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Abstract

Consider a prediction problem with correlated predictors. In such a case, the best
model specification, that is, the best subset of active predictors, can be ambiguous.
In spite of this ambiguity, a forecast that informs a high-stakes decision warrants a
compact, informative description of the model that produces it. For forecasts based on
ensemble models, such descriptions are not straightforward.

Our example considers searches on google.com; each observation consists of one
experiment changing the details in how the system responds to user queries. Our
predictors measure the changes, relative to a contemporaneous control, of short-term
metrics. Our response measures a shift in user behavior observable only after a longer
term, also calculated relative to the control.

Our ensemble of models comes from a spike-and-slab regression. We represent each
ensemble — each model — by its specification, a vector of booleans denoting the active
predictors. For each such model we calculate its goodness of fit statistic. Applying
logic regression to predict goodness of fit as a function of the specification booleans,
we obtain a metamodel. As a weighted sum of boolean expressions, the metamodel
provides a description that is both parsimonious and illuminating.

key words: collinearity, factor analysis, logic regression, model deconstruction,
spike-and-slab regression, variance function

1 Introduction
Over the last three decades, statistical learning technology has advanced considerably (Jor-
dan and Mitchell, 2015). Improved computational infrastructure enables model fitting on
unprecedented scales, by computing in parallel and over large data volumes (Dean and
Ghemawat, 2004). Key advances have come from nonparametric links (Friedman and Tib-
shirani, 1984), expansive feature sets (Schapire and Singer, 1999), graph-based data struc-
tures (Malewicz et al, 2010), richer model forms and flexible bases (Friedman, 1991), and
adaptive coefficient estimates (Hastie and Tibshirani, 1993). Further progress derives from
combining multiple models — ensemble models (Breiman, 2001; George and McCulloch,
1993; Chipman et al, 2010) — some of which exploit the incremental predictive power of
weakly contributing features.

Statistical learning’s greatest advances have come from commercial applications — spam
filters, recommendation engines, speech recognition, text and handwriting recognition, and
fraud detection come to mind (Mitchell, 2009). For these applications, achieving reasonably
accurate predictions is sufficient. For some applications, high prediction accuracy is not the
only criterion — the statistical model needs in some sense to be understood. Such models
can be assessed directly by prediction accuracy and indirectly by prospective experiments.

For a subset of successful statistical models, their very success requires a more detailed
description. Models with substantial financial implications require some form of fiscal due
diligence; models that shape health care treatment likewise warrant some form of expert
validation; models that act in a commercial regime need to conform to appropriate laws and
regulations. Finally, models that aspire to scientific insight ought to provide some avenue
for scientific scrutiny (Waltz and Buchanan, 2009).
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Figure 1: The data structure used for fitting a metamodel. Vertical bars (TRUE) and bullets
(FALSE) denote which variables are included in the model that achieves the corresponding
goodness of fit value.

The need to better describe statistical models dates from at least the computer experi-
ment literature, and the recognized need to provide summaries and visualizations suitable
for human consumption (Fox and Hendler, 2011). Approaches to model description have
included restricting models to additive curves and surfaces (Friedman, 1991), mandating
constraints like monotonicity (Garcia and Gupta, 2009), aligning model families to compat-
ible narrative forms (Breiman et al, 1993), providing user interfaces for human interaction
(Buja et al, 1995), and aggressively reducing complexity to support first-order narratives
(Hohnhold et al, 2015; Friedman and Popescu, 2008).

This work represents an additional attempt to describe statistical models. It places
special priority on black-box predictive models with measured responses, the so-called su-
pervised learning models. Our general philosophy, which we encapsulate by the term de-
construction, seeks validations from within the modeling approach and associated training
data. These efforts succeed to the extent that they furnish narratives that suffice as critical
summaries: deconstruction seeks scientifically founded, compelling narratives that describe
models.

Heavlin (2014) focused deconstruction on visualizing the links between training data
and coefficient estimates, a formulation tied implicitly to linear models and least squares.
Here, the approach is more ambitious, presuming the model in question to result in a black
box function of its input features. The principal idea is to form an interpretable predictive
metamodel of the associated goodness-of-fit with respect to which features employed. Since
the inclusion of any feature is naturally represented by a boolean, we turn to the semantics
of logic regression to fit this metamodel.

In section 2, we describe our particular motivating application. In section 3, we introduce
metamodels, first by sketching the metamodel data structure, then by providing a formal
definition of the three-component metamodel problem. Addressing each of these components
forms the body of section 4. Section 5 addresses the intrinsic correlation among models,
and section 6 presents the metamodel results for our application. We conclude with section
7, which offers some perspectives based on our example.
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2 Application
The application we present consists of a series of search engine result page (SERP) ex-
periments on google.com. Each experiment Xt has a concurrent control group Ct; at the
conclusion of experimentXt, the relative changes observed betweenXt and Ct are calculated
across a variety of standard metrics. Many of these metrics are calculated based on observed
user behavior (clickstream data); Kohavi et al (2009) and Tang et al (2010) describe such
clickstream experiments further. The remainder involve opinions gathered of SERPs from
third parties (human evaluation data); these estimate relevance from the perspective of a
neutral party, a librarian, say. The human evaluation data can be collated, modeled, and
imputed to expand the range of queries to which it applies. In this way, each experiment
can be represented by the relative changes in metrics it produces, ∆xt. If one can wait a few
weeks, one can assess, relative to its control, the relatively persistent or long term changes
∆yt. Our dataset therefore consists of the long-term, observed response ∆yt, associated with
the short-term predictor covariates ∆xt, t = 1, 2, ..., n. In the particular context of injecting
ads into SERPs, Hohnhold et al (2015) report on a dataset of similar construction.

Because the response-covariate pairs (∆yt,∆xt) represent the aggregate statistics of
experiment (Xt, Ct), the set {(∆yt,∆xt) : t = 1, 2, ..., n} invites an ecological regression
model in the sense of King et al (2004). In common with Hohnhold et al (2015) and
ecological regression, the covariates are correlated, so the correct model specification is rather
ambiguous. As Leamer (1978) observes, and as a close reading of Hohnhold et al reveals,
searching for an acceptable model specification is rather an artisan’s endeavor: a balanced
combination of empirical criteria such as model goodness of fit and more subjective criteria
such as clean theoretical interpretation. This paper attempts to provide a framework by
which specification searches become more objective, theoretically aligned, and scientifically
transparent; an important side-benefit is that such methods produce a supporting narrative
that flows more naturally from actual empirical results.

At its most basic level, a specification search tries out different specifications. Table 1
sketches a record of such attempts for the application we explore in this paper. The left-
hand columns record as booleans which variables are included in any given specification;
the right-hand column, goodness of fit, records some measure of how well each specification
performs. In the metamodel approach we investigate here, Table 1 represents our primary
data structure. Our metamodel approach takes as its response the goodness-of-fit criterion,
and when sufficiently interpretable, provides an overview of how alternate specifications
influence model goodness of fit.

As Table 1 suggests, the SERP application has J = 29 covariate predictors. Since
229 ≈ 5×108 is too large, assessing all possible specifications is not feasible. A sampled subset
of the better fitting models is therefore suggested; the specification set we on which we focus
has size 104 and consists of the last iterates from a spike-and-slab (George and McCullough,
1993) Monte Carlo Markov chain; the calculation uses the R package BoomSpikeSlab of
Scott (2015).

To summarize, our application has source data consisting of a corpus of SERP exper-
iments on google.com. Each experiment is represented by aggregate changes of the ex-
periment relative to its contemporaneous control, an ecological regression. Our predictors
consists of changes ∆xt observable at the conclusion of the experiment, while our response
consists of changes observed in longer term behavior, ∆yt. Exactly which metrics in ∆xt
best predict longer term behavior ∆yt is ambiguous; the later MCMC iterates of a spike-and-
slab regression, sketched in Table 1, both reflect the ambiguity of the model specification
and favor the better specification candidates.

3 Metamodel Formalism
For our SERP application, we limit our scope to linear models. Let y denote an n × 1
response vector and X the n × J matrix of predictors/covariates/features. The standard
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linear model has y = E{y|X}+ σε, where σ > 0 is a positive scalar and ε is an n× 1 vector
such that E{ε} = 0 and E{εεT } = In, the n× n identity matrix.

For a given specification or model m, we represent the inclusion of the jth column of X
by m[j] = 1 and exclusion by m[j] = 0. By this representation, m is a J-vector of booleans
designating the covariates to be included by model m. Given m, the corresponding mean
function is E{y|X,m} = X[,m]β[m], with estimate X[,m]β̂[m] ≡ ŷ(m). A model is good
when a model using features X[,m] predict well the observed response y.

With this as background, we define the space of all specifications, M, consisting of all
2J possible models. Since it is not always feasible to observe all elements M, we denote the
observable subset by M0 ⊆M.

For any given specification m, we can calculate the goodness of fit. Define g : M → R
as the function that calculates model goodness-of-fit. Let us denote by the N0 × J matrix
Z whose rows consist of the elements of M0. The metamodel data structure consists of the
response-predictor pair, and N0 × (J + 1) matrix (g(Z), Z).

In this paper, a metamodel consists of a function ĝ : M→ R calculated from (g(Z), Z).
We want ĝ to have two properties: (1) it approximates g well and (2) it offers a clear
interpretation.

4 Metamodel Components
The foregoing invites a few tactical questions — from where does M0 come?, which choice
of g?, how does one obtain ĝ? — and one strategic question — why metamodels? This latter
question we address first.

4.1 Why metamodels?
Our target is predictive models, and the goal is to create for such models empirically
grounded descriptions, or narratives. But why develop narratives about predictive mod-
els at all? One answer applies to successful models: sometimes their very success induces
extra scrutiny, from executives who becoming curious, doing due diligence, or ensuring regu-
latory compliance. Another answer matters for candidate models: they need some narrative
to articulate their value or worth over incumbent methods, and to describe how (and there-
fore hint at why) they predict better. A third class of answers applies to models under active
development: these simply benefit from identifying directions for further improvement in a
way that consolidates a strategic consensus. A fourth reason recognizes that scientific review
standards want more than good predictions—the expectation is that models be reviewable,
reasonably transparent, and objectively founded, all in order to comply with the spirit of
the peer review process.

Two themes run through these rationales: (1) the model narratives are intended for
human consumption, and (2) they aspire to offer fact-based insights sufficient to satisfy
human curiosity.

Ensemble models, which include random forests (Breiman, 2001), spike-and-slab models
(George and McCulloch, 1993, 1997; Chipman et al, 2001), and Bayesian additive regression
trees (Chipman et al, 2010), all build internal structures not amenable to detailed exam-
ination. Therefore we adopt an external point of view, treating such modeling methods
as resulting from black-box operations, and contemplate changes in the space of the least
common denominator, that of the input features.

4.2 From whence M0? From MCMCs
When the number of features J is less than 20 or so, it becomes computationally feasible to
take M0 = M, essentially enumerating all 2J model specifications.

When J is moderate or large, and when there is a measure of feature importance avail-
able, one can partition the features into 10 deciles or 20 vintiles. This allows the model space
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to be recast as including each decile separately from each other. In the author’s personal
experience, in the presence of highly important, yet correlated features, the more important
deciles are not guaranteed to participate in the best model.

In the present case, we exploit a data structure internal to spike-and-slab, the recorded
iterations of the Monte Carlo Markov chain. Each such iterate has coefficients {β̃J : j =
1, 2, ..., J}, zero or otherwise, for each feature; the corresponding model specification is de-
fined by the boolean vector (1{β̃j 6= 0})j . This approach to M0 is available for all MCMC-
based methods. The fact that MCMCs produce naturally the metamodel data structure is
quite interesting. In some sense, this should be unsurprising: histograms of the MCMC iter-
ations are routinely constructed to estimate posterior distributions; it is therefore plausible
that there exist applications that use this MCMC data structure for a non-histogram-based
statistical inferences. Here we supplement each MCMC iterate with an additional metric, a
measure of goodness of fit, g, for which an approximate model, ĝ, is constructed.

4.3 Which g : M→ R? log precision
For continuous responses, goodness-of-fit measures typically have two elements, (a) close-
ness of the fit and (b) complexity of the model. In the notation of section 3, sum of
squared errors, SSE(m) ≡ (y − ŷ(m))T (y − ŷ(m)) is an example of (a), as if R2(m) =
1− SSE(m)/SSE(0), where the model m = 0 is understood to include no features but the
intercept. In contrast, the mean squared error,MSE(m) ≡ SSE(m)/(n−1−mT 1) now has
in the denominator a factor reflecting model complexity. Likewise, the so-called adjusted
R2, 1−MSE(m)/MSE(0), also combines elements (a) and (b).

However, in the face of active and post hoc model selection, it is widely recognized that
MSE does not adequately penalize better fitting models for their complexity. Akaike (1974)
proposed an information criterion (AIC) that explicitly discounts model complexity, while
Schwartz (1978) formulated BIC, a variant that penalizes model complexity more strongly.

In the analysis we present below, the results we report below make use of g(m) =
− log(MSE(m))= log(1/MSE(m)), that is, log-model precision. Logarithms of variances
are common enough in the variance function literature (Davidian and Carroll, 1987); the
leading minus sign makes g(m) a higher-is-better function. For two models, m and m′ such
that g(m′)− g(m) = 0.05, we can say that m′ fits 5 percent better than m.

Although in our opinion AIC and BIC are viable candidates, we choose g =log precision
for its more straightforward semantics. We note in passing that AIC, BIC, and log precision
differ in how they discount (b), model complexity; on (a), closeness of fit, all do essentially
the same thing.

4.4 How to fit ĝ? logic regression
In the metamodel data structure, the predictors consist of the models and boolean vec-
tors m ∈ M0, and the response consists of the calculated goodness-of-fit values g(m) =
−log(MSE(m)), for m ∈M0.

We want to make statements like this: (i) When we include feature A, then the fit
improves by 5 percent. (ii) When we include either feature B or feature C, then the fit
improves by 6 percent; in that sense, features B and C can substitute for one another. (iii)
When we include both features D and E, then the fit improves by 7 percent.

Statement (i) is recognizable as linear regression term for the boolean feature A, with
coefficient 0.05. By analogy, statement (ii) has the same form, except that the boolean
feature calculated by the logical expression (B or C) and a coefficient of 0.06. Likewise,
statement (iii) is similar, but involves the calculated boolean expression (D and E) and
coefficient=0.07. In other words, additive logic expressions of the booleans m form a natural
basis by which to describe globally, that is, ceteris paribus, the form of g.

Motivated by single nucleotide protein (SNP) data, Ruczinski et al (2003) formulated
logic regression to build out additive bases such as (i), (ii), and (iii) in a deliberately general

JSM2015 - Section on Statistical Computing

1298



way. The terms, called logic expression trees, are combined by adding them together, one
coefficient for each tree. And each term or logic expression tree defines an logical expression
of the boolean features, involving ands, ors, and nots; the result in a new boolean term,
for which a linear coefficient in an additive model is calculated, one coefficient for one logic
expression tree. The process of identifying the set of boolean expression trees is guided by
simulated annealing.

Note that including a logical-not corresponds to changing the sign of that term’s co-
efficient, and that injecting a logical-and is isomorphic to multiplying the two booleans
together — the classical means for forming an interaction term for two two-level factors. A
logical-or reduces to combining these two: m[, 1] or m[, 2] = not(not(m[, 1] and not(m[, 2]))
= −(−m[, 1]×−m[, 2]) (modulo a concurrent change in the intercept term).

Practitioners of logic regression typically use the R package LogicReg by Kooperberg
and Ruczinski (2015). A rule of thumb is that the or -based expressions of logic regression
are the most useful. Results discussed in section 6 reinforce this point.

5 Metamodel Correlation
Implicit in the logic regression implementation of Kooperberg and Ruzcinski (2015) is the
independence among the observations, that is, that the response-feature pairs that comprise
the N0 rows of (g, Z), are independent. For our application this is obviously not true:
Consider a four-feature model m = (1, 1, 1, 0), where features j = 1, 2, 3 are strong and
feature j = 4 is of almost no benefit. In this case, the correlation of g(m = (1, 1, 1, 0)) and
g(m′ = (1, 1, 1, 1)) is expected to be quite high.

To correct for such correlations, perhaps the simplest involves whitening, a method most
often applied to time series. Consider the generic N0-row data structure (g, Z), where g
holds theN0×1 response vector and Z holds theN0×J feature matrix. Further, suppose that
the covariance Cov{gh, gi} = Σhi. Whitening transformations define a new data structure
(g′, Z ′) such that g′ = Σ−1/2g and Z ′ = Σ−1/2Z.

(Variations to this same basic idea replace Σ−1/2 with other matrices W such that
WWT ∝ Σ−1; the Choleski decomposition of Σ gives a lower-triangular matrix L such that
LLT = Σ; further, L is easy to invert, and one can take W = L−1.)

For our SERP application, n = 104, so applying whitening is not straightforward. We
divide the issues into three: (1) re-sampling to create replicates of g(m); (2) estimating Σ;
and (3) deriving the whitening matrix WK .

5.1 g(m)-replicates
Our basic approach uses the bootstrap. Define an n-vector tab such that tab[i] ∈ {0, 1},∑
tab[i] = 1, E{tab[i]} = 1/n, and tab and ta′b are identically distributed and also indepen-

dent for a 6= a′. From n such tab construct an n-vector of bootstrap weights wb =
∑
a tab.We

construct B such i.i.d. bootstraps weight vectors, indexing them by b : {wb : b = 1, 2, ..., B},
and a corresponding diagonal matrix Db ≡ diag(wb).

For a given model m, the corresponding mean square error

MSE(m) = SSE(m)/(n− 1−mT 1)

and we take g(m) = − log(MSE(m)), where

SSE(m) = yt{I −X[,m](XT [,m]X[,m])−1X[,m]}y.

The corresponding bootstrapped value g(m, b) replaces SSE(m) with

SSE(m, b) = ytDb {I −X[,m](XT [,m]DbX[,m])−1X[,m]}Dby.
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In this way, we build out a matrix G of bootstrapped goodness-of-fit values, replicated
goodness-of-fit values, with columns indexed by m ∈ M0, rows indexed by b = 1, 2, ..., B,
and typical value g(m).

5.2 Estimating Σ

Center G : G0 ≡ G − 1 ḡT , where ḡ(m) = aveG(�, m). For two models m and m′, their
covariance can be estimated byG0[�,m]TG0[�,m′]/(B−1). In this sense, SB = GT0 G0/(B−1)
is the sample variance-covariance matrix among the models, and estimates the Σ of section
5.

5.3 Whitening matrix WK

The rank of SB is min{N0, B−1}; in practice, the rank of SB is likely to be B−1. Further,
even if SB were of full rank N0, it is computationally rather unattractive to determine the
inverse of a 104 × 104 matrix.

SB has the eigendecomposition
∑K
k=1 λkuku

T
k , where {uk} are eigenvectors and {λk}

the ordered eigenvalues. SB estimates Σ, the variance-covariance matrix of the N0 mod-
els, and likewise SB(λ0) ≡ SB + λ0I, for small λ0, estimates Σ. The term added to SB
to create SB(λ0) is sometimes called spherical, because of the uniform eigenvalues of the
identity matrix, and sometimes called whitening, because λ0I corresponds to assuming some
uncorrelated or white noise component in the estimand Σ.

SB(λ0) has the property of being invertible. Indeed,

SB(λ0) =
K∑
k=1

λkuku
T
k +

N0∑
`=1

λ0u`u
T
` =

K∑
k=1

(λk + λ0)uku
T
k +

N0∑
`=K+1

λ0u`u
T
` ,

has the associated inverse

SB(λ0)−1 =
K∑
k=1

1

λ0 + λk
uku

T
k +

N0∑
`=K+1

1

λ0
u`u

T
` =

1

λ0
[

K∑
k=1

λ0
λ0 + λk

uku
T
k +

N0∑
`=K+1

u`u
T
` ]

=
1

λ0
[

N0∑
`=1

u`u
T
` −

K∑
k=1

λk
λ0 + λk

uku
T
k ] =

1

λ0
[IN0

− UDµU
T ], (1)

where Dµ = diag(µ) and µk = λk/(λ0 + λk). In equation (1), the leading factor 1/λ0 is
inessential; we seek only a matrix proportional to Σ−1/2. From (1), we see the eigenvalues of
λ0S

−1
B are 1−µk for ` ≤ K and 1 for ` > K, so the corresponding eigenvalues for λ1/20 S

−1/2
B

are
√

1− µ`, ` ≤ K and 1, otherwise. If we define the quantities νk = 1 −
√

1− µk, the
foregoing considerations suggest the whitening operator of this form:

WK ≡ IN0
− UDνU

T (2)

This matrix has a convenient form, since the UDνU
T term represents merely subtracting

a K-dimensional correction from the previous response-covariate matrix; WK , which plays
the role of Σ−1/2 in the second paragraph of section 5, thereby filters out the K-dimensional
common structure of Σ.

Figure 2 shows the QQ plot of 255 eigenvalues from the singular value decomposition
of G0. Following the scree principle from factor analysis, one can reasonably choose K = 7
or K = 24. In this paper, we present results based on K = 24, that is, using W24 as the
whitening operator. Our estimate of λ0 is 1.12×the median eigenvalue; assuming sphericity,
the 1.12-factor gives an unbiased estimate of the mean eigenvalue.
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Figure 2: QQ plot of 255 log eigenvalues vs quantiles of the gamma distribution. Blue: the
largest 24 eigenvalues.

5.4 Implementation with R
We arrive at this point with the N0 × (J + 1) metamodel data structure (g, Z), and intent
on applying two algorithms to it, whitening and logic regression. From one point of view,
the natural order is to apply the whitening operator WK first, then logic regression to fit
ĝ second. However, WK Z is no longer a matrix of booleans; in this specific sense, there is
better compatibility with existing R packages to derive the basis from logic regression prior
to whitening.

To that end, we settle on this three-step approach: (1) First fit ĝ1 by logic regression
to (g, Z), recognizing this to be overfitted. (2) Having derived a linear basis Z1 from step
1, now apply whitening, resulting in the transformed data structure (WKg, WKZ1). (3)
Simplify the basis from the first step, Z1 to one consisting of fewer columns, Z2, say. This
essentially involves including only those columns in WKZ1 that contribute tangibly to the
fit of WKg.

5.5 Analysis of ĝ-Trees
For a given meta data structure (g, Z), suppose we find a basis Z0 with J0 terms (i.e. Z0

has J0 columns) that fits g. Denote the R2
adj that corresponds to this fit using basis Z0

by R2(Z0). Consider now the bases Z0j , j = 1, 2, ..., J0, that result from deleting from Z0

only column j. The contribution of the j-th term can be described reasonably by ∆R2(j) =
R2(Z0)−R2(Z0j). Higher values of ∆R2(j) indicate stronger contributions from term j. As
non-negative scalars, ∆R2(j) quantifies which are the stronger terms. Denote cols(Z) as
the set of columns of matrix Z. R2(Z0)− R2(Z1) can be used to assess the joint impact of
cols(Z0)\cols(Z1), where A\B = A∩!B denotes the set difference operator.

In the nomenclature of logic regression, a term with a single linear coefficient is called
a tree. By analogy with analysis of variance, which uses changes in R2 to quantify variable
importance, we call the calculations based on ∆R2(j) an analysis of trees.

6 Results
Figure 3 (a) displays the logic regression fit prior to any whitening correction. With the
exception of trees 2, 3, and 4, the trees in Figure 3 (a) generally consist of logical-or expres-
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sions. This aligns both with a logic regression practitioner’s rule of thumb and our a priori
expectation that certain metrics are likely to substitute for others.

The 11 terms, likely an overfit, are ordered loosely by the magnitudes of their coefficients.
The coefficients have natural interpretations: For example, tree 1 has a coefficient of 0.11;
this means that including variable X01 increases model precision by 11 percent. Tree 2
has a coefficient of 0.0754; this says that by including both variables X02 and X03, model
precision improves by 7.54 percent.

Note that certain features appear in two terms, highlighted by “staples”; to highlight
these we rearranged the presentation order to place these terms adjacent to one another.
These two conventions — sorting terms by their coefficients’ magnitudes, then rearranging
them to staple place common terms — suggests an interesting four-block structure:

(E) The first block, the most important, point to a set of metrics that link quality
to measured in part by third parties, parties outside of the Google-user dyad, and that
participate because of an economic incentive.

(R) The third block derives from third party opinions about the SERP relevance (rele-
vance in the sense of librarian judgment).

(U) The fourth block derives from user’s behavior in response to the SERP page, calcu-
lated from the clickstream itself.

(R×U) The second block represents some interaction of (R, relevance) and (U, user)
measurements. (And the contribution of term 11 is small, and disregarded.)

The four-block structure is interesting in its own right. Of J = 29 metrics, one can
focus on just these four meta factors, a number sufficiently compact to create an intriguing
narrative.

Figure 3 (b) presents the analysis of trees of the 11 terms presented in Figure 3 (a).
As indicated by the darker bars, which correspond to the ∆R2 for the whole blocks, block
(E) shows the greatest importance to fitting ĝ, followed by blocks (R×U) and (U), with
(R) taking fourth place. The strength of block (E) is much greater than anticipated. This
finding motivated refining the analysis to the following stage, presented in Figure 4.

Figure 4 revisits the model fit and analysis of Figure 3 after whitening. The number of
coefficients (trees) is reduced from 11 to 7, and most of the logic trees involve fewer metrics.
In Figure 4 (a), the four-block structure of Figure 3 remains largely in place. The simpler
logic trees allows us to consider metric-by-metric deletion—analysis of leaves and trees. This
is presented in Figure 4 (b), which shows that factors (E) and (R×U) now have roughly
equal importance, (R) continues to contribute precision, while the value derived from (U)
is much diminished.

7 Conclusions
For our SERP application, the primary conclusion is the identification of three or four factors
relevant for predicting SERP quality: In decreasing order, (E), (R×U), (R), and perhaps (U).
Such a simplified structure allows us to speak broadly, yet with known precision, about from
where the spike-and-slab ensemble draws its prediction strength. Identifying these three or
four factors helps create a useful narrative about an otherwise inscrutable predictive model.

A second finding revolves around factor (E), which comes from third parties acting under
economic incentives. Factor (E) is rather analogous to measures from prediction markets,
and inherits some of the same elements of controversy (Hahn and Tetlock, 2006). The
analysis here shows both the value of such a factor and its strength relative to the other
factors. This paper offers yet another case study that empirically validates the value of such
data sources.

Regarding methods, we hope that metamodels become more widely applied. Historically,
applications of logic regression have involved gene presence and/or activation and similar
genomic-based booleans. We believe the potential applications of logic regression to be much
broader: quantifying the value of potential predictors in any proposed model, increasing the
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Figure 3: (a) The coefficients of the overfit logic regression model. (b) The associated
analysis of trees.

Figure 4: (a) The “whitened” coefficients of the logic regression model, now corrected for
the correlations among the models. (b) The associated analysis of leaves and trees.
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transparency of black box modeling methods, facilitating the due diligence and scrutiny by
fiduciary authorities, and facilitating peer review and scientific publication.

We conclude by noting some open issues. In the current application, the observed en-
semble M0 was freely available as the consequence of the MCMC estimation process of
spike-and-slab modeling. On one hand, this offers a new argument for fitting Bayesian mod-
els; their algorithms naturally provide a data structure that suppports metamodels. On the
other hand, it seems desirable to have an additional or complementary approach suitable for
non-Bayes models. What is required is some theory for deciding which model specifications
to fit, perhaps by a systematic process from experimental design theory.

A second class of issues involves choosing goodness-of-fit criteria. The current work
chooses log precision, yet it seems more than plausible that greater experience may con-
verge to a different criterion, such as AIC or BIC, that penalizes model complexity more
aggressively.
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