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Abstract
The validity of analyses using structural equation modeling (SEM) relies on several assumptions,

analogous to those in regression analysis. One assumption is that of linearity, implying that all
equations are linear in both the (observed and latent) variables and the parameters. Violating this
assumption is detrimental as it may cause biased parameter and standard error estimates and mis-
leading model diagnostics and test statistics. Though several methods have been developed to es-
timate nonlinear effects they assume that the nature of the relationship is known a priori. Few
diagnostics have been developed to assess the linearity assumption or to explore the nature of a
nonlinear relationship. The purpose of this paper is to examine the use of residual plots to identify
nonlinearities in SEM. The utility of these plots is assessed using simulated data. Results indicate
that residual plots are able to detect nonlinear relationships and thus are a viable graphical diagnos-
tic tool to evaluate the linearity assumption in SEM but the utility of the plots depends on how the
residuals are calculated.
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1. Introduction

Structural equation modeling (SEM) is a commonly used statistical method in the social
and behavioral sciences. This methodology is well-suited to model the types of relation-
ships commonly observed and hypothesized in the social sciences as SEM allows for the
modeling of systems of equations, the use of latent (unobserved) variables, and the use of
variables measured with error. The validity of SEM analyses relies on several assumptions
similar to those in regression (for more details see Bollen (1989)). One key assumption
is linearity in that all equations are linear in both the variables and parameters. This can
be a restrictive assumption as there are many theories in the social and behavioral sciences
that hypothesize nonlinear relationships between and among variables such as the Yerkes-
Dodson law in psychology (Yerkes and Dodson, 1908), chaos theory as applied in sociol-
ogy, political science, and economics (Kiel and Elliott, 1996), and the law of diminishing
marginal returns in economics.

The modeling of nonlinear relationships was first developed under the factor analytic
framework to model nonlinear factor to item relationships (Etezadi-Amoli and McDonald,
1983; Gibson, 1959; McDonald, 1967). Modeling and estimating nonlinear relationships
between factors in SEM was introduced in the seminal work of Kenny and Judd (1984)
who developed an approach to estimate both quadratic and interaction effects. Because this
method has several drawbacks (e.g. it is difficult to implement (Kelava and Brandt, 2009))
and the constraints only hold for normally distributed latent variables (Wall and Amemiya,
2001), several robust and distribution-free estimation procedures were developed. Such
procedures include robust maximum likelihood methods (Jöreskog and Yang, 1996) and the
two-staged least squares approach (Bollen, 1995; Bollen and Paxton, 1998). Because these
methods do not perform well in finite samples (Brandt, Kelava, and Klein, 2014), methods
have been developed that allow for the nonnormality that arises due to nonlinearities. These
include maximum likelihood methods (Cudeck, Harring, and du Toit, 2009; Klein and
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Moosbrugger, 2000; Klein and Muthén, 2003; Lee and Zhu, 2002), the method of moments
approach (Wall and Amemiya, 2003), Bayesian methods (Arminger and Muthén, 1998;
Lee, Song, and Tang, 2007; Zhu and Lee, 1999), the unconstrained approach (Kelava and
Brandt, 2009), and semiparametric methods (Bauer, 2005)

One major drawback of these models is that they assume the nature of relationships is
known a priori and few diagnostics have been developed to evaluate the nature of the rela-
tionships in SEM (Bauer, Baldasaro, and Gottfredson, 2012). This is troublesome as Mooi-
jaart and Satorra (2009) show that diagnostics of model fit are insensitive to the presence of
nonlinear effects such that these commonly used diagnostics are not capable of identifying
model misspecification due to nonlinear effects. Because of this, it is crucial diagnostics
be developed to adequately and accurately assess the linearity assumption in SEM. Previ-
ous diagnostics include hypothesis tests developed by Klein and Schermelleh-Engel (2010)
and Nestler (2015) and the application of structural equation mixture models to graphically
identify nonlinear relationships (Bauer et al., 2012; Pek et al., 2015). The purpose of this
paper is to evaluate the utility of residual plots in the SEM framework in detecting nonlin-
ear relationships. The hypothesis tests developed by Klein and Schermelleh-Engel (2010)
and Nestler (2015) are omnibus tests in that they detect a model misspecification due to a
nonlinear relationship but are not able to specify where the nonlinearity is. The plots pre-
sented in this paper would allow for this identification to be made using a diagnostic tool
familiar to SEM practitioners.

This paper is organized as follows. The next section presents the standard linear struc-
tural equation model and explains how the residuals can be used to detect nonlinear rela-
tionships. Section 3 briefly explains the construction of residual plots in SEM. A simulated
example is provided in Section 4 and Section 5 concludes.

2. Using Residuals to Detect Nonlinearities

Consider the linear structural equation model for the ith of N independent observations:

ηi = τ +Bηi + Γξi + ζi (1)

yi = αy + Λyηi + εi (2)

xi = αx + Λxξi + δi. (3)

To avoid confusion from multiple subscripts, the subscript i is subsequently omitted from
subsequent equations though all equations presented are at the observational level. The
first time a vector/matrix is defined its dimensions are provided in the subscript. Equation
(1) represents the latent variable model which describes the relationships among the m
endogenous and n exogenous latent variables, ηm×1 and ξn×1, respectively, where E(η) =
κη, E(ξ) = κξ, E(ξξ>) = Φn×n,

Θη,m×m = E(ηη>) = (I −B)−1(ΓΦΓ> + Ψ)(I −B)−>,

and E(ζξ>) = 0. The matrix Bm×m contains the coefficients relating the endogenous
latent variables to one another where (I − B) is nonsingular and diag(B) = 0, and the
matrix Γm×n contains the coefficients linking the exogenous latent variables ξ to the en-
dogenous latent variables η. The vector ζm×1 represents the latent errors in equations with
E(ζ) = 0 and E(ζζ>) = Ψm×m.

The measurement model described in Equations (2) and (3) relates the latent variables
η and ξ to the observed variables in yp×1 and xq×1 respectively, where, by assumption,
E(x) = αx + Λxκξ and E(y) = αy + Λyκη, and Θy, p×p = E(yy>) = ΛyΘηΛ

>
y

and Θx, q×q = E(xx>) = ΛxΦΛ>x . Λy, p×m and Λx, q×n are matrices of factor loadings
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and εp×1 and δq×1 are the measurement errors such that E(ε) = 0, E(δ) = 0, Θδ, q×q =
E(δδ>), and Θε, p×p = E(εε>). It is assumed that ε are uncorrelated with η, ξ, and δ and
that δ is uncorrelated with η, ξ, and ε.

For simplicity, using the approach of Bollen and Arminger (1991) let z(p+q)×1 =

[y> x>]>,α(p+q)×1 = [α>y α>x ]
>,L(m+n)×1 = [η> ξ>]>, ν(p+q)×1 = [ε> δ>]>, and

Λ(p+q)×(m+n) = diag(Λy,Λx) such that E(z) = α+Λκ where κ(m+n)×1 = [κ>η κ>ξ ]
>.

The measurement model is rewritten as:

z = α+ ΛL+ ν. (4)

Associated with the measurement model in Equation (4) are the covariance matrix of mea-
surement errors Θν, (p+q)×(p+q) = diag(Θε,Θδ), the covariance matrix of the latent vari-
ables

ΘL, (m+n)×(m+n) =

[
Θη,m×m (I −B)−1ΓΦ

ΦΓ>(I −B)−> Φ

]
,

and the covariance matrix of the observed variables

Θz (p+q)×(p+q) = E(zz>) =
[

Θy Λ>x ΦΓ>(I −B)−>Λ>y
Λy(I −B)−1ΓΦΛx Θx

]
.

Rearranging Equation (1) the latent errors are defined as

ζ = [(I −B)−1 − Γ]L− τ =ML− τ (5)

where Mm×(m+n) = [(I −B)−1 − Γ]. Similarly, earranging Equation (4) provides the
measurement errors

ν = z − (α−ΛL). (6)

A key assumption of the model in Equations (4) and (1) is that the relationships be-
tween the endogenous latent variables η and the exogenous latent variables ξ are linear and
the relationships between the latent variables L and each of the observed variables z are
also linear. Let’s consider the consequences of fitting a linear structural equation model in
the presence of nonlinear relationships. For illustrative purposes a simple example is con-
sidered in which there is one exogenous and one endogenous latent variable each with three
indicators. To better understand the information contained in the error terms we consider
two scenarios: (1) the relationship of a latent variable (either endogenous or exogenous)
and one of its indicators is quadratic and (2) the relationship between the exogenous latent
variable and the endogenous quadratic. We assume that the latent variables are normally
distributed to allow for tractable calculations and that the error terms of means of 0. While
there are nonlinear relationships that are not quadratic, this serves our purpose of showing
the information that the errors contain.

2.1 Scenario 1

First assume that there is a quadratic relationship between a latent variable and one of its
indicators such that the true relationship is:

z = α+ λL+ ωL2 + ν

where ω denotes the quadratic effect. Suppose the following linear model is erroneously fit
to the data generated from the above relationship:

z = α∗ + λ∗L+ ν∗.
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The superscript ∗ is used to denote that these values will change due to the omission of
the quadratic effect. We are concerned with examining the information contained in ν∗.
Specifically it is of interest to determine if ν∗ contains information about the nature of the
true relationship between the latent variable and its indicator. Then,

ν∗ = z − (α∗ + λ∗L)

= α+ λL+ ωL2 + ν − (α∗ + λ∗L)

= ν + [α+ λL+ ωL2 − (α∗ + λ∗L)].

This shows that the errors of the misspecified linear model can be decomposed into two
components: the true error (random error) and the discrepancy between the true and fitted
models (model error). This shows that the error terms from a misspecified model contain
valuable information about the nature of the model misspecification. It is also of interest
to find E(ν∗) and V ar(ν∗) which requires us to find λ∗ and α∗. It can be shown that
λ∗ = λ + 2ωκL and α∗ = α + ωσL − ωκ2L where κL and σL are the population mean
and standard deviation of the latent variable. Most notable from these results is that if the
model is misspecified, these parameters are biased; however if κ = 0, as is the case when
all latent variables are deviated from their means, the factor loadings are unbiased. Using
this information it can be shown that E(ν∗) = 0 and V ar(ν∗) = θν + 2ω2σ2L where θν
represents the variance of the error term ν. These results imply that model misspecifications
do not affect the expected value but they do affect the variance such that the variance of the
error terms from the misspecified model are more variable than the true variability of the
error terms if the model were properly specified.

2.2 Scenario 2

Assume that the true relationship between the endogenous and exogenous latent variables
is quadratic such that:

η = τ + γξ + ρξ2 + ζ

where ρ is the quadratic effect. Suppose the following linear model is erroneously fit to the
data generated by the above equation:

η = τ∗ + γ∗ξ + ζ∗

where the superscript ∗ again denotes that if the model is misspecified then the parame-
ters from the linear model and the quadratic model differ. As before it is of interest to
understand what information is contained in ζ∗. Then,

ζ∗ = η − (τ∗ + γ∗ξ)

= τ + γξ + ρξ2 + ζ − (τ∗ + γ∗ξ)

= ζ + [τ + γξ + ρξ2 − (τ∗ + γ∗ξ)].

As with the errors terms from a misspecified measurement model, the error terms from a
misspecified latent variable model can also be decomposed into random error and model
error that arises due to model misspecification. These error terms also contain valuable in-
formation regarding potential model misspecification that can be used to better understand
the true relationship. As before we would like to find E(ζ∗) and V ar(ζ∗). This requires us
to calculate γ∗ and τ∗. It can be shown that γ∗ = γ + 2ρκξ and τ∗ = τ + ρφ− ρκ2ξ where
φ is the variance of the η. These results imply that the path coefficient γ∗ is biased unless
the latent variables are deviated from their means. Using this information, it can be shown
that E(ζ∗) = 0 and V ar(ζ∗) = ψ+2ρ2φ2 where ψ is the variance of ζ. Similar to before,
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the error terms from the misspecified model have a mean of 0 but the variance of the error
terms are larger than the variance of the error terms from the true model.

In the derivations of the information contained in the measurement errors we did not
consider endogenous and exogenous latent variables and their associated items separately
as our results do not change if there is a model misspecification solely in the measurement
model. One concern is that nonlinearities in the latent variable model would propagate
through the measurement model such that the measurement errors associated with items
of endogenous latent variable would contain information about model error in the latent
variable model. Recall the relationship between an endogenous latent variable and one of
its items: y = α + λη + ε. Because ε = α + λη we were concerned that the effects of
model misspecification in the latent variable model would be reflected in ε. However, it can
be shown that ε does not contain information about misspecification in the latent variable
model. This is useful in practice as this implies that the error terms contain information
specific to misspecification in that particular equation of the model.

3. Predicted Residuals and Residual Plots

In regression analysis, model assumptions are frequently evaluated using residual plots
of the residuals against the fitted values. This type of plot can be extended to the SEM
framework by finding suitable ways to construct the residuals and the fitted values. First,
we examine how to calculate the residuals in SEM.

In practice the latent and measurement errors ζ and ν are unknown and must be pre-
dicted. Both the latent and measurement errors are functions of model parameters and the
values L. The model parameters can be estimated using a variety of different methods. For
illustrative purposes we use maximum likelihood estimation under the assumption of nor-
mality (for more details see Bollen (1989)) to obtain parameter estimates. These estimates
are then used in place of the model parameters in Equations (6) and (5).

The values of L in Equations (6) and (5) are, by definition, unknown and must be
predicted. These values, L̂, are known as factor scores and frequently are constructed as
linear weighted functions of the observed variables z, such that L̂ =W (m+n)×(p+q) where
W is referred to as the weight matrix (see DiStefano, Zhu, and Mindrila (2009) for a more
thorough discussion of computing factor scores). Substituting the factor scores L̂ for L in
Equation (6) we define the (predicted) measurement residuals, denoted as ν̂,:

ν̂ = z − α̂− Λ̂L̂ (7)

= z − Λ̂Ŵz − α̂ (8)

= (I − Λ̂Ŵ )z − α̂. (9)

Similarly, the (predicted) latent residuals ζ̂ are obtained by substituting the factor scores L̂
for L in equation (5):

ζ̂ = M̂L̂ (10)

= M̂Ŵz. (11)

Because it is assumed that we must use parameter estimates in place of parameters we omit
thêfrom subsequent equations.

Several choices for W exist and we consider the three most commonly used weight
matrices. The approaches used to derive the weight matrices minimize a specific loss func-
tion which depends on the method used. We briefly explain these below (further details are
available in the original works and McDonald and Burr (1967)). The regression method
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(Thurstone, 1935) utilizes the principles of ordinary least squares to derive the weight ma-
trix W r. Under this approach, W = W r is the solution that minimizes the loss function
Tr[E{(L− L̂)(L− L̂)>] where Tr denotes the trace of a matrix such that:

W r = ΣLLΛ>Σ−1zz . (12)

Residuals calculated using W r are referred to as the regression-method residuals. Under
Bartlett’s method (Bartlett, 1937), based on the principles of weighted least squares, the
loss function minimized is Tr[E{[Σ−1/2νν Λ(L− L̂)][Σ−1/2νν Λ(L− L̂)]>}] yielding:

W b = (Λ>Σ−1νν Λ)−1Λ>Σ−1νν . (13)

Residuals calculated usingW b are the Bartlett’s method residuals. The method by Anderson-
Rubin (Anderson and Rubin, 1956) is an extension of Bartlett’s method with the con-
straint of an orthogonal factor model. That is, W = W ar minimizes the loss function
Tr[E{[Σ−1/2νν Λ(L− L̂)][Σ−1/2νν Λ(L− L̂)]>}] subject to the constraint E[L̂L̂

>
] = I . The

resulting weight matrix is:
W ar = A

−1Λ>Σ−1νν , (14)

where A2 = (Λ>Σ−1νν ΣzzΣ
−1
νν Λ). The Anderson-Rubin method residuals are calculated

usingW ar.
Next, we define the fitted values of z = α + ΛL + ν and η = τ + Bη + Γξ + ζ,

denoted as ẑ and η̂, respectively. As before we replace L with the factor scores L̂ and
parameter estimates are substituted for model parameters. The fitted values are defined as:

ẑ = α̂+ Λ̂Ŵz (15)

and
η̂ = τ̂ + [B̂ Γ̂]Ŵz. (16)

Next, the residuals can be plotted against their respective fitted values. In regression
analysis this plot was chosen as it will display random scatter if all assumptions are satisfied
(Draper and Smith, 1980). Unfortunately, under the SEM framework it is easy to show
that, in general, the residuals and its respective fitted values are correlated (see Hildreth
and Lorenz (2014) for details). Hildreth and Lorenz (2014) recommend ”removing” this
correlatedness using the Cholesky decomposition by premultiplying the residuals and their
respective fitted values by the inverse Cholesky factor. For brevity we do not elaborate
further on this process and refer the reader to Hildreth and Lorenz (2014) for details. The
values obtained after premultiplying the residuals and its respective fitted values by the
inverse Cholesky factor are then used when constructing the residual plot.

4. Simulated Example

We simulate data from a simple model with one exogenous and one endogenous factor each
having three indicators that do not cross-load. We assume that the relationship between ξ
and η is a moderate quadratic relationship such that:

η = 0.5η1 − 0.35η21 + ζ y1 = 1.0η1 + ε1 x1 = 1.0ξ1 + δ1

y2 = λ2η1 + ε2 x2 = λ5ξ1 + δ2

y3 = λ3η1 + ε3 x3 = λ6ξ1 + δ3 (17)

where Σν = I6, Ψ = [1], Φ = [1], γ11 = 0.5, and λ2 = λ3 = λ5 = λ6 = 0.7 with a
sample size of n = 250.
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Figure 1: Residual Plots

To construct the residual plots, we fit the linear structural equation model in R using
the lavaan package (all R code is provided in Appendix A):

η = γ11ξ + ζ y1 = 1.0η1 + ε1 x1 = 1.0ξ1 + δ1

y2 = λ2η1 + ε2 x2 = λ5ξ1 + δ2

y3 = λ3η1 + ε3 x3 = λ6ξ1 + δ3. (18)

Using the parameter estimates, we calculate ζ̂ and η̂ using each of the three methods
for constructing factor scores. We then obtain the inverse Cholesky factor and premultiply
the residuals and fitted values by this matrix. We use these values in the construction of our
residual plots. For these proposed plots to be interpreted analogously to those in regression
analysis, we would expect to see an inverse U shape.

Figure 4 displays the residual plots using the three methods for constructing factor
scores for one simulated data set. Because results are similar for other simulated data
sets we provide one set of plots. The red curve in each plot corresponds to the loess curve
associated with the regression of ζ̂ on η̂ which allows for a better inspection of any potential
patterns in the residual plot. it is clear that the plot constructed using the regression method-
based factor scores does not produce the type of nonlinear relationship we expect to see.
The plots constructed using the Bartlett method-based and the Anderson-Rubin method-
based factor scores, however, do indicate the type of relationship we expect to see. From
these plots, it appears that the Bartlett method-based factor scores result in a residual plot
that is closest to what we expect to as the right tail of the loess curve is longer than we would
expect in the plot constructed using the Anderson-Rubin method-based factor scores.

This example suggests that there is potential for the use of residual plots in SEM to
detect nonlinear relationships and that plots constructed using the Bartlett method-based
factor scores produce a residual plot that can be interpreted analogously to those used in
regression analysis. While this is only one example, it establishes the viability of residual
plots in SEM and indicates that future research in this area is warranted.
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5. Discussion and Conclusions

Many theories in the social and behavioral sciences hypothesize nonlinear relationships
leading to the development of several methods for nonlinear SEM. One concern with these
methods is that they assume that the nature of the relationship is known a priori. Conse-
quently, it would be valuable to develop diagnostics to detect nonlinear relationships and
the nature of these nonlinearities. Few diagnostics have been developed to check any of
the assumptions in SEM as difficulties arise due to the use of latent variables. Theoretical
results from the simple example of a two factor model with a quadratic relationship, show
that the error terms contain information about model misspecification. This paper presented
a method for constructing residual plots in SEM and illustrated their utility through a sim-
ulated example. This example also suggests that the best method for constructing factor
scores is Bartlett’s method as the resulting residual plot produces the type of relationship
we expected to see.

Our theoretical results also suggest that the error terms contain information about issues
with heteroskedasticity. Research on how heteroskedasticity can be detected in SEM using
residual analysis is needed as heteroskedastic data are common in the social and behavioral
sciences. The results of this paper indicate that residuals are useful in detecting model
misspecifications as well as heteroskedasticity and consequently more attention on how to
use the information contained in the residuals in warranted.

One concern with the construction of residual plots in SEM is that it could potentially
lead to a large number of plots. Because of this, future research should focus on devel-
oping an omnibus test or graphical display to detect if there are issues with nonlinearities
in the model. Based on this test, residual plots could be constructed if issues with non-
linearities are detected. The residual plots could then detect in what portion of the model
nonlinearities are present and allow the researcher to more adequately model the data.
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Jöreskog, K. G., and Yang, F. (1996). Non-linear structural equation models: The Kenny-Judd model with
interaction effects. In G. A. Marcoulides and R. E. Schumacker (Eds.), Advanced structural equation
modeling: Issues and techniques (57–88). Mahway, NJ: Lawrence Erlbaum Associates.

Kenny, D. A. and Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables.
Psychological Bulletin, 96(1), 201–210.

Kelava, A. and Brandt, H. (2009). Estimation of nonlinear latent structural equation models using the extended
unconstrained approach. Review of Psychology, 18(2), 123–131.

Kiel, L. D. and Elliott, E. W. (1996). Chaos Theory in the Social Sciences: Foundations and Applications.
USA: University of Michigan Press.

Klein, A. and Moosbrugger, H. (2000). Maximum likelihood estimation of interaction effects with the LMS
method. Psychometrika, 65(4), 457–474.

Klein, A. G. and Muthén, B. O. (2007), Quasi-maximum likelihood estimation of structural equation models
with multiple interactions and quadratic effects. Multivariate Behavioral Research, 42(4), 647–673.

Klein, A. G., and Schermelleh-Engel, K. (2010). Introduction of a new measure for detecting poor fit due to
omitted non-linear terms in SEM. Advances in Statistical Analysis, 94, 157-166.

Lee, S. Y., Song, X. Y., and Tang, N. S. (2007). Bayesian methods for analyzing structural equation models with
covariates, interaction, and quadratic latent variables. Structural Equation Modeling: A Multidisciplinary
Journal, 14(3), 404–434.

Lee, S. Y., and Zhu, H. T. (2002). Maximum likelihood estimation of nonlinear structural equation models.
Psychometrika, 67(2), 189–210.

McDonald, R. P. (1967). Numerical methods for polynomial models in nonlinear factor analysis. Psychome-
trika, 32(1), 77–112.

McDonald, R. P. and Burr, E. J. (1967). A comparison of four methods of constructing factor scores. Psy-
chometrika, 32(4), 381–401.

Mooijaart, A. and Satorra, A. (2009). On insensitivity of the chi-square model test to nonlinear misspecification
in structural equation models. Psychometrika, 74(3), 443–455.

Nestler, S. (2015). A specification error test that uses instrumental variables to detect latent quadratic and latent
interaction effects. Structural Equation Modeling: A Multidisciplinary Journal, forthcoming, published
online 26 June 2015.

Pek, J., Chalmers, R. P., Kok, B. E., and Losardo, D. (2015). Visualizing Confidence Bands for Semiparamet-
rically Estimated Nonlinear Relations Among Latent Variables. Journal of Educational and Behavioral
Statistics, 40(4), 402-423.

Thurstone, L. L. (1935). The Vectors of the Mind. Chicago: University of Chicago Press.
Wall, M. M. and Amemiya, Y. (2000). Estimation for polynomial structural equation models. Journal of the

American Statistical Association, 95(451), 929–940.
Wall, M. M., and Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in

structural equation models. British Journal of Mathematical and Statistical Psychology, 56(1), 47–63.
Yerkes R. M. and Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation.

Journal of Comparative Neurology and Psychology, 18, 459-482.
Zhu, H. T., and Lee, S.‘Y. (1999). Statistical analysis of nonlinear factor analysis models. British Journal of

Mathematical and Statistical Psychology, 52(2), 225–242.

6. Appendix: R Code

#require needed packages
require(MASS)
require(lavaan)
#simulate data
set.seed(1202) #can
zeta1<-rnorm(250,0,0.5)
xi1<- rnorm(250,0,1)
eps<-t(mvrnorm(250,mu=c(0,0,0),Sigma=diag(3)))
delta<-t(mvrnorm(250,mu=c(0,0,0),Sigma=diag(3)))
Lambda<-matrix(c(1,1,1),3,1,byrow=TRUE)

##quadratic effect
#medium effect
eta1.qm<-0.5*xi1-0.35*xi1ˆ2+zeta1
y.qm<-t(Lambda%*%eta1.qm+eps)
x.qm<-t(Lambda%*%xi1+delta)
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#create data set
data.qm<-data.frame(y.qm,x.qm)
colnames(data.qm)<-c("y1","y2","y3","x1","x2","x3")
z.qm<-cbind(y.qm,x.qm)

#estimate the model
model.qm<-’
xi1=˜x1+x2+x3
eta1=˜y1+y2+y3
eta1˜xi1’
qm.fit<-sem(model.qm,data=data.qm)
summary(qm.fit)
#make the plot
Lambdahat.qm<-matrix(c(1,0,1.073,0,0.982,0,0,1,0,1.111,0,1.144),byrow=TRUE,6,2)
Thetahat.qm<-matrix(c(.957,0,0,0,0,0,

0,.996,0,0,0,0,
0,0,.884,0,0,0,
0,0,0,1.223,0,0,
0,0,0,0,1.142,0,

0,0,0,0,0,0.703),byrow=TRUE,6,6)
#Bartlett’s method
Wb.qm<-solve(t(Lambdahat.qm)%*%solve(Thetahat.qm)%*%Lambdahat.qm)%*%t(Lambdahat.qm)%*%solve(Thetahat.qm)
nuhat.qm.b<-t(t(z.qm)-Lambdahat.qm%*%Wb.qm%*%t(z.qm))
colnames(nuhat.qm.b)<-c("e1hat.qm.b","e2hat.qm.b","e3hat.qm.b","d1hat.qm.b","d2hat.qm.b","d3hat.qm.b")
mhat.qm<-matrix(c(1,-0.376),1,2)
zetahat.qm.b<-t(mhat.qm%*%Wb.qm%*%t(z.qm))
names(zetahat.qm.b)<-"zetahat.qm.b"
zhat.qm.b<-t(Lambdahat.qm%*%Wb.qm%*%t(z.qm))
colnames(zhat.qm.b)<-c("y1hat.qm.b","y2hat.qm.b","y3hat.qm.b","x1hat.qm.b","x2hat.qm.b","x3hat.qm.b")
dhat.qm<-matrix(c(0,.376),1,2)
etahat.qm.b<-t(dhat.qm%*%Wb.qm%*%t(z.qm))
names(etahat.qm.b)<-"etahat.qm.b"
zetahat.etahat.qm.b<-cbind(zetahat.qm.b,etahat.qm.b)
Sigma.z.qm<-cov(z.qm)
Sigma.zetahat.qm.b<-mhat.qm%*%Wb.qm%*%Sigma.z.qm%*%t(Wb.qm)%*%t(mhat.qm)
Sigma.etahat.qm.b<-dhat.qm%*%Wb.qm%*%Sigma.z.qm%*%t(Wb.qm)%*%t(dhat.qm)
Sigma.etahatzetahat.qm.b<-mhat.qm%*%Wb.qm%*%Sigma.z.qm%*%t(Wb.qm)%*%t(dhat.qm)
Sigma.LV.qm.b<-matrix(c(Sigma.zetahat.qm.b,Sigma.etahatzetahat.qm.b,
Sigma.etahatzetahat.qm.b,Sigma.etahat.qm.b),2,2,byrow=TRUE)
LVRotated.qm.b<-t(chol2inv(t(chol(Sigma.LV.qm.b)))%*%t(zetahat.etahat.qm.b))
#regression method
Sigma.L.qm<-matrix(c(0.724,0,0,1.102),2,2,byrow=TRUE)
Wr.qm<-Sigma.L.qm%*%t(Lambdahat.qm)%*%solve(Sigma.z.qm)
nuhat.qm.r<-t(t(z.qm)-Lambdahat.qm%*%Wr.qm%*%t(z.qm))
colnames(nuhat.qm.r)<-c("e1hat.qm.r","e2hat.qm.r","e3hat.qm.r","d1hat.qm.r","d2hat.qm.r","d3hat.qm.r")
mhat.qm<-matrix(c(1,-0.376),1,2)
zetahat.qm.r<-t(mhat.qm%*%Wr.qm%*%t(z.qm))
names(zetahat.qm.r)<-"zetahat.qm.r"
zhat.qm.r<-t(Lambdahat.qm%*%Wr.qm%*%t(z.qm))
colnames(zhat.qm.r)<-c("y1hat.qm.r","y2hat.qm.r","y3hat.qm.r","x1hat.qm.r","x2hat.qm.r","x3hat.qm.r")
dhat.qm<-matrix(c(0,.376),1,2)
etahat.qm.r<-t(dhat.qm%*%Wr.qm%*%t(z.qm))
names(etahat.qm.r)<-"etahat.qm.r"
zetahat.etahat.qm.r<-cbind(zetahat.qm.r,etahat.qm.r)
Sigma.zetahat.qm.r<-mhat.qm%*%Wr.qm%*%Sigma.z.qm%*%t(Wr.qm)%*%t(mhat.qm)
Sigma.etahat.qm.r<-dhat.qm%*%Wr.qm%*%Sigma.z.qm%*%t(Wr.qm)%*%t(dhat.qm)
Sigma.etahatzetahat.qm.r<-mhat.qm%*%Wr.qm%*%Sigma.z.qm%*%t(Wr.qm)%*%t(dhat.qm)
Sigma.LV.qm.r<-matrix(c(Sigma.zetahat.qm.r,Sigma.etahatzetahat.qm.r,
Sigma.etahatzetahat.qm.r,Sigma.etahat.qm.r),2,2,byrow=TRUE)
LVRotated.qm.r<-t(chol2inv(t(chol(Sigma.LV.qm.r)))%*%t(zetahat.etahat.qm.r))
#Anderson-Rubin method
Asq.qm<-t(Lambdahat.qm)%*%solve(Thetahat.qm)%*%Sigma.z.qm%*%solve(Thetahat.qm)%*%Lambdahat.qm
#find the inverse square root of Asq using spectral decomposition
mat.sqrt.inv<-function(A)
{

ei<-eigen(A)
d<-ei$values
d<-(d+abs(d))/2
d2<-1 / sqrt(d)
d2[d == 0]<-0
ans<-ei$vectors %*% diag(d2) %*% t(ei$vectors)
return(ans)

}
A.sqinv.qm<-mat.sqrt.inv(Asq.qm)
War.qm<-A.sqinv.qm%*%t(Lambdahat.qm)%*%solve(Thetahat.qm)
nuhat.qm.ar<-t(t(z.qm)-Lambdahat.qm%*%War.qm%*%t(z.qm))
colnames(nuhat.qm.ar)<-c("e1hat.qm.ar","e2hat.qm.ar","e3hat.qm.ar","d1hat.qm.ar","d2hat.qm.ar","d3hat.qm.ar")
mhat.qm<-matrix(c(1,-0.376),1,2)
zetahat.qm.ar<-t(mhat.qm%*%War.qm%*%t(z.qm))
names(zetahat.qm.ar)<-"zetahat.qm.ar"
zhat.qm.ar<-t(Lambdahat.qm%*%War.qm%*%t(z.qm))
colnames(zhat.qm.ar)<-c("y1hat.qm.ar","y2hat.qm.ar","y3hat.qm.ar","x1hat.qm.ar","x2hat.qm.ar","x3hat.qm.ar")
dhat.qm<-matrix(c(0,.376),1,2)
etahat.qm.ar<-t(dhat.qm%*%War.qm%*%t(z.qm))
names(etahat.qm.ar)<-"etahat.qm.ar"
zetahat.etahat.qm.ar<-cbind(zetahat.qm.ar,etahat.qm.ar)
Sigma.zetahat.qm.ar<-mhat.qm%*%War.qm%*%Sigma.z.qm%*%t(War.qm)%*%t(mhat.qm)
Sigma.etahat.qm.ar<-dhat.qm%*%War.qm%*%Sigma.z.qm%*%t(War.qm)%*%t(dhat.qm)
Sigma.etahatzetahat.qm.ar<-mhat.qm%*%War.qm%*%Sigma.z.qm%*%t(War.qm)%*%t(dhat.qm)
Sigma.LV.qm.ar<-matrix(c(Sigma.zetahat.qm.ar,Sigma.etahatzetahat.qm.ar,
Sigma.etahatzetahat.qm.ar,Sigma.etahat.qm.ar),2,2,byrow=TRUE)
LVRotated.qm.ar<-t(chol2inv(t(chol(Sigma.LV.qm.ar)))%*%t(zetahat.etahat.qm.ar))

par(mfrow=c(1,3))
plot(LVRotated.qm.r[,2],LVRotated.qm.r[,1],main="Regression Method",pch=16)

##add loess line
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lw1.qm.r <- loess(LVRotated.qm.r[,1] ˜ LVRotated.qm.r[,2])
Rotated.qm.r<-data.frame(LVRotated.qm.r)
names(Rotated.qm.r)<-c("zetahat","etahat")
order.qm.r <- order(Rotated.qm.r$etahat)
lines(Rotated.qm.r$etahat[order.qm.r],lw1.qm.r$fitted[order.qm.r],col="red",lwd=3)

plot(LVRotated.qm.b[,2],LVRotated.qm.b[,1],main="Bartlett Method",pch=16)

lw1.qm.b <- loess(LVRotated.qm.b[,1] ˜ LVRotated.qm.b[,2])
Rotated.qm.b<-data.frame(LVRotated.qm.b)
names(Rotated.qm.b)<-c("zetahat","etahat")
order.qm.b <- order(Rotated.qm.b$etahat)
lines(Rotated.qm.b$etahat[order.qm.b],lw1.qm.b$fitted[order.qm.b],col="red",lwd=3)

plot(LVRotated.qm.ar[,2],LVRotated.qm.ar[,1],main="Anderson-Rubin Method",pch=16)

lw1.qm.ar <- loess(LVRotated.qm.ar[,1] ˜ LVRotated.qm.ar[,2])
Rotated.qm.ar<-data.frame(LVRotated.qm.ar)
names(Rotated.qm.ar)<-c("zetahat","etahat")
order.qm.ar <- order(Rotated.qm.ar$etahat)
lines(Rotated.qm.ar$etahat[order.qm.ar],lw1.qm.ar$fitted[order.qm.ar],col="red",lwd=3)
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