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Abstract 
Researchers in genomics are increasingly interested in DNA methylation that is altered in 
disease since epigenetic changes may be susceptible to modification by environmental 
factors. We propose two different approaches to test for differentially methylated regions 
(DMRs) that account for correlations among CpG sites within DMRs, one using a kernel 
distance statistic and the other using a binomial spatial scan statistic. In the first approach, 
the kernel distance statistic is calculated as a function of the difference in methylation 
rates between the treatment and control groups for each CpG site, incorporating the 
correlations among the sites using the kernel function. The binomial scan statistic 
approach compares the likelihood ratios of the two groups with moving windows along 
the genome, using a mixed-effect model to account for correlation among CpG sites 
within each window. Both methods allow for adjusting for covariates. Simulation results 
indicate that both methods are robust with good power and good control of Type I error. 
The binomial scan statistic approach appears to have higher power, while the method 
based on kernel distance statistic is computationally faster.  
 

Key Words: Kernel distance, Binomial spatial scan statistic, differentially methylated 
regions, CpG sites, mixed-effect model 
 

 
1. Introduction 

 
Extensive investigations have been performed through genome-wide association studies 
(GWASs) on the genetic risk of diseases in recent years. However, genetic loci through 
GWASs can only explain a small proportion of phenotypic variation for most common 
diseases (Hindorff et al., 2009). On the other hand, people realized that diseases are not 
only affected by genetic factors, but also non-genetic sources, such as environmental 
factors. This causes increasingly interested in exploring non-genetic sources, including 
epigenetic changes, especially DNA methylation at CpG sites, which has important 
implications on diseases.  
 
In order to detect difference in DNA methylation, methylation data from Next-Generation 
Sequencing (NGS) have been used for statistical analysis. NGS coupled with bisulphite 
treatment of DNA converts unmethylated cytosines to uracils and leave methylated 
cytosines intact. This results in counts of uracil (unmethylated) and cytosine (methylated) 
at each CpG site for every sample. The total count of uracils and cytosines is the 
sequencing coverage at each CpG site, which could be different for each individual. 
Individuals with large sequencing coverage could have undue influence in statistical 
analysis. In order to avoid that, methylation rates have been suggested for analysis, which 
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is estimated as the ratio of methylated alleles over the sum of methylated and 
unmethylated alleles at a given site.  
 
Methylation rates are continuous when measured across a large number of cells (Eckhardt 
et al., 2006). Also methylation rates at CpGs sites could be affected by those at nearby 
CpG sites, and have complicated correlation structure (Leek et al., 2010). Considering 
these, recent research focus has expanded to patterns of methylation in clusters of CpG 
sites, in order to detect differentially methylated regions (DMRs) in the genome.  
 
Statistical methods have been developed to detect DMRs, including some general 
approaches for bump detection, such as bump-hunting techniques (Jaffe et al., 2012). Yip 
et al. (2014) develops a statistical method based on Jaffe et al. (2012). The main 
advantage of this method is that it not only uses percent methylation values but also 
locations of CpG sites. After scanning the genome from the beginning to the end using a 
sliding window which contains a fixed number of CpG sites, Ansari-Bradley test is used 
to find the region that has significant differences of distance distribution between two 
groups. However, since Ansari-Bradley test has the assumption that observations are 
independent, Yip et al. (2014)’s approach does not account for the correlation between 
CpG sites. Besides that, both methods only use methylation rates for analysis, and ignore 
the binomial distribution of methylation counts. 
 
Some methods are specific for detecting DMRs based on bisulfite sequencing, for 
example, the two widely used packages, BSmooth (Hansen et al., 2012) and Biseq 
(Hebestreit et al., 2013). Both methods use functional data analysis to capture the slowly 
changed methylation levels over a region observed in the data. After that, BSmooth tests 
the group differences via a test statistic that similar to a t-test for each CpG site, DMRs 
are defined as adjacent CpG sites with absolute t-statistics above a defined threshold with 
permutations for significance testing. However, this method depends on the pre-defined 
threshold for absolute t-statistic, which would hinder automated analysis and possible 
leading to biased conclusion. BiSeq is a package that uses a false discovery rate 
procedure to control the expected proportion of incorrectly rejected regions. The main 
advantage of BiSeq compare to BSmooth is increased power by this hierarchical 
procedure. Also it takes spatial dependence into account. Eventually, the significant 
target regions are trimmed to the actually DMRs.  
 
However sometimes, the data do not show as smooth of a function, and as such the 
wavelets are suggested to use by Ryu et al. (2014). Their generalized integrated function 
test, estimates subject-specific functional profiles first by using wavelets, and the average 
profile within groups is calculated. An ANOVA-like test is used to compare groups for a 
region, by comparing the overall functional relationship to the average curve within each 
group. This method mainly focused on testing for differential methylation of a region, 
which needs other tools to identify the candidate region first. Besides that, this method 
has limitation that can only be used for regions without missing data.  
 
In this paper, we propose two methods, one based on kernel distance and the other based 
on scan statistic. The purpose is using both methods to detect DMRs along the whole 
genome based on methylation data from NGS. The main advantages of our methods are 
not only that both can detect DMRs without pre-defined regions, but also that our 
methods can account for correlation among CpG sites, and can adjust for covariates and 
other confounding factors. This is very important for methylation data, since the 
methylated rates have been shown to be strongly associated with covariates, such as age 
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(Bell et al., 2012; Teschendorff et al., 2010) and gender (Kibriya et al., 2011; Liu et al., 
2010).  
 

2. Methods 
 
Test of whether methylation rates are different between two groups (case and control) can 
be done by using kernel distance statistic and binomial spatial scan statistic. Kernel 
distance statistic is a nonparametric method, which can be expressed as a quadratic 
function with differences of methylation rates between case and control groups for each 
CpG site, with the tri-weight kernel function (Schaid et al., 2013) to adjust between sites 
correlation.  
 
Binomial spatial scan statistic is a likelihood-based method, which compares the 
likelihood ratio between cases and controls with moving windows. In order to adjust the 
between sites correlation, the mixed-effect model will be used.  
 
Before calculating kernel distance and scan statistics, logistic regression of methylation 
rates is considered to adjust for covariates. The main advantage of logistic regression is 
that it allows for the inclusion of sample specific covariates, thus has the ability to adjust 
for confounding variables and batch effect.  
  
Besides that, the methylation counts and sequencing coverage need to be adjusted based 
on Xu et al. (2013) for both methods. Considering the natural groups in the specimen and 
among the methylation loci, Xu et al. (2013)’s approach is used to adjust the clustering 
structure. The design effect is calculated for both groups, by treating the NGS reads at a 
specific CpG site as a cluster within each individual. It is calculated based on Rao and 
Scott (1992), which is the ratio of estimated variance of methylation rate with clustering 
and without clustering, reflecting the variance inflation due to clustering. Here the 
estimated variance of proportion without considering clusters is based on a binomial 
distribution. This method has advantage of no specific model assumption for the intra-
cluster correlation.  
 
2.1 Kernel Distance Statistic 
Kernel distance statistic is a quadratic function calculated with differences of methylated 
rates for two groups at each CpG site. It can be expressed as a quadratic kernel statistic 
𝑄 = 𝜹′𝑨𝜹,  with kernel matrix 𝑨 to adjust correlation between CpG sites and multiple 
scaling factors for kernel function to find potential DMRs.  
 
2.1.1 Adjusting Methylation Rates 
In order to calculate kernel distance statistic, the difference of methylation rates 𝜹 need to 
be calculated for each CpG site. Considering the unequal sequencing coverage for all 
individuals in a group at each CpG site, NGS reads at each CpG site within an individual 
is treated as a cluster, and clustered data analysis method used in Xu et al. (2013) is 
adopted here. The design effect is calculated, and then used for adjusting coverage and 
methylation counts at each CpG site for every group.  
 
Suppose 𝑚𝑘𝑖𝑗 is the count of the methylation molecular at CpG site 𝑗 of individual 𝑖 in 
group 𝑘, here 𝑘 = 𝐴 for cases and 𝑘 = 𝑈 for controls. Suppose 𝑚𝑘𝑖𝑗 follows Binomial 
distribution 𝑚𝑘𝑖𝑗~𝐵(𝐶𝑘𝑖𝑗, 𝑝𝑘𝑖𝑗), where 𝑐𝑘𝑖𝑗 is the coverage, and 𝑝𝑘𝑖𝑗 is the true 
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methylation rate at CpG site 𝑗 for individual 𝑖 in group 𝑘, with 𝑛𝑘 = ∑ 𝑛𝑘𝑖
𝑘
𝑖=1  is the total 

number of CpG sites in the genome for all individuals in group 𝑘. 
 
To calculate the design effect, first, calculate the overall methylated counts at CpG site 𝑗 
in case and control group, respectively, ignoring the clustering within individuals. That is, 
𝑚𝐴𝑗 = ∑ 𝑚𝐴𝑖𝑗

𝑛𝐴
𝑖=1  and 𝑚𝑈𝑗 = ∑ 𝑚𝑈𝑖𝑗

𝑛𝑈
𝑖=1 , where 𝐴 is the set of all cases and 𝑈 is the set of 

all controls. Then the sample methylation proportions in case and control group are given 
by 𝛽̂𝐴𝑗 =

𝑚𝐴𝑗

𝐶𝐴𝑗
 and 𝛽̂𝑈𝑗 =

𝑚𝑈𝑗

𝐶𝑈𝑗
, with 𝐶𝐴𝑗 = ∑ 𝑐𝐴𝑖𝑗

𝑛𝐴
𝑖=1  and 𝐶𝑈𝑗 = ∑ 𝑐𝑈𝑖𝑗

𝑛𝑈
𝑖=1 . The variances 

of the sample methylation proportions are given by 𝑉̂(𝛽̂𝐴𝑗) =
𝑛𝐴 ∑ (𝑚𝐴𝑖𝑗−𝑐𝐴𝑖𝑗𝛽̂𝐴𝑗)

2𝑛𝐴
𝑖=1

(𝑛𝐴−1)𝐶𝐴𝑗
2  

 and 

𝑉̂(𝛽̂𝑈𝑗) =
𝑛𝑈 ∑ (𝑚𝑈𝑖𝑗−𝑐𝑈𝑖𝑗𝛽̂𝑈𝑗)

2𝑛𝑈
𝑖=1

(𝑛𝑈−1)𝐶𝑈𝑗
2  

. However, without clustering, the variances of the 

sample methylation proportion from a binomial distribution would be  𝑉̂𝐵(𝛽̂𝐴𝑗) =
𝛽̂𝐴𝑗(1−𝛽̂𝐴𝑗)

𝐶𝐴𝑗
 and 𝑉̂𝐵(𝛽̂𝑈𝑗) =

𝛽̂𝑈𝑗(1−𝛽̂𝑈𝑗)

𝐶𝑈𝑗
, therefore, the design effect because of clustering 

are 𝑑𝐴𝑗 =
𝑉̂(𝛽̂𝐴𝑗)

𝑉̂𝐵(𝛽̂𝐴𝑗)
 and 𝑑𝑈𝑗 =

𝑉̂(𝛽̂𝑈𝑗)

𝑉̂𝐵(𝛽̂𝑈𝑗)
.  

 
The design effect is then used to adjust the methylation counts, and total coverage in 
cases and controls, eventually have 𝑚̃𝐴𝑗 =

𝑚𝐴𝑗

𝑑𝐴𝑗
 , 𝑚̃𝑈𝑗 =

𝑚𝑈𝑗

𝑑𝑈𝑗
 and  𝐶̃𝐴𝑗 =

𝐶𝐴𝑗

𝑑𝐴𝑗
 ,  𝐶̃𝑈𝑗 =

𝐶𝑈𝑗

𝑑𝑈𝑗
. 

The estimated methylation rate at CpG site 𝑗 is 𝛽̃𝐴𝑗 =
𝑚̃𝐴𝑗

𝐶̃𝐴𝑗
 for cases and 𝛽̃𝑈𝑗 =

𝑚̃𝑈𝑗

𝐶̃𝑈𝑗
 for 

controls. Define the average methylation rate at CpG site 𝑗 for cases is 𝑝𝑑𝑗 =
𝛽̃𝐴𝑗

∑ 𝛽̃𝐴𝑗𝑗
 and 

𝑝𝑐𝑗 =
𝛽̃𝑈𝑗

∑ 𝛽̃𝑈𝑗𝑗
 for controls, then 𝛿𝑗 = 𝑝𝑑𝑗 − 𝑝𝑐𝑗 is the difference of the methylation rate 

between two groups at CpG site 𝑗, and would be used in kernel distance statistic. 
 
2.1.2 Choice of Kernels 
Kernel distance statistic is calculated with kernel matrix 𝑨, which is used to represent the 
correlation between the two CpG sites. Generally, the correlation of methylation 
decreases as the distance of the two CpG sites increases. Therefore the kernel matrix 
should be based on a function that determines how rapid the correlation decreases to 0 as 

the distance increases. Here we define the tri-weight function 𝐴𝑗𝑙 = (1 − (𝑑𝑗𝑙
′ )

2
)

3
, if 

𝑑𝑗𝑙
′ ≥ 1 and 0 otherwise (Schaid et al., 2013), where 𝑑𝑗𝑙

′ = 𝑑𝑗𝑙/𝜏 is a scaled distance 
based on unknown scaling factor 𝜏, and 𝑑𝑗𝑙 measures the distance between CpG site 𝑗 and 
site 𝑙.  
 
Here unknown scaling factor 𝜏 represents the cluster size, however it is difficult to predict 
the size of DMRs and the number of DMRs along the genome. Therefore the tri-weight 
function is used over a range of scaled distances as suggested in Schaid et al. (2013). 
 
The use of multiple scaling factors makes it inappropriate to calculate 𝑝-values based on 
the approximated scaled chi-square distribution, and permutation of case and control 
status is required instead. Also in order to avoid multiple testing problems caused by 
multiple scaling factors, the minimum 𝑝-value is used.  
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After find minimum 𝑝-value, the scaling factor that corresponding to the minimum 𝑝-
value is recorded as the length of DMR, 𝜏∗, and the corresponding kernel distance can be 
calculated as,  

𝑄(𝜏∗) = ∑ ∑(𝐴𝑗𝑙(𝜏∗)(𝑝𝐴𝑗 − 𝑝𝑈𝑗)(𝑝𝐴𝑙 − 𝑝𝑈𝑙))

𝑚

𝑙=1

𝑚

𝑗=1

, 

with percent contribution to 𝑄(𝜏∗) at each CpG site calculated as 𝑈𝑗(𝜏∗)/𝑄(𝜏∗), where 
𝑈𝑗(𝜏∗) = ∑ (𝐴𝑗𝑙(𝜏∗)(𝑝𝐴𝑗 − 𝑝𝑈𝑗)(𝑝𝐴𝑙 − 𝑝𝑈𝑙))𝑚

𝑙=1 . Then the distribution of methylation 
rates can be plotted based on the percent contribution 𝑈𝑗(𝜏∗)/𝑄(𝜏∗) versus CpG site 𝑗, 
which can give us a graphical view of potential DMRs.  
 
2.1.3 Adjusting for covariates 
Here the distance statistic considering covariates is proposed for methylation data, based 
on Schaid et al. (2013). Let 𝑥𝑘𝑖 represents covariate of individual 𝑖 in group 𝑘, the 
logistic regression 

log (
𝑚𝑘𝑖𝑗

𝑐𝑘𝑖𝑗 − 𝑚𝑘𝑖𝑗
) = 𝛽0𝑘 + 𝛽1𝑘𝑥𝑘𝑖 

is used to fit all the data for both groups, and calculate the fitted odds for methylation at 
CpG site 𝑗 for individual 𝑖 in group 𝑘, then can get the corresponded adjusted expected 
methylation rate is 

𝑝̂𝑘𝑖𝑗 =
𝑚̂𝑘𝑖𝑗

𝑐̂𝑘𝑖𝑗
=

exp(𝛽̂0𝑘 + 𝛽̂1𝑘𝑥𝑘𝑖)

1 + exp(𝛽̂0𝑘 + 𝛽̂1𝑘𝑥𝑘𝑖)
, 

and then the difference of observed and expected methylated counts at CpG  𝑗 for 
individual 𝑖 in group 𝑘 is calculated as residual 𝑟𝑘𝑖𝑗 = 𝑚𝑘𝑖𝑗 − 𝑝̂𝑘𝑖𝑗𝑐𝑘𝑖𝑗. 
 
In order to calculate kernel distance statistic, the design effect in Xu et al. (2013) are 
calculated first as in Section 2.1.1 to adjust the residuals and sequencing coverage, we 
have 𝑟̃𝐴𝑗 =

𝑟𝐴𝑗

𝑑𝐴𝑗
 , 𝑟̃𝑈𝑗 =

𝑟𝑈𝑗

𝑑𝑈𝑗
 and  𝐶̃𝐴𝑗 =

𝐶𝐴𝑗

𝑑𝐴𝑗
 ,  𝐶̃𝑈𝑗 =

𝐶𝑈𝑗

𝑑𝑈𝑗
. The estimated adjusted 

methylation rate at CpG site 𝑗 is 𝛽̃𝐴𝑗 =
𝑟̃𝐴𝑗

𝐶̃𝐴𝑗
 for cases and 𝛽̃𝑈𝑗 =

𝑟̃𝑈𝑗

𝐶̃𝑈𝑗
 for controls. Define 

the average adjusted methylation rate at CpG site 𝑗 for cases is 𝑝𝑑𝑗 =
𝛽̃𝐴𝑗

∑ 𝛽̃𝐴𝑗𝑗
 and 𝑝𝑐𝑗 =

𝛽̃𝑈𝑗

∑ 𝛽̃𝑈𝑗𝑗
 for controls, then 𝛿𝑗 = 𝑝𝑑𝑗 − 𝑝𝑐𝑗 is the difference of the adjusted methylation rate 

between two groups at CpG site 𝑗, and would be used in kernel distance statistic with 
kernel matrix defined in Section 2.1.2.  
 
2.1.4 Conclusions for Kernel Distance Statistic 
Kernel distance statistic has advantage of being fast in computing (Schaid et al., 2013), 
however, the power of kernel distance statistic might be reduced since it is strongly 
depends on the pre-defined scale parameter 𝜏 to reflect the unknown value of cluster size. 
If the values of 𝜏 is not close to the actual size, it might have difficulty to detect the real 
DMR.  
 
2.2 Binomial Spatial Scan Statistic 
Besides kernel distance statistic, scan statistic is another method that can be used to 
detect DMRs, which is based on comparing the likelihood ratio of methylation rates 
between the case and control groups. And this method uses moving windows along the 
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genome, with multiple window sizes, which will help to reflect location of the DMRs, 
and eventually increase the power compare to kernel distance statistic.  
 
Scan statistic was first studied by Naus (1965) to detect clusters in a point process in a 
one-dimensional setting. He applied the idea of maximum frequency to the case of 
ungrouped data and proposed a ‘scan’ test with the null hypothesis of a purely random 
Poisson process.  
 
However, it is well known that methylation rates does not follow a uniform distribution. 
Therefore, reasonable method is needed to take into account the underlying distribution 
of methylation rates. Kulldorff (1997) described a likelihood-based scan statistic, and was 
extended to detect genetic variants by Ionita-Laza et al. (2012), considering the Bernoulli 
distribution of variants at each position for each individual. The scan statistic was 
calculated based on the likelihood ratio of the frequencies of variants carried among cases 
and controls within a window versus outside the window. And the scan statistic was 
calculated for each window with moving windows across the whole genome. Then the 
maximum scan statistic over the windows of all possible sizes, is defined as the global 
statistic. However, the approach by Ionita-Laza et al. (2012) cannot be adapted for 
methylation data, since methylated counts at each CpG site for every individual follows a 
binomial distribution instead, after considering sequencing coverage.  
 
Here binomial scan statistic is proposed and calculated based on the adjusted methylation 
counts and sequencing coverage. Since methylation rate for each CpG site is affected by 
those of closed-by CpG sites in the region, the correlation of methylation counts are 
adjusted by mixed-effect model first. And then the methylation counts and sequencing 
coverage are adjusted by “design”, after considering unequal coverage for every 
individual at each CpG site.  
 
2.2.1 Binomial Scan Statistic 
To account for the correlation of CpG sites in each moving window, a random intercept 
and slope mixed-effect logistic model is considered to model methylation counts at each 
CpG site for every individual, 

log (
𝑚𝑘𝑖𝑗

𝑐𝑘𝑖𝑗 − 𝑚𝑘𝑖𝑗
) = 𝛽0𝑘 + 𝛽1𝑘𝑠𝑗 + 𝜈0𝑘𝑖 + 𝜈1𝑘𝑖𝑠𝑗 + 𝑒𝑘𝑖𝑗 , 

where 𝑠𝑗 represents the distance of CpG site 𝑗 from the start point of the specific window.  
 
In the mixed-effect logistic model setting, the random effect 𝝂𝑘 = (

𝜈0𝑘𝑖

𝜈1𝑘𝑖
) is assumed to 

vary independently across individuals, with 𝝂𝒌~𝑁 (0, (
𝜎𝜈0𝑘𝑖

2 𝜎𝜈0𝑘𝑖
𝜎1𝑘𝑖

𝜎𝜈0𝑘𝑖
𝜎1𝑘𝑖 𝜎𝜈1𝑘𝑖

2 )), and is 

independent with the error 𝑒𝑘𝑖𝑗, which is assumed to vary independently across CpG sites 
within an individual, with 𝑒𝑘𝑖𝑗~𝑁(0, 𝜎𝑒

2).   
 
Next the fitted odds of methylation counts can be calculated for CpG 𝑗 of individual 𝑖 in 
group 𝑘. Similar to Section 2.1.3, we can get the corresponding adjusted expected 
methylation rate 𝑝̂𝑘𝑖𝑗, and the difference of observed and expected methylated counts at 
CpG  𝑗 for individual 𝑖 in group 𝑘 is calculated as residual 𝑟𝑘𝑖𝑗 = 𝑚𝑘𝑖𝑗 − 𝑝̂𝑘𝑖𝑗𝑐𝑘𝑖𝑗. 
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Considering the different sequencing coverage for every individual at each CpG site, the 
residuals and sequencing coverage are adjusted by the design effect based on Xu et al. 
(2013), as in Section 2.1.1. Eventually we have adjusted residuals 𝑟̃𝐴𝑗  ( 𝑟̃𝑈𝑗 ) and 
sequencing coverage 𝐶̃𝐴𝑗 (𝐶̃𝑈𝑗) for cases (controls) at each CpG site. Here we assume 
𝑟̃𝐴𝑗~𝐵(𝐶̃𝐴𝑗 , 𝑝𝐴) and 𝑟̃𝑈𝑗~𝐵(𝐶̃𝑈𝑗, 𝑝𝑈), with 𝑝𝐴 and 𝑝𝑈 are true methylation rates for cases 
and controls. Considering 𝑟̃𝑘𝑗~𝐵(𝐶̃𝑘𝑗, 𝑝𝑘), then the likelihood of 𝑟̃𝑘𝑗 is 

𝑓(𝑟̃𝑘𝑗) = (
𝐶̃𝑘𝑗

𝑟̃𝑘𝑗
) 𝑝𝑘

𝑟̃𝑘𝑗(1 − 𝑝𝑘)𝐶̃𝑘𝑗−𝑟̃𝑘𝑗 

= (
𝐶̃𝑘𝑗

𝑟̃𝑘𝑗
) 𝑒𝑥𝑝 {𝐶̃𝑘𝑗 (

𝑟̃𝑘𝑗

𝐶̃𝑘𝑗

log (
𝑝𝑘

1 − 𝑝𝑘
) + log (1 − 𝑝𝑘  ))}. 

 
For a specific window, after adjusting for between CpG sites correlation by using mixed-
effect model, the residuals (𝑟̃𝑘1, 𝑟̃𝑘2, … , 𝑟̃𝑘𝑠) for the 𝑠 consecutive CpG sites are assumed 
to be independent. Then the joint likelihood of residuals over continuous s  CpG sites in 
the defined region for group k  is the product of the likelihoods of the s  CpG site, which 
can be expressed as,  

𝑓(𝑟̃𝑘1, 𝑟̃𝑘2, … , 𝑟̃𝑘𝑠) = ∏ (
𝐶̃𝑘𝑗

𝑟̃𝑘𝑗
) 𝑒𝑥𝑝 {𝐶̃𝑘𝑗 (

𝑟̃𝑘𝑗

𝐶̃𝑘𝑗

log (
𝑝𝑘

1 − 𝑝𝑘
) + log (1 − 𝑝𝑘  ))}

𝑠

𝑗=1

 

= ∏ (
𝐶̃𝑘𝑗

𝑟̃𝑘𝑗
) 𝑒𝑥𝑝 {∑ 𝐶̃𝑘𝑗

𝑠

𝑗=1

(
∑ 𝑟̃𝑘𝑗

𝑠
𝑗=1

∑ 𝐶̃𝑘𝑗
𝑠
𝑗=1

log (
𝑝𝑘

1 − 𝑝𝑘
) + log (1 − 𝑝𝑘  ))}

𝑠

𝑗=1

. 

 
From this likelihood, we can see the distribution of adjusted residuals is from a one-
parameter exponential family 𝑦~1𝐸𝑋𝑃(𝜂, 𝜙, 𝑇, 𝐵𝑒 , 𝑎) with 

𝑇(𝑟̃𝑘1, 𝑟̃𝑘2, … , 𝑟̃𝑘𝑠) =
∑ 𝑟̃𝑘𝑗

𝑠
𝑗=1

∑ 𝐶̃𝑘𝑗
𝑠
𝑗=1

 

𝜂 = 𝑙𝑜𝑔 (
𝑝𝑘

1 − 𝑝𝑘
) → 𝑝𝑘 =

exp(𝜂)

1 + exp(𝜂)
 

𝐵𝑒(𝜂) = − log(1 − 𝑝𝑘) = log (1 + 𝑒𝜂) 
𝜙 =

1

∑ 𝐶̃𝑘𝑗
𝑠
𝑗=1

 with 𝑎(𝜙) = 1 

𝑔𝑒(𝑥) = (𝐵𝑒
′)−1 = log(𝑥) − log (1 − 𝑥) 

and the log-likelihood 𝑙(𝜂; 𝑦) = (𝜂𝑇(𝑦) − 𝐵𝑒(𝜂))/𝜙 after ignoring additive constant that 
do not depend on 𝜂. 
 
Based on this likelihood function, we can find maximum likelihood estimator (MLE) of 
parameter 𝜂  in one-parameter exponential family 𝑦𝑖~1𝐸𝑋𝑃(𝜂, 𝜙𝑖, 𝑇, 𝐵𝑒 , 𝑎)  as 𝜂̂ =
𝑔𝑒(𝑇∗(𝑦)), where 𝑔𝑒 = (𝐵𝑒

′)−1 (Agarwal et al., 2006).  
 
Let 𝜂𝐴 and 𝜂𝑈 be the MLE parameters for the data with two groups in the same specified 
region. In order to test the hypothesis 𝐻1: 𝜂𝐴 ≠ 𝜂𝑈 versus  𝐻0: 𝜂𝐴 = 𝜂𝑈, the ratio of the 
likelihood under 𝐻1 versus the likelihood under 𝐻0 can be used as a test statistic, with the 
log of the test statistic given by 

Δ = 𝜅(𝑇𝐴, Φ𝐴) + 𝜅(𝑇𝑈, Φ𝑈) − 𝜅(𝑇, Φ), 
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where 𝜅(𝑥, 𝑦) = (𝑥𝑔𝑒(𝑥) − 𝐵𝑒(𝑔𝑒(𝑥)))/𝑦 and 1

Φ
=

1

Φ𝐴
+

1

Φ𝑈
, 𝑇 = 𝑏𝐴𝑇𝐴 + (1 − 𝑏𝑈)𝑇𝑈 

with 𝑏𝐴 =
1

Φ𝐴
/(

1

Φ𝐴
+

1

Φ𝑈
).  

 

Here we have Φ𝐴 =
1

∑ 𝐶̃𝐴𝑗
𝑠
𝑗=1

, Φ𝑈 =
1

∑ 𝐶̃𝑈𝑗
𝑠
𝑗=1

 and 𝑇𝐴 =
∑ 𝑟̃𝐴𝑗

𝑠
𝑗=1

∑ 𝐶̃𝐴𝑗
𝑠
𝑗=1

 , 𝑇𝑈 =
∑ 𝑟̃𝑈𝑗

𝑠
𝑗=1

∑ 𝐶̃𝑈𝑗
𝑠
𝑗=1

 for cases 

and controls, with 
Δ = 𝜅(𝑇𝐴, Φ𝐴) + 𝜅(𝑇𝑈, Φ𝑈) − 𝜅(𝑇, Φ) 

=
𝑇

Φ
(𝑟𝐴 log (

𝑟𝐴

𝑏𝐴
) + (

𝑏𝐴

𝑇
− 𝑟𝐴) log (1 − 𝑇

𝑟𝐴

𝑏𝐴
) + (1 − 𝑟𝐴) log (

1 − 𝑟𝐴

1 − 𝑏𝐴
)

+ (
1 − 𝑏𝐴

𝑇
− 1 + 𝑟𝐴) log (1 − 𝑇

1 − 𝑟𝐴

1 − 𝑏𝐴
) ) −

1 − 𝑇

Φ
log (1 − 𝑇) 

where 𝑏𝐴 =
∑ 𝐶̃𝐴𝑗

𝑠
𝑗=1

∑ 𝐶̃𝐴𝑗
𝑠
𝑗=1 +∑ 𝐶̃𝑈𝑗

𝑠
𝑗=1

, 𝑟𝐴 =
∑ 𝑟̃𝐴𝑗

𝑠
𝑗=1

∑ 𝑟̃𝐴𝑗
𝑠
𝑗=1 +∑ 𝑟̃𝑈𝑗

𝑠
𝑗=1

 and 𝑇 =
∑ 𝑟̃𝐴𝑗

𝑠
𝑗=1 +∑ 𝑟̃𝑈𝑗

𝑠
𝑗=1

∑ 𝐶̃𝐴𝑗
𝑠
𝑗=1 +∑ 𝐶̃𝑈𝑗

𝑠
𝑗=1

,  

Φ =
1

∑ 𝐶̃𝐴𝑗
𝑠
𝑗=1 +∑ 𝐶̃𝑈𝑗

𝑠
𝑗=1

. 

 
2.2.2 Adjusting for covariates 
In order to adjust for covariates for each individual, such as age and gender, the following 
mixed-effect logistic regression with random intercept and slope is considered:  

log (
𝑚𝑘𝑖𝑗

𝑐𝑘𝑖𝑗 − 𝑚𝑘𝑖𝑗
) = 𝛽0𝑘 + 𝛽1𝑘𝑥1𝑘𝑖 + 𝛽2𝑘𝑠𝑗 + 𝜈0𝑘𝑖 + 𝜈1𝑘𝑖𝑠𝑗 + 𝑒𝑘𝑖𝑗 , 

where 𝑥1𝑘𝑖 denotes covariate for individual 𝑖 in group 𝑘; and 𝑠𝑗 represents the distance of 
CpG site 𝑗 from the start point of the specific window. 
 
The residuals can be calculated based on this mixed-effect model, and also residuals and 
sequencing coverage are adjusted, and then used for calculating scan statistic as in 
Section 2.2.1. 
 
2.2.3 Conclusions for Scan Statistic 
The scan statistic is calculated for each window using moving windows with variable 
window (VW) size approach across the whole genome. And DMR is the window with the 
highest binomial scan statistic. For each window W of size w, the binomial scan statistic 
can be calculated. The scan statistic for window size w (LRw) is the highest value for the 
scan statistic for windows of size w. And then the maximum of LRw over all values of w 
is used as global statistic. 
 
The window size w=1,2,…,m/2 is recommended in Ionita-Laza et al. (2012). However, 
the LRw calculation is unstable if the frequency of methylated counts within a given 
window is 0, for either cases or controls. This can be avoided by adding a pseudo-count 
of 1 to the adjusted methylated and unmethylated counts for each CpG site, equivalent to 
assuming a uniform prior distribution for methylation across the different sites.  
 
Since the distribution of binomial scan statistic is unknown, an approximate p-value for 
the window with the largest LRw is calculated by permutation of the case-control status of 
the subjects. 
 
Binomial scan statistic has potential advantage of improved power, since the moving 
window with multiple window size can solve the difficulty of determining the value of 
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in the kernel distance method. However, since the mixed-effect model needs to be 
applied for each moving window, also the scan statistic is a likelihood based method, it 
could be time-consuming in computation.  
 

3. Simulation  

 
The main focus for simulation is to compare the two methods based on kernel distance 
and binomial scan statistic, with respect to statistical validity, power and computational 
efficiency.  
 
For simplicity, (i) we will not include any covariates, and (ii) we will use equal sample 
size for cases and controls in the simulation model. For the power comparisons at various 
alternative hypotheses and various significant levels, we assume that there is only one 
DMR in the simulated genomic region, and all CpG sites within the region are equally 
spaced.  
 
3.1 Simulation Parameters 
Methylation counts at each CpG site for every individual are generated from 
𝐵𝑖𝑛(𝑐𝑘𝑖𝑗 , 𝑝𝑘𝑖𝑗), 𝑖 = 1,2, … ,2𝑁, 𝑗 = 1,2, . . 𝑚, 𝑘 = 𝐴, 𝑈.  Here the sequencing coverage 
𝑐𝑘𝑖𝑗 is allowed to vary by sampling from a normal distribution 𝑁(30,13), with a 
minimum of 5 based on the real data analysis from Xu et al. (2013). And the methylation 
rate 𝑝𝑘𝑖𝑗 is simulated based on the two-step procedure in Lacey et al. (2013) in order to 
model the spatial dependence for the methylation rates of close by CpG sites. 
 
Briefly, first a sample of independent values is drawn from 𝐵𝑒𝑡𝑎(𝛼, 𝛽) distribution. And 
then the vector of independent random variables 𝑋 will be transformed into a vector of 
correlated random variables 𝑋∗ = 1 − Φ{𝐶Φ−1(1 − 𝑋)}, where Φ(∙) denotes the cdf of 
the standard normal distribution function with Cholesky decomposition 𝐶 of the 
correlation matrix Σ = 𝐶𝐶′. For correlation structure, all diagonal correlation equal 1, and 
all off-diagonal correlation equal the ratio of common value of 𝜌 and the distance of the 
two CpG sites, in order to represent the fact that the correlation of methylation rates for 
two CpG sites decreases as the distance between them increases.  
 
By using the above two-step procedure, the methylation rates 𝑝𝑘𝑖𝑗 for CpG sites will be 
generated as 𝑝𝑘𝑖𝑗~𝐵𝑒𝑡𝑎(𝛼𝑈, 𝛽𝑈), 𝑘 = 𝐴, 𝑈 for CpG site 𝑗 of individual 𝑖 under null 
hypothesis. Under alternative hypothesis, the methylation rates 𝑝𝑘𝑖𝑗 for CpG sites will be 
generated as 𝑝𝑘𝑖𝑗~𝐵𝑒𝑡𝑎(𝛼𝑈, 𝛽𝑈), 𝑘 = 𝐴, 𝑈 for CpG site 𝑗 outsides of DMR. Within 
DMR, the methylation rates 𝑝𝑘𝑖𝑗 will be simulated as 𝑝𝑈𝑖𝑗~𝐵𝑒𝑡𝑎(𝛼𝑈, 𝛽𝑈), and 
𝑝𝐴𝑖𝑗~𝐵𝑒𝑡𝑎(𝛼𝐴, 𝛽𝐴), Here 𝛼𝐴 ≠ 𝛼𝑈 or 𝛽𝐴 ≠ 𝛽𝑈, representing that methylation rates are 
different between cases and controls within DMR.   
 
3.2 Simulation Results 
Simulation was performed using a total sample size of 48, with 24 in each group; and 
also sample size of 60. The methylation rate was simulated for one region with 24 CpG 
sites, and 6 of which are in a DMR, with correlation of 𝜌 = 0.7 or 𝜌 = 0.5 for adjacent 
CpG sites. The correlation among non-adjacent sites were scaled down by dividing 𝜌 by 
the distance between sites.  
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We set 𝛼𝑈 = 0.1, 𝛽𝐴 = 𝛽𝑈 = 0.9, and use different values of 𝛼𝐴 to represent effect sizes. 
Based on the property of beta distribution, the mean of methylation rates in DMR 
increases as the value of 𝛼𝐴 increases.  
 
In order to present the effect of the parameters on the power, plots of power versus 
different values of 𝛼𝐴 are presented in Figure 1. Here 𝛼𝐴 = 0.1 means the effect size is 
zero, and the powers for kernel distance and scan statistics are very close to the type I 
error of 0.05. The straight horizontal line is 𝑦 = 0.05. This indicates that both methods 
have well-controlled type I error rate. 
 
From Figure 1, we can also see that the powers for kernel distance and scan statistics 
increase as the effect sizes increase. And the scan statistic has better power than kernel 
distance statistic.  

 
Figure 1: Power curves for simulation results 
 

4. Discussion  

 
Simulation results indicate that both methods are valid approach for detecting DMRs with 
reasonable power and good control of Type I error. The binomial scan statistic approach 
appears to have higher power than the kernel distance statistic approach. However, it has 
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limitation that it is computationally slow compared to the kernel distance statistic 
approach. More extensive simulations are being conducted to further compare these two 
approaches. 
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