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Abstract 

 Longitudinal studies often have distributions that cannot be described by a simple 
generalized linear models. When this occurs an alternative distribution is needed 
to model the data. In particular, a rank based longitudinal method with spearman 
rank statistics to estimate the correlation structure will provide a more general 
alternative solution to this problem. It also provides a more general solution to 
the shape of the response curve, which might otherwise not allow comparisons 
between groups.  

The bootstrap can be used to obtain the estimates of the functional and 
correlational parameters in comparison with the corresponding Wald statistics. 
The results would be based on simulated data that (1) can be fit by a GEE model 
and (2) simulated data that cannot be described by a GEE because of the shape of 
the response distribution.  
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1. Linear Rank Statistics 

 
Linear rank statistics can be applied to two types of longitudinal studies: (1) linear data 
models (Fitzmaurice et al and Conover et al) that is an analogue to simple repeated 
measures ANOVA and (2) models that are based on generalized estimating equations 
(GEE) or general linear mixed models (GLMM),  Both assume a correlation among the 
repeated measures.  As examples of the correlation, one can use the simplest which is 
compound symmetry which is a constant over all time points, a Toeplitz correlation 
which is a correlation matrix that is banded on both sides of the covariance, an 
autoregressive model which decreases as  one moves away from the diagonal (cii ) or an 
unstructured covariance model where each cij (i<j) can be diffeent.  The two of these that 
are somewhat limited are the (1) autoregressive model which essentially assumes a 
constant time difference or integer multiple of it and (2) the unstructured model which 
usually has so many parameters that it does not converge. 
  
In addition one has choose an estimate of the mean response over time.  Usually the 
GLMM assumes a simple (first to third) order polynomial.  However more general 
polynomials such as the fractional polynomial or more generally lowess smoothers or 
cubic splines give more flexibility in modeling the general shape over time.  All of these 
require a parametric or semi-parametric model which may be the same in the two or more 
groups over time.  Consequently, interactions and/or random effects are used to 
differentiate the responses in each group. . 
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In all or these one can use the raw data or apply a rank transform to the data to generalize 
the model.  This is particularly important with GEE's and GLMM's which have a much 
more limited choice oof models; namely, a generalized linear or a member of an 
exponential family.  
 

2. The Data Problem 

 
Some data is normally distributed with a simple model for the mean and in this case. 
there is no need for linear rank statistics.  How in many cases there are difficulties in 
fitting a model. For example a clinical scale, such as a pain scale, is discrete, sometimes 
ordinal, and may be simply skewed to the right or left.  This is not a simple model and, 
indeed, is even more difficult if the Response is U-shaped.  Which it often is.  This us the 
situation where a linear rank transformation may provide a substantial improvement over 
any linear model for the data.  Of course, it only works for the situation that one is 
comparing two models and doesn't give estimates of the shape of the response in one or 
more groups. 
 
Simple simulations will use a normal underlying model to generate the discrete 
components of the clinical scale.  Then the power of the comparison may well be 
substantially increased with a linear rank transform applied to the data.  
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Table 1: Possible Rankings of A and  B Corresponding to Linear Rank Power 
    
(RA, RB) Differences β = .5 β = .3 β = .1 β = .01 
(1, 2,) 0  .381 .553 .819 .980 
(1, 3) 1  .190 .166 .082 .010 
(2, 1) 1  .190 .166 .082 .010 
(2, 3) 2  .095 .050 .008 .000 
(3, 1) 2  .095 .050 .008 .000 
(3, 2) 3  .048 .015 .001 .000 
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