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Abstract 

One of the objectives in early phase clinical trials studying a targeted therapy is to accurately estimate 
treatment response by the status of the biomarker of interest to determine whether the biomarker may be 
predictive or not. This is critical to inform further development strategy, such as whether the therapy 
should be developed in an enriched population. However, often the collection of baseline biomarker 
tissues for determining biomarker status is not mandatory in early phase clinical trials and/or some 
collected baseline biomarker tissue is not usable to determine biomarker status due to operational 
handling issues or assay sensitivity.  A naïve method in presence of missing biomarker status is to 
estimate the response rate based only on patients whose biomarker status is known (observed data 
analysis), which is an unbiased estimate only if the missing biomarker status is missing completely at 
random (MCAR). In this paper, we improve this approach by utilizing observed response data for patients 
with unknown biomarker status by applying the EM algorithm under the assumption of missing at random 
(MAR). Simulations are conducted to compare these two methods and a case study using the 
methodology is provided.  
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1. Introduction 

In recent years, clinical drug development has increasingly focused on development of so called targeted 
therapies that are devised to target specific gene or protein (biomarker) that is considered to cause or 
promote disease. As such, patients whose disease doesn’t express or lowly expresses a specific disease-
related biomarker would be expected to respond less (or not at all) to therapy that targets the biomarker 
than patients whose disease (highly) expresses the biomarker. Therefore, it is of great clinical interest to 
design clinical trials that can detect the treatment effect of a targeted therapy and identify a patient 
population who benefit most from such therapy more efficiently. There have been numerous publications 
about clinical trial designs and associated issues for targeted therapies (Fredlin and Simon [1]; Fredlin et 

al. [2]; Gosho et al. [3]; Jiang et al. [4]; Mandrekar and Sargent [5]; Simon [6]; Simon and Maitournam 
[7, 8]; Wang et al. [9]; etc).  FDA recently published a guidance about enrichment strategies to be used in 
clinical trials for targeted therapy (FDA [10]). To this end, biomarker evaluation should start early in 
clinical drug development with aim to identify optimal biomarker expression level that can best separate 
responders from non-responders, and to accurately estimate clinical responses by biomarker status 
(positive vs negative). These are usually done in early phase all-comers clinical trials with biomarker 
tissues collected to enable retrospective analysis of biomarker responses.  
 
The literature contains statistical methods that can be used for identifying optimal biomarker threshold to 
best separate responders from non-responders. One early publication in this area is Miller and Siegmund 
[11] in which the maximal chi-square method to identify optimal cut-off point from a continuous 
biomarker was proposed and its asymptotic property was studied.  Halpren [12] studied small sample 
behaviors of this method. Boulesteix [13] studied the asymptotic property of the same method for ordinal 
biomarker variables. Once the biomarker status is identified, estimation of clinical responses by 
biomarker status is straightforward if all patients’ biomarker status is known. However, in early stage 
drug development, especially in phase I clinical trials, the biomarker evaluation is often a secondary 
endpoint and as such, the collection of baseline biomarker tissue to determine biomarker status is often 
not mandatory, resulting in biomarker tissue availability in only a subset of patients.  Furthermore, some 
of collected biomarker tissue may not be useable to determine biomarker status due to operational 
handling issues or assay sensitivity. Consequently, it is not uncommon that biomarker status may be 
unknown for quite a few patients.   
 
A naïve method in the presence of missing biomarker status is to estimate the response rate based only on 
patients whose biomarker status is known (so called observed data analysis). As is well known, it is an 
unbiased estimate only if the missing biomarker status is missing completely at random (MCAR). Even if 
the MCAR assumption is plausible, the variability of the estimate based only on observed data is usually 
larger due to reduced information. In this paper, we propose to improve this approach by utilizing 
observed response data for patients with unknown biomarker status by applying the EM algorithm under 
the assumption of missing at random (MAR). In Section 2, we describe biomarker response estimates in 
the presence of missing biomarker status based on aforementioned naïve method and the proposed EM 
method. Simulations are provided in Section 3 to compare the two methods. A case study applying the 
proposed method will be presented in Section 4. Section 5 contains some discussions. 
 
2. Biomarker Response Estimation in the Presence of Missing Biomarker Status 

Suppose that a total of N patients are enrolled in a clinical trial. The efficacy endpoint of interest is 
whether patients respond to the treatment under study. Each subject can be categorized to one of two 
biomarker statuses: biomarker positive (BM+) or biomarker negative (BM-). At the end of study, while 
all patients’ treatment responses are known, some patients’ biomarker statuses are unknown, resulting in 
observed data in the form the following frequency table 
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{Insert Table 1 here} 

The task is to estimate the response rates p+ for BM+ and p- for BM-, respectively. Also of interest is to 
estimate prevalence rate p0 for BM+.  

Without missing data, the parameters pi can simply be estimated by MLEs  

𝑝̂0 =
𝑁𝑘+ + 𝑁𝑢+

𝑁
, 𝑝̂𝑖 =

𝑅𝑘𝑖 + 𝑅𝑢𝑖

𝑁𝑘𝑖 + 𝑁𝑢𝑖
, 𝑖 = +, − 

 
where, as indicated in Table 1, Nk+ and Nk- are number of patients with BM+ and BM-, respectively, in 
known BM status group, Nu+ and Nu- are the number of patients with BM+ and BM-, respectively, in 
unknown BM status group, and Rji are the number of responders out of Nji for j=k, u and i=+, -. 

In the presence of missing biomarker status, Nui and Rui are unknown, hence the above MLEs are 
unobtainable. The naïve estimates are MLEs based only on non-missing data 

𝑝̂0 =
𝑁𝑘+

𝑁𝑘+ + 𝑁𝑘−
, 𝑝̂𝑖 =

𝑅𝑘𝑖

𝑁𝑘𝑖
, 𝑖 = +, − 

These naïve estimates are unbiased under MCAR, but would be biased under MAR or MNAR (missing 
not at random). Under the assumption of MAR, that is, the missing biomarker status is dependent only on 
observed data, then the observed response data for patients with missing biomarker status can be utilized 
in the estimation of the parameters pi by applying the following EM algorithm (Dempster et al. [14]). 
Denote 

𝑋𝑖𝑗 = {
1 𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,          𝑍𝑖𝑗 = {
1 𝑖𝑓 𝐵𝑀 +
0 𝑖𝑓 𝐵𝑀 −

 ,   

𝑖 = 1 (known BM status), 2 (unknown BM status);  𝑗 = 1, … ,  𝑁𝑖 

The observed data are 𝑌 = {𝑋1𝑗,  𝑍1𝑗 , 𝑗 = 1, … , 𝑁1;   𝑋2𝑗, 𝑗 = 1, … , 𝑁2} and the unobserved data are 
𝑍2 = {𝑍2𝑗, 𝑗 = 1, … , 𝑁2}. Then the likelihood function for given the parameter vector 𝑝 = {𝑝0,  𝑝+,  𝑝−} 
is  
 

𝐿(𝑌,  𝑍2 | 𝑝) = ∏ ∏[𝑝0𝑝+
𝑋𝑖𝑗(1 − 𝑝+)(1−𝑋𝑖𝑗)]

𝑍𝑖𝑗
[(1 − 𝑝0)𝑝−

𝑋𝑖𝑗(1 − 𝑝−)(1−𝑋𝑖𝑗)]
1−𝑍𝑖𝑗

𝑁𝑖

𝑗=1

2

𝑖=1

 

The EM algorithm is an iterative process consisting of two steps at each iteration to estimate the 
parameter p. Start with an initial guesstimate p(0). A good choice would be above naïve estimate. Let p(t) 
denote the estimate of p obtained at the t-th iteration, then the estimate will be updated to p(t+1) obtained at 
the (t+1)-th iteration of the following two steps: 
E-Step (Expectation Step):  
 

𝑄(𝑝|𝑝(𝑡)) = 𝐸𝐿(𝑍2|𝑌,𝑝(𝑡))[𝑙𝑜𝑔𝐿(𝑌, 𝑍2|𝑝)] 

M-Step (Maximization Step): 

𝑝(𝑡+1) = arg max
𝑝

𝑄(𝑝|𝑝(𝑡)) 
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The EM iterations stop when the estimates between last two iterations are within a pre-specified margin, 
such as 10-4, and the estimate from the last iteration is chosen as the estimate for p.  

Note that 

𝑄(𝑝|𝑝(𝑡)) =

∑ [
𝑍1𝑗(𝑙𝑜𝑔𝑝0 + 𝑋1𝑗𝑙𝑜𝑔𝑝+ + (1 − 𝑋1𝑗)log (1 − 𝑝+))

+(1 − 𝑍1𝑗)(𝑙𝑜𝑔(1 − 𝑝0) + 𝑋1𝑗𝑙𝑜𝑔𝑝− + (1 − 𝑋1𝑗)log (1 − 𝑝−))
]

𝑁1
𝑗=1 +

 ∑ [
𝐸(𝑍2𝑗|𝑋2𝑗,  𝑝(𝑡))(𝑙𝑜𝑔𝑝0 + 𝑋2𝑗𝑙𝑜𝑔𝑝+ + (1 − 𝑋2𝑗)log (1 − 𝑝+))

+ (1 − 𝐸(𝑍2𝑗|𝑋2𝑗,  𝑝(𝑡))) (𝑙𝑜𝑔(1 − 𝑝0) + 𝑋2𝑗𝑙𝑜𝑔𝑝− + (1 − 𝑋2𝑗)log (1 − 𝑝−))
]

𝑁2
𝑗=1  

 
The expectation of unobserved variable Z2j conditional on observed data X2j and given p(t) is 

 𝑍2𝑗
(𝑡) ≜ 𝐸(𝑍2𝑗|𝑋2𝑗,  𝑝(𝑡)) = 𝑃(𝑍2𝑗 = 1|𝑋2𝑗,  𝑝(𝑡)) 

=
𝑃(𝑍2𝑗 = 1| 𝑝(𝑡))𝑃(𝑋2𝑗| 𝑍2𝑗 = 1,  𝑝(𝑡))

𝑃(𝑋2𝑗| 𝑝(𝑡))
 

=
𝑝0

(𝑡)(𝑝+
(𝑡))𝑋2𝑗(1 − 𝑝+

(𝑡))1−𝑋2𝑗

𝑝0
(𝑡)(𝑝+

(𝑡))𝑋2𝑗(1 − 𝑝+
(𝑡))1−𝑋2𝑗 + (1 − 𝑝0

(𝑡)
)(𝑝−

(𝑡))𝑋2𝑗(1 − 𝑝−
(𝑡))1−𝑋2𝑗

 

Hence, the p(t+1) of M-Step are obtained as follows by solving 𝜕𝑄

𝜕𝑝
|

𝑝=𝑝(𝑡+1)
= 0  

 𝑝0
(𝑡+1) =

1

𝑁
(∑ 𝑍1𝑗

𝑁1

𝑗=1

+ ∑ 𝑍2𝑗
(𝑡)

𝑁2

𝑗=1

)                                                               

𝑝+
(𝑡+1) =

1

𝑁𝑝0
(𝑡+1)

(∑ 𝑋1𝑗𝑍1𝑗

𝑁1

𝑗=1

+ ∑ 𝑋2𝑗𝑍2𝑗
(𝑡)

𝑁2

𝑗=1

)                                   

 𝑝−
(𝑡+1) =

1

𝑁(1 − 𝑝0
(𝑡+1))

(∑ 𝑋1𝑗(1 − 𝑍1𝑗)

𝑁1

𝑗=1

+ ∑ 𝑋2𝑗(1 − 𝑍2𝑗
(𝑡))

𝑁2

𝑗=1

) 

 

The variance of p(t+1) are approximately as follows obtained by solving the inverse of − 𝜕2𝑄

𝜕𝑝𝜕𝑝′  

 𝑉𝑎𝑟(𝑝0
(𝑡+1)) ≅

𝑝0
(𝑡+1)(1 − 𝑝0

(𝑡+1))

𝑁
,   

𝑉𝑎𝑟(𝑝+
(𝑡+1)) ≅

𝑝+
(𝑡+1)(1 − 𝑝+

(𝑡+1))

𝑁𝑝0
(𝑡+1)

,    

𝑉𝑎𝑟(𝑝−
(𝑡+1)) ≅

𝑝−
(𝑡+1)(1 − 𝑝−

(𝑡+1))

𝑁(1 − 𝑝0
(𝑡+1))
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3. Simulations 

In this section we conduct simulations to study the performance under MCAR and MAR of the estimates 
by the naïve method and the proposed EM method. The sample size N is set at 40, 60 and 80, 
respectively, typical size of early phase trial for preliminary efficacy assessment. The true prevalence rate 
p0 for BM+ is set at 30%, the true response rate p- for BM- is set at 15%, and the true response rate p+ for 
BM+ is set at 40% and 20%, representing large and small difference in response rate between BM+ and 
BM-, respectively. The response data and missing BM status process are as follows: 

For MCAR case, each subject’s BM status is drawn from B(1, p0) and whether or not it’s known is drawn 
from Bernoulli B(1, ) with =50%. Meanwhile, the subject’s response status is drawn from B(1, p+) for 
BM+ and from B(1, p-) for BM-.  

For MAR case, draw a latent biomarker variable X~U(0,1) for each subject, where BM+ is defined as 
X>0.7 so that the true prevalence rate for BM+ is p0=P(X>0.7)=30%. Each subject’s response R is drawn 
as R~ B(1, p+) for BM+ and R~B(1, p-) for BM-, and the subject’s BM status K , where K=1 indicates that 
the BM status is known, is drawn according to the observed response R as follows: K~B(1, pBM(R)) where 
𝑝𝐵𝑀(𝑅) = exp (0.5 + 𝑅) (1 + exp(0.5 + 𝑅))⁄ .  

The simulation is run 100000 times for each case. The margin 10-4 is used to stop EM iteration process. 
The results are presented in Tables 2 and 3. 

{Insert Table 2 here} 

{Insert Table 3 here} 

For MCAR case, while both naïve and EM estimates are unbiased and very close to the MLEs based on 
all data (pretending all BM statuses are known), the EM method has smaller SD, and hence better 
precision, than the naïve method. It is expected as the naïve method only relies on observed data and 
hence essentially throws away response information on patients with unknown biomarker status. It is a 
defacto reduction in sample size. The EM method utilizes this information and hence results in less 
variability. 

For MAR case, the naïve estimates for p+ and p- are clearly biased, while the EM estimates are unbiased 
and very close to the MLEs based on all data (pretending all BM status are known), and the SD is also 
smaller. Again, it is expected as the naïve method essentially assumes that the subset of patients with 
known BM status is a random sample of overall population (MCAR), and would be biased if this 
assumption is not true. The EM method lessens this assumption.    

 

4. A Case Study 

A phase I/II trial was conducted to study an experimental anti-cancer therapy targeting a certain 
biomarker. The baseline fresh tissue samples were collected but not mandatory to determine the 
biomarker status categorized as BM positive or BM negative. Of clinical interest is to estimate tumor 
response rate by biomarker status to inform future development. However, among 169 patients with a 
certain tumor type enrolled to the study and evaluable for response assessments, the biomarker status for 
about 35% of patients could not be determined, mostly due to unavailable tissue samples. Table 4 
displays the observed data and Table 5 displays the percentage of patients with known BM status in 
overall population as well as in two complementary subpopulations (represented by A and B for 
convenience) of interest, and the estimates and standard errors of prevalence rate p0, the tumor response 
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rate p+ for BM+ and p- for BM- in each (sub)population, based only on known BM status data and by EM 
algorithm, respectively. 

{Insert Table 4 here} 

{Insert Table 5 here} 

Both methods produced similar results in overall population as well as in subpopulation A. However, the 
estimates for p1 between two methods in subpopulation B are quite different, 17.6% vs 25%. As a result, 
if the estimates based only on known BM status data are used for decision making, then one may 
conclude that since the response rate for BM+ in subpopulation A is more than double that in 
subpopulation B, this substantial difference seems to support an enriched development strategy only in 
subpopulation A. However, the estimates by EM algorithm did not show such a drastic difference in 
response rate for BM+ between the two subpopulations, and hence may lead to a different 
conclusion/decision.  

 

5. Discussions 

Biomarker response evaluation is critical in early phase clinical trials of targeted therapies to inform 
further development strategy. Because of small sample size to begin with for early phase clinical trials 
and the desire to make the biomarker response estimate as accurate as possible, the proposed EM method 
offers clear advantage over the naïve method in terms of providing unbiased estimation under less 
stringent MAR assumption as well as having smaller variability due to using data from all patients. Of 
course if the biomarker status is missing not at random (MNAR), then both methods would be biased. 
Because it is usually difficult to verify the missingness pattern, it is important to avoid missingness as 
much as possible by trying to collect baseline biomarker samples from all enrolled patients and to 
minimize unusable samples. If there is still considerably high percentage of missing biomarker status 
despite of all the efforts to prevent this, then the proposed EM estimation method is recommended over 
the naïve method, unless there is clear evidence of MNAR, in which case both methods are not reliable 
and alternative solutions need to be sought. 
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Table 1. Response data in the presence of missing BM status 

 BM+ BM- BM unknown Total 

Response R
k+

 R
k-

 R
u
=R

u+
+R

u2
 R 

Non-Response NR
k+

 NR
k-

 NR
u
=NR

u+
+NR

u-
 NR 

Total N
k+

 N
k-

 N
u
=N

u+
+N

u-
 N 
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Table 2. Simulation results for MCAR case 

N % of known 
BM status 

True Parameter Mean estimates/SD pretending 
BM status known for all patients 

Mean estimates/SD based only 
on known BM status 

Mean estimates/SD by EM 
algorithm 

  p0 p+ p- p0 p+ p- p0 p+ p- p0 p+ p- 
40 50% 30% 40% 15% 30.0%  

0.072 
40.1%  
0.147 

15.0%  
0.069 

30.0%  
0.104 

40.1%  
0.218 

15.0%  
0.098 

29.9%  
0.104 

40.4%  
0.210 

14.9%  
0.089 

40 50% 30% 20% 15% 30.0%  
0.072 

20.3%  
0.121 

15.0%  
0.069 

30.0%  
0.104 

20.2%  
0.182 

15.0%  
0.098 

29.9%  
0.105 

20.0%  
0.176 

15.1%  
0.085 

60 50% 30% 40% 15% 30.0%  
0.059 

40.1%  
0.119 

15.0%  
0.056 

30.0%  
0.085 

40.1%  
0.174 

15.0%  
0.079 

30.0%  
0.084 

40.4%  
0.162 

14.9%  
0.070 

60 50% 30% 20% 15% 30.0%  
0.059 

20.2%  
0.098 

15.0%  
0.056 

30.0%  
0.085 

20.1%  
0.143 

15.0%  
0.079 

29.9%  
0.085 

20.0%  
0.137 

15.0%  
0.067 

80 50% 30% 40% 15% 30.0%  
0.051 

40.1%  
0.102 

15.0%  
0.048 

30.0%  
0.073 

40.1%  
0.147 

14.9%  
0.068 

30.0%  
0.072 

40.4%  
0.135 

14.9%  
0.060 

80 50% 30% 20% 15% 30.0%  
0.051 

20.1%  
0.084 

15.0%  
0.048 

30.0%  
0.073 

20.1%  
0.121 

14.9%  
0.068 

29.9%  
0.073 

20.1%  
0.115 

14.9%  
0.058 
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Table 3. Simulation results for MAR case 

N True Parameter Mean %/SD 
of known 
BM status 

Mean estimates/SD pretending BM 
status known for all patients 

Mean estimates/SD based 
only on known BM status 

Mean estimates/SD by EM 
algorithm 

 p0 p+ p-  p0 p+ p- p0 p+ p- p0 p+ p- 
40 30% 40% 15% 66.6%  

0.074 
30.0%  
0.072 

40.2%  
0.145 

15.1%  
0.069  

31.6%  
0.090 

46.9%  
0.180 

19.0%  
0.094 

30.1%  
0.088 

41.0%  
0.171 

15.1%  
0.074 

40 30% 20% 15% 65.4% 
0.074 

30.0%  
0.072 

20.2%  
0.120 

15.1%  
0.069 

30.4%  
0.090 

24.8%  
0.164 

19.0%  
0.094 

30.1%  
0.090 

20.5%  
0.142 

15.2%  
0.074 

60 30% 40% 15% 66.6% 
0.061 

30.0%  
0.059 

40.2%  
0.117 

15.1%  
0.056 

31.7%  
0.074 

46.9%  
0.144 

18.9%  
0.076 

30.1%  
0.072 

40.7%  
0.135 

15.1%  
0.060 

60 30% 20% 15% 65.4% 
0.061 

30.0%  
0.059 

20.1%  
0.096 

15.1%  
0.056 

30.4%  
0.074 

24.7%  
0.129 

18.9%  
0.076 

30.1%  
0.074 

20.3%  
0.110 

15.1%  
0.059 

80 30% 40% 15% 66.6% 
0.053 

30.0%  
0.051 

40.0%  
0.101 

15.0%  
0.048 

31.6%  
0.063 

46.7%  
0.123 

18.9%  
0.066 

30.1%  
0.062 

40.4%  
0.115 

15.1%  
0.052 

80 30% 20% 15% 65.4% 
0.053 

30.0%  
0.051 

20.0%  
0.083 

15.0%  
0.048 

30.4%  
0.063 

24.7%  
0.112 

18.9%  
0.066 

30.1%  
0.063 

20.2%  
0.094 

15.1%  
0.051 
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Table 4. Case study: Observed data 

Evaluable 

Population 
 BM+ BM- BM Unknown Total 

All Patients (N=169) Response 10 7 10 27 

Non-Response 26 67 49 142 

Total 36 74 59 169 
Subpopulation A 
(N=68) 

Response 7 6 3 16 
Non-Response 12 30 10 52 
Total 19 36 13 68 

Subpopulation B 
(N=101) 

Response 3 1 7 11 
Non-Response 14 37 39 90 
Total 17 38 46 101 

 

Table 5. Case study: Estimated response rates by biomarker status 

Evaluable 
population 

% of 
known BM 
status 

Estimates (SE) based only on 
known BM status 

Estimates (SE) by EM algorithm 

p0 p+ p- p0 p+ p- 
All patients         
(N=169) 

65% 32.7% 
(0.045) 

27.8% 
(0.075) 

9.5% 
(0.034) 

32.9% 
(0.036) 

28.6% 
(0.061) 

9.8% 
(0.028) 

Subpopulation A 
(N=68) 

81% 34.5% 
(0.064) 

36.8% 
(0.111) 

16.7% 
(0.062) 

34.5% 
(0.058) 

36.7% 
(0.099) 

16.6% 
(0.056) 

Subpopulation B 
(N=101) 

54% 30.9% 
(0.062) 

17.6% 
(0.092) 

2.6% 
(0.026) 

32.6% 
(0.047) 

25.0% 
(0.075) 

4.1% 
(0.024) 
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