplete
follow up leads to censoring of death time, cART initiation time, or both. Figure 1 shows
the four observed data patterns of cART initiation and mortality following initiation of the
TB treatment.

Our approach is to formulate model that captures the effects of both timing and du-
ration of cART. We formulate a marginal structural proportional hazards model with an
unspecified smooth function capturing the effect of timing of cART initiation, and a sec-
ond unspecified smooth function capturing the effect of duration on cART, once initiated.
We develop methods for fitting our structural model to complex observational data wherein
initiation time is nonrandomly assigned, and both mortality and cART initiation time are
subject to censoring. We then use output from the fitted model to estimate CD4-specific
optimal initiation times that are tailored to CD4 count at the initiation of TB treatment. The
optimality criterion is one-year survival, although any feature of the survival distribution
can be used.

Our paper makes use of a large observational data drawn from the AMPATH program,
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examines the effect of cART timing on continuous scale, estimates the CD4-specific optimal
cART initiation time, and investigates whether our analyses results are consistent with gen-
eral RCT findings. Furthermore, the larger sample size in our data affords the potential to
examine the issue in greater details.

This paper is organized as follows: Section 1 introduces HIV and TB co-infection and
marginal structural models. Section 2 describes notation, defines optimal initiation time
and formulates a marginal structural model for mortality. Section 3 develops the methods
for fitting our structural model to complex observational data, wherein both exposure and
outcome are subject to censoring. Section 4 presents results from applying our method on
AMPATH data. In Section 5 we put the results in context by comparing them with RCT
findings and current treatment guidelines.

1.2 Treatment of individuals coinfected with HIV and tuberculosis

Generally, treatment of TB is a 6-month regimen, starting with 2-month administration
of isoniazid, rifampin, pyrazinamide and ethambutol, and continuing with isoniazid and
rifampin for another 4 months (WHO 2010). The treatment guidelines for TB are summa-
rized in Table 1.

While the optimal time cART initiation time is not yet clear, and may depend on CD4
count and other indicators of HIV disease stage, the WHO recommends that TB treatment
should be initiated first and cART be started within the first 8 weeks for all patients and
within the first 2 weeks for those with CD4 less than 50 (WHO 2013). However, compli-
cations associated with early initiation of cART may discourage treatment adherence and
cause adverse effects, drug interactions and IRIS (WHO 2013). In developing countries,
HIV treatment decisions are often based on both clinical and immunological markers (e.g.,
CD4 cell count). Patients in the 4-point WHO scale stage 3 or 4, or with a CD4 count below
250, are eligible for cART at initiation of TB treatment. In consultation with the Kenyan
National AIDS and STI Control Program (NASCoP), the AMPATH program has developed
its own treatment guidelines for patients with HIV/TB co-infection. The guidelines for ini-
tiating cART for patients with different levels of CD4 count at the initiation of TB treatment
are shown in Table 2.

1.3 Statistical methods for time-dependent treatment regimes

Marginal structural models (MSMs) are a class of statistical models to estimate the causal
effect of a time-varying treatment on an outcome of interest while accounting for time-
dependent confounding (Robins 1999, Robins et al. 1998). Marginal structural models
(MSMs) have become a popular tool to study the causal effect of a treatment regime (Hernán
et al. 2001, Murphy et al. 2001, Robins 1999, Robins et al. 2000).

In comparing the effect of cART initiation time, Franke et al. (2011) applied g-computation
formula to simulate the potential 2-year survival curves that would be observed under five
cART initiation regimes. When a treatment is continuous, the g-computation algorithm
requires model-dependent, computationally-intensive integration over the distribution of
time-dependent confounders. Moreover, the g-computation algorithm can suffer from the g-
null paradox under some modeling choices for time-varying covariates (Daniel et al. 2013):
that with the parametric version of the g-computation formula, given enough data, one
would reject of causal null hypothesis of no causal effect of treatment even when it is true.

Work by Johnson and Tsiatis (2005) develops methods for estimating the effect of treat-
ment duration on the mean of a single endpoint. Our work deals with the related but differ-
ent problem of timing of treatment initiation. In addition, we use the survival distribution,
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rather than a univariate measure, as the outcome of interest. Our parametrization of causal
effect of initiation time captures separately the influence of both timing and duration; these
components are represented using unspecified smooth functions of time, providing flex-
ibility for modeling and generating interpretable data-driven representations of the over-
all treatment effect. Our method can be used to generate the full distribution of potential
outcomes corresponding to specific cART initiation times, and to derive covariate-specific
optimal initiation times.

2 Formulation of potential outcomes model
2.1 Notation for potential outcomes and observed data

Let t denote time elapsed from the initiation of TB therapy, and let tmax denote a fixed
period of interest. All event times are measured in terms of elapsed time from t = 0. Let
Ta > 0 denote the potential outcome corresponding to time of death if cART is initiated at
time a, where a ≥ 0 is continuous. We use T∞ to denote death time corresponding to any
a > tmax.

Information on potential outcomes is observed according to the cases depicted in Fig-
ure 1. Let A be the random variable representing cART initiation time, and let T = TA
denote the survival time corresponding to initiating cART at A. As shown in Figure 1, ei-
ther or both ofA and TA may be right censored, for example due to loss to follow up. Let C
denote a censoring time. We can now describe precisely the observed data that are available
for drawing inference about the distribution of potential outcomes.

The observed follow up time for the mortality outcome is T ∗ = min(T,C), and the
event indicator is ∆T = I(T < C). Similarly, the observed follow up time for cART
initiation time is A∗ = min(A, T ∗) = min(A, T,C), with another indicator ∆A = I(A <
T ∗). Notice that A can be right censored by T , as shown in Case II of Figure 1. We
administratively censor A at tmax for cases where A > tmax and T ∗ > tmax.

Each individual has a p × 1 vector L of covariates, some of which may be time vary-
ing. We use L(t), t ≥ 0 to denote the most recently observed value of the covariate vec-
tor at time t, and use L(t) = {L(s) : 0 ≤ s < t} to denote the observed covariate
history up to but not including t. For each individual, therefore, we observe a copy of{
L(A∗), T ∗,∆T , A∗,∆A

}
.

2.2 Defining optimal initiation time

Optimal initiation time is defined as the value of a that maximizes an objective function
written in terms of a functional of the distribution of potential outcomes. Specifically, let
Fa(t) = P (Ta ≤ t) denote the CDF associated with Ta, and let θa = θ(Fa) denote a scalar
functional of Fa. For example,

∫
t dFa(t) is the mean of Ta, and F−1

a (1
2) is the median.

For a given functional θa, the optimal initiation time is given as aopt = arg maxa θa, or the
value of a that maximizes the functional. For our application to the AMPATH data, we fix
a time t0 and set θa = θa(t0) = 1 − Fa(t0), the survival fraction at time t0; note that the
optimal initiation time aopt(t0) = arg maxa{θa(t0)} is therefore a function of t0. Our data
analysis in Section 4 sets t0 to be one year past initiation of TB therapy.

2.3 Marginal structural model for mortality

We assume Ta follows a marginal structural proportional hazards model of the form

λa(t) = λ∞(t) r(t, a), (1)
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where λa(t) is the hazard function for Ta, λ∞(t) is the reference hazard for T∞, and
r(t, a) > 0 is the hazard ratio function which can be time dependent. We parameterize
r(t, a) in terms of two components: h1(a) and h2(t − a), denoting effect of timing and
effect of duration, respectively. Both are unspecified. In our application, we assume

r(t, a) = exp[I(a ≤ t){h1(a) + h2(t− a)}], (2)

where h1(·) and h2(·) are unspecified smooth functions that are twice continuously differ-
entiable, with the second derivative set to zero at the endpoints of a and t−a. We also allow
the function r(t, a) to depend on baseline covariates V ⊆ L(0) by elaborating model (2).
We describe this in detail in Section 4.

The model can be understood by considering some simple cases. Let h1(a) = β1 be
a constant and h2(t − a) = 0; this implies that the log hazard of mortality is log{λ∞(t)}
prior to treatment initiation (t < a) and β1 + log{λ∞(t)} thereafter (t ≥ a). This simple
version also assumes the (instantaneous) effect of cART on hazard of mortality is the same,
regardless of when cART is initiated; see Figure 2(a). If we allow h1(a) to vary with a,
then the effect of cART initiation depends on its timing; see Figure 2(b).

Now consider models where h1(a) is arbitrary and h2(t − a) 6= 0; a simple version is
h2(t−a) = (t−a)β2, where β2 is a scalar. This model implies that the instantaneous effect
of initiating cART is h1(a), and that the effect of being on cART at any given time t depends
on duration; see Figure 2(c). If β2 < 0, then at any given time t, individuals at risk who
have been on cART for longer will have lower rate of mortality. In general, h2(t− a) < 0
(> 0) implies that, after the initiation of cART at time a, the effect of cART on the hazard
of mortality diminishes (intensifies) over time. Figure 2 illustrates some simple versions of
the hazard model and the corresponding survival models. For simplicity, models in Figure 2
assume λ∞(t) is constant, but in our application it is left unspecified.

We parameterize h1(·) and h2(·) using natural cubic splines constructed from piecewise
third-order polynomials that pass through a set of control points, or knots. In practice,
we place the knots at quantiles of observed A for h1(·) and observed T ∗ − A for h2(·),
respectively. A natural cubic spline has continuous first and second derivatives at the knots,
and is linear beyond the boundary knots. Basis functions generated under these constraints
are called B-spline functions (Hastie et al. 2009). Parameterizing our model in terms of
B-splines yields

λa(t) = λ∞(t) exp
[
I(a < t)

{
b1(a)>β1 + b2(t− a)>β2

}]
, (3)

where b1(·)> = (b11(·), . . . , b1K1
(·)) is a B-spline basis function of degree K1 in a, and

b2(·)> = (b21(·), . . . , b2K2
(·)) is a B-spline basis function of degree K2 in t − a. The

parameters β1 and β2 are vectors of K1 and K2 coefficients for the basis functions b1(a)
and b2(t− a), respectively. This yields r(t, a) = exp{X(a, t)>β}, where

X(a, t)(K1+K2)×1 = I(a < t)[b1(a)>, b2(t− a)>]> (4)

and β (K1+K2)×1 = [β>1 , β>2 ]>. The causal effect of cART initiation time on survival
distribution is therefore encoded in β.

3 Estimation of structural model and optimal initiation time
3.1 Overview

In a RCT, individuals would be randomly assigned to cART initiation time A according to
some known probability density fA(·). In observational data, A is not randomized and may
be right censored. In our data, the decision to initiate cART depends on information avail-

JSM2015 - Health Policy Statistics Section

1405



able to the physician, and is therefore not randomly allocated. Moreover, A will be right
censored when an individual dies or leaves the study before treatment initiation. Our meth-
ods use observed data

{
A∗i ,∆A

i , T
∗
i ,∆T

i , Li(A∗i ) : i = 1, . . . , n
}

to estimate parameters
of the structural Cox model. We propose to use a weighted partial likelihood score (WPLS),
with inverse probability weights (IPW) to address nonrandom allocation of treatment and
potentially informative censoring. In the following, we discuss how to choose appropriate
weights and propose methods for estimating them.

In deriving the weights, we first consider the hypothetical case where A is not random-
ized and where T is always observed. Next, we move to the case where A may be censored
by T (i.e., where death occurs prior to treatment initiation), but there is no censoring by C.
We then describe the case where A is not randomized, and possibly censored by T . Finally,
we generalize our approach to allow for censoring by C, and consider cases where C may
be either non-informative or informative. Following the development of inference for our
causal structural model, we address the issue of estimating the optimal treatment initiation
time.

3.2 Randomized treatment assignment

If treatment is randomly allocated according to fA(·), then we can use the standard partial
likelihood score equations to derive consistent estimators of β. Let {NT (t) : t > 0} denote
the zero-one counting process associated with T , such that NT (t) = I

{
T ≤ t,∆T = 1

}
.

Let Y (t) = 1 if an individual is still at risk and under observation at t, and Y (t) = 0
otherwise. The partial likelihood score equations can be written

∑n
i=1Di(β) = 0, where

Di(β) = D(Ai, Ti;β)

=
∫ ∞

0

{
X(Ai, t)−X(t, β)

}
dNT

i (t), (5)

where X(Ai, t) is the design matrix based on (4) and X(t, β) =
∑

k
X(Ak,t)Yk(t)r(Ak,t;β)∑

k
Yk(t)r(Ak,t;β) .

Let ER{·} denote expectation under randomized treatment assignment. Under randomiza-
tion of A, (1/n)

∑
iD(Ai, Ti;β) is an unbiased estimator of ER {D(A, T ;β)}. The score

function
∑
iDi(β) is a stochastic integral of a predictable process with respect to a martin-

gale, and as such ER {D(A, T ;β0)} = 0 at the true value β0 of β; hence, the root β̂ of the
unbiased estimating equation

∑n
i=1Di(β) = 0 is a consistent estimator of β (Fleming and

Harrington 1991, pp. 297− 298).
Now consider the case where A is still randomly allocated, but death may occur be-

fore initiation of treatment, so that A∗ = min(A, T ) and ∆A = I(A < T ). We continue to
assume no censoring byC. Following Johnson and Tsiatis (2005), the mean of an individual
score contribution isER {D(Ai, Ti;β)} = ER

{
∆A
i D(Ai, Ti;β) + (1−∆A

i )D(Ai, Ti;β)
}

,
with

ER
{

(1−∆A
i )D(Ai, Ti;β)

}
= ER

[
ER

{
(1−∆A

i )D(Ai, Ti;β) |∆A
i , A

∗
i

}]
= ER

[
(1−∆A

i )ER
{
D(Ai, Ti;β) |∆A

i , A
∗
i

}]
= ER

{
(1−∆A

i )
∫ ∞
A∗

i

D(a, Ti, β)dFA |A>A∗
i
(a)
}

= ER

{
(1−∆A

i )
1− FA(A∗i )

∫ ∞
A∗

i

D(a, Ti, β)dFA(a)
}
. (6)
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To evaluate (6), note that D(a, Ti;β) =
∫∞

0 {X(a, t) − X(t, β)}dNT
i (t), and recall that

X(a, t) = I(a < t)[b1(a)>, b2(t − a)>]>, so that X(a, t) = 0 for a ≥ t, and D(a, Ti, β)
is a constant function of a where a ≥ A∗i and is evaluated at Ti as −X(Ti, β). Therefore,∫∞
A∗

i
D(a, Ti, β)dFA(a) = (1− FA(A∗))X(Ti, β) and equation (6) = −ER

{
(1−∆A

i )X(Ti, β)
}

.
Hence, when death may occur before treatment initiation, and when there is no censoring
byC, (1/n)

∑
iDi(β) is an unbiased estimator ofER

{
∆AD(A, T ;β)− (1−∆A)X(T, β)

}
.

This implies that the solution β̂ to the modified estimating equations
n∑
i=1

{
∆A
i D(Ai, Ti;β)− (1−∆A

i )X(Ti, β)
}

= 0 (7)

will yield a consistent estimator of β.

3.3 Non-random allocation of treatment

Suppose now that A is not randomly allocated, but that treatment allocation can be consid-
ered ignorable in the sense that

λA
{
t |L(t),T{a≥t}

}
= λA

{
t |L(t)

}
, (8)

where T{a≥t} = {Ta : a ≥ t} is the set of potential failure times associated with initiation
times beyond t. This assumption states that initiation of treatment at time t is sequentially
randomized in the sense that it is independent of future potential outcomes, conditionally
on observed covariate history L(t) (Robins 1999). This is the key assumption we make for
causal inference about the effect of A on T .

Let PR(·) denote the data distribution under randomized treatment, and let PO(·) de-
note the same under non-random allocation of treatment. Recall that the collection of data
that can be observed for all individuals, under either randomized or non-randomized allo-
cation of treatment, is {A∗,∆A, T ∗,∆T }. Following Murphy et al. (2001) and Johnson and
Tsiatis (2005), under the sequential randomization assumption in (8) and some regularity
conditions, including that

Pr
{
λ
(
t|L(t)

)
> 0 for all t such that fA(t) > 0

}
= 1, (9)

the distribution of {A∗,∆A, T ∗,∆T } under PR(·) is absolutely continuous with respect to
the distribution of {A∗,∆A, T ∗,∆T } under PO(·), and a version of the Radon-Nikodym
(R-N) derivative is

EO
{

∆A fA(A∗)
fA(A∗ |L(A∗))

+ (1−∆A) 1− FA(A∗)
1− FA(A∗ |L(A∗))∣∣∣ A∗ = a,∆A = δA, T ∗ = t,∆T = δT

}
. (10)

One consequence of the R-N derivative is that an estimating equation that is a function
of observed data and is unbiased under the distribution of PR(·) can be re-weighted by the
R-N derivative to obtain an unbiased estimating equation using the same observed data, but
now under the distribution PO(·) (Murphy et al. 2001).

Define

WA
1i(t) = fA(t)

fA(t |Li(t))
, WA

2i(t) = 1− FA(t)
1− FA(t |Li(t))

.
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The R-N derivative in (10) suggests using the weighted estimating equation
n∑
i=1

∆A
i D
∗(Ai, Ti;β)WA

1i(Ai)− (1−∆A
i )X∗(Ti;β)WA

2i(Ti) = 0, (11)

where D∗ and X∗ are evaluated using weighted risk set indicators

Y ∗k (t) = Yk(t)
{
I(Ak < t)WA

1k(Ak) + I(Ak ≥ t)WA
2k(t)

}
.

Up to now we have assumed no censoring by C. Let A(t) be the counting process of
treatment initiation, and A(t) denotes treatment history information up to time t. Suppose
that censoring is non-informative such that

λC
{
t |A(t), T{a≥t}

}
= λC

{
t |A(t)

}
, (12)

i.e., that conditional on treatment history information, the hazard of censoring at time t does
not depend on covariates or future potential outcomes. Censoring of T by C implies that
contributions to (11) will be zero. Under the non-informative censoring assumption in (12),
the WPLS estimating equation in (11) gives a consistent estimator for β.

We can relax the assumption by conditioning on covariates L(t),

λC
{
t |A(t), L(t), T{a≥t}

}
= λC

{
t |A(t), L(t)

}
.

This assumption states that occurrence of a censoring event at time t does not depend on
future potential outcomes, conditionally on observed treatment and covariate history L(t).

Define WC
i (t) = 1− FC(t)

1− FC(t |Li(t))
. Individuals who are censored by C contribute to the

risk set for all death times that occur before C. Our proposed WPLS estimating equation is
then:

Un(β) =
n∑
i=1

∆T
i W

C
i (Ti)

{
∆A
i D
∗∗(Ai, Ti;β)WA

1i(Ai)− (1−∆A
i )X∗∗(Ti;β)WA

2i(Ti)
}
, (13)

where D∗∗ and X∗∗ are evaluated using weighted risk set indicators

Y ∗∗k (t) = Yk(t)
{
I(Ak < t)WA

1k(Ak) + I(Ak ≥ t)WA
2k(t)

}
WC
k (t).

3.4 Estimation of the weights

The weights in our WPLS estimating equations in (13) depend on the marginal and condi-
tional density functions of A and C. Let {NA(t) : t > 0} denote the zero-one counting
processes associated with A, such that NA(t) = I(A ≤ t,∆A = 1). Let NC(t) = I(C ≤
t,∆T = 0). We can model the intensity processes of NA(t) and NC(t) separately.

To estimate fA(t |L(t)), we assume a proportional hazards model for λA
{
t |L(t)

}
,

using a regression function parameterized in terms of a finite-dimensional parameter α,

λA
{
t |L(t)

}
= λA0 (t) qA

(
L(t); α

)
. (14)

Using the approximation e−x ≈ 1−x for small x, and noting that 1−FA(t) = exp{−Λ(t)},
we have 1 − FA(t |L(t), α̂) ≈

∏
tj≤t

{
1− λA(tj |L(tj), α̂)

}
. The conditional density

function fA(t |L(t)) can be estimated as f̂A(t |L(t)) = λA(t |L(t), α̂)
{

1− FA(t |L(t), α̂)
}
,

where tj’s are the unique observed treatment initiation times, and α̂ is the maximum partial
likelihood estimator for model (14).

To estimate the unknown marginal probability density fA(t), we use the Nelson-Aalen
estimator Λ̂A(t) for the cumulative hazard rate function of the observed treatment initia-
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tion,
{
A∗i ,∆A

i , i = 1, . . . , n
}

, with λ̂A(t) = dΛ̂A(t), hence f̂A(t) = λ̂A(t)
{

1− F̂A(t)
}
,

where 1− F̂A(t) = exp
{
−Λ̂A(t)

}
. Therefore,

ŴA
1i(t) = f̂A(t)

f̂A(t |Li(t))
, ŴA

2i(t) = 1− F̂A(t)
1− FA(t |Li(t), α̂)

.

The weightsWC
i (t) can be estimated in a similar fashion by fitting a PH model for λC

{
t |A(t), L(t)

}
and using N-A estimator Λ̂C(t) with λ̂C(t) = dΛ̂C(t) for estimating fC(t).

3.5 Optimal initiation time

With our structural model (3), the potential survival function for a given regime a is:
Sa(t) = exp{−Λa(t)}, where,

Λa(t) = I(t < a)Λ∞(t)

+ I(t ≥ a)
[
Λ∞(a) +

∫ t

a
exp{h1(a) + h2(u− a)}dΛ∞(u)

]
.

The estimated baseline cumulative hazard, Λ̂∞(t), is the Breslow estimate. For any given a
and t, h1(a), h2(t− a) and Λ∞(·) are estimated using our WPLS estimating equation (13).
Therefore, Sa(t) can be estimated for any combination of a and t. We estimate the optimal
initiation time as the value of a that maximizes expected one-year survival, aopt(t0 = 52) =
arg maxa{Ŝa(t0 = 52)}.
4 Application to AMPATH data
We extracted AMPATH data on 6726 HIV/TB co-infected adult patients who initiated TB
treatment between March 1, 2004 and April 18, 2008 and had a baseline CD4 count below
350. These patients were automatically eligible for cART initiation in resource constrained
setting according to AMPATH guidelines. Baseline is defined as the time at which TB
treatment is initiated. We excluded 1823 individuals who had missing data on one or more
baseline covariates. Our analysis dataset therefore contains 4903 HIV/TB co-infected pa-
tients with TB therapy initiated. Among these patients, 3593 had observed cART initiation
times within one year subsequent to the initiation of TB treatment, 52 were observed to start
cART after one year of their TB treatment, and 449 were observed not to start cART. The
remaining 809 patients were either administratively censored, lost to follow-up, or had died
prior to the initiation of cART, all resulting in right censored exposure (cART initiation)
times.

Baseline CD4 count is a key marker physicians use to decide cART initiation time. To
be consistent with AMPATH guidelines, we divide baseline CD4 count into three groups:
≤ 50, 51− 200, and 201− 350. In estimating time-varying weights for cART initiation as
described in section 3.4, at any given time, L(t) in model (14) includes binary marital status,
binary indicator of post primary education, gender, clinic site (urban vs. rural), WHO stage
(stage 1 or 2; stage 3 or 4; missing), baseline weight, most recently observed CD4 (time-
varying), and baseline age. Higher-order terms of the variables were tested and were not
statistically significant. We carry out our analysis with and without assuming informative
censoring by C. When assuming informative censoring, we use the same covariates for the
censoring model. Our results are similar under both assumptions. Bootstrap re-sampling
with 1000 replicates is used to estimate standard errors of the optimal initiation times. The
weights and optimal initiation times are computed for each sample of the 1000 replicates.

We use two versions of h1(a): one for those with CD4 ≤ 200 and the other for CD4
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∈ (200, 350], and a common spline function h2(t − a) for the three CD4 groups. The
baseline hazard λ∞(t) was stratified on baseline CD4 count, allowing a distinct baseline
hazard function for each stratum.

The plots of fitted h1(a) and h2(t − a) are shown in Figure 3. Key findings from
the plots are as follows: (i) the first plot for h1(a) shows a sharp increase in log hazard
when a > 20 weeks, suggesting that for patients with CD4 below 200, delay in treatment
initiation beyond 20 weeks has a detrimental effect on survival. A minor U shape in the
plot suggests that early initiation (a < 10 weeks) may slightly increase mortality hazard;
(ii) the second plot for h1(a) suggests delay in treatment initiation for patients with CD4
∈ (200, 350] does not have noticeable effect on mortality hazard; (iii) the third plot for
h2(t − a) shows that longer treatment duration time reduces mortality hazard for all CD4
subgroups. Selection of the optimal initiation time must balance earlier initiation and longer
duration. Any potential negative effects associated with early initiation for CD4 ≤ 200 are
clearly overwhelmed by the benefit gained from longer treatment duration.

We use the output of our model to estimate the optimal initiation times. Figure 4 shows
one-year mortality as a function of cART initiation time, stratified by CD4 count subgroups.
The 95% confidence bands are obtained by bootstrap re-sampling with 1000 replicates. The
effect of early cART initiation is most pronounced for CD4 ≤ 50, and least noticeable
for CD4 ∈ (200, 350]. The estimated optimal time and the corresponding 95% CI are
.55 (0, 7.53) for CD4≤ 50, .51 (0, 8.00) for CD4 ∈ (50, 200], and 4.83 (0, 34.00) for CD4
∈ (200, 350].

Our results suggest cART should be initiated within 8 weeks of the initiation of TB
therapy for AMPATH patients with CD4 counts lower than 200, and the optimal time should
be at the start of TB therapy. For patients with CD4 ∈ (200, 350], the optimal initiation time
is about 5 weeks subsequent to the start of TB therapy, however the effect of early initiation
is not as significant. Our results are consistent with AMPATH guidelines in treating HIV/TB
co-infected patients, and are consistent with general findings of randomized control trials.

5 Summary and discussion
Determining the optimal cART initiation time for treating HIV/TB co-infected patients is
important. Currently, RCTs and observational studies have been carried out to study the
effect of initiation time only at a small number of time points during the course of TB
treatment. We examine the effect of cART timing on continuous scale.

We use data from a large observational cohort to gain more detailed information about
treatment effects in practical settings. We formulate a statistical model that captures sepa-
rately both the causal effect of cART timing and duration on mortality rate. Our model is
parameterized in terms of two highly flexible components using unspecified smooth func-
tions of time, generating data-driven representations of the overall treatment effect. The
observational data have rich information but pose complications for statistical analysis. We
develop methods for fitting the model to complex observational data wherein initiation time
is nonrandomly assigned, and both mortality and cART initiation time are subject to cen-
soring. We further use the output of our model to generate the full distribution of potential
outcomes corresponding to specific cART initiation times, and to derive CD4-specific op-
timal initiation times. Our results are consistent with general RCT findings and current
AMPATH guidelines.

There are two potential sources of bias in our analysis. First, censoring by C could be
associated with higher death rate. We assess this issue by assuming both informative and
non-informative censoring mechanism, and carry out our analysis under both assumptions.

JSM2015 - Health Policy Statistics Section

1410



Our results under the two censoring mechanisms are similar. Second, we make sequential
randomization assumption for the initiation of treatment. We are pursuing a sensitivity
analysis as an extension to our analysis to assess the effect of violations of this assumption.
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Table 1: Treatment regimens and dosing frequency for new TB patients (WHO 2010).

Intensive Phase Continuation phase Comments
2 months of HRZE 4 months of HR
2 months of HRZE 4 months of HRE Applies only in countries with high levels of isoni-

azid resistance in new TB patients, and where results
of isoniazid drug susceptibility testing in new pa-
tients are unavailable before the continuation phase
begins

NB: H: Isoniazid; R: Rifampin; Z: Pyrazinamide; E: Ethambutol
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Table 2: AMPATH guidelines for initiating ART in adults co-infected with HIV and TB.
Timing of ART initiation is in relation to start of TB treatment.

Criteria at TB treatment initiation Timing of ART
CD4 count ≤ 50 and/or presence of opportunistic infection After 2 weeks
50 < CD4 count ≤ 200 After 1 month
CD4 count > 200 or clinically stable After 2 months

Figure 1: Patterns of observed information on cART initiation time A and death time T .
Either or both may be right censored prior to 1 year at time C.
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(a) h1(a1) = h1(a2) = −.5; h2(a) = 0

(b) h1(a1) = −1.5; h1(a2) = −.5; h2(a) = 0

(c) h1(a1) = −1.5; h1(a2) = −.5; h2(a) = −.5(t − a)

Figure 2: Simple examples of the hazard models and corresponding survival models; Two
initialization times are compared: a1 = .5; a2 = 2.
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Figure 3: Fitted spline functions h1(a) and h2(t − a) in the equation (1) with r(t, a) =
exp [I(a ≤ t){h1(a) + h2(t− a)}] .

Figure 4: Causal effect of cART initiation: one-year mortality as a function of cART initi-
ation time, stratified by baseline CD4 count.
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