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Abstract 

The relationship between scheduled capacity and concomitant demand in transit is of fundamental interest 

to transit planners. The expectation is that offered capacity in terms of more frequent service and more 

bus stops is consumed by customers. Thus relationship has been modeled at an aggregate level for whole 

transit agencies across regions but not at the operational level. This work studies the statistical 

relationships among operational capacity, demand and revenue using a year’s worth of day-by-day trip-

level data over 29 routes of a public transit system. Structural equation modeling is used to account for 

groups of collinear observational variables to identify and link three latent constructs, revenue capacity, 

demand, and productivity. We find that the endogenous variables revenue capacity and demand are 

positively, but weakly linked, showing that increased scheduled capacity is used. Yet there are variations 

route by route and those variations have no obvious relationship to route function (cross-town inner city 

versus suburban commuting).  

 

1. Introduction 

The relationship between public transit service capacity and ridership has been oft studied and suffers 

from no lack of opinion. Taylor et al. show, at the aggregated level of urban areas in the United States, 

service frequency and fares have a small, but significant effect on ridership; factors involving geography, 

population characteristics and economic factors dominate (1). Geographic factors include degree of 

urbanization, population density and region within the US. Population characteristics include political 

party composition, proportion of immigrants, etc. Economic factors cover personal wealth. Transit service 

supply is represented by vehicle services hours (see below). Their analysis used data from the National 

Transit Database (NTD) plus the US Census Bureau for the year 2000 for 265 urbanized areas. Each 

datum was an area with aggregated ridership statistics. From this perspective, one obtains variation at the 

area level. Yet even in the presence of external factors, some significant influence of per capita transit 

usage is reserved by fares and service frequency (26% of variation). One key aspect of this study is the 

segregation of external factors (geography, income, etc.) and those under control of policy makers (e.g, 

fares). 

 

Thompson and Brown show a strong significant relationship between service availability (coverage, 

frequency) in 82 metropolitan service areas (MSA) and per capita transit trips (2). Their unit of 

observations were larger than Taylor et al. and were segmented into small (<500,000 residents), medium 

(500,000-1,000,000 residents), and large (>1,000,000 residents) MSAs. Their data comprised NTD and 

US Census Bureau data from 1990 and 2000 and the ridership variable of interest was the percent change 

in passenger miles per capita. Their hypothesis was that an increase in service coverage (a decrease in 
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percentage change in ratio of population to service miles) would positively influence ridership (that is, 

adding more capacity relative to the population increases ridership). This effect was significant only for 

all data and all MSA segments. The same was found to be true for the ratio of vehicle miles to route 

miles. That is, adding more vehicles increased ridership. Interestingly, they also found a positive 

relationship for connectivity, represented as the proportion of routes not serving the central business 

district (CBD).    

Kohn studied 85 Canadian transit systems and constructed a linear regression model that showed 

increased fares reduced ridership while increased vehicle hours (capacity) was associated with increased 

ridership (3). It remains unclear which is cause and which is effect; that is, whether increased capacity 

drives ridership or the capacity is built to handle increasing demand. 

Syed and Khan analyzed a 1995 attitudinal survey regarding rapid bus transit in Ottawa, Canada using 

factor analysis and logistic regression (4). The extracted factors are used to predict a binary response of 

ride/no ride. They show that, in 1995, availability of bus information was the most important factor.  

Taylor and Fink provide a thorough review of what is known to date (5). In their conclusion, they point 

out shortcomings of causal analyses, including aggregation, collinearity and latent effects. The work 

presented here attempts to address some of these albeit using data from a particular transit agency.  

This study differs from previous work in that it focuses on the operational capacity of daily trips and 

demand. It addresses to what extent scheduled capacity is actually used. As in previous studies, we aim to 

uncover relationships among latent variables. 

Structural equation modeling (SEM) is a common technique used to understanding travel behavior. Githui 

et al. use to identify latent factors in transit survey data from the city of Nairobi, Kenya. From 25 

variables, they use exploratory factor analysis (described below) to infer three exogenous variables, 

Service Quality, Commuter Safety and Travel Cost and one endogenous variable, Commuter Satisfaction. 

They uncovered a linear relationship among the latent variables that indicated commuter satisfaction is 

positively influenced primarily by service quality, secondarily by safety and negatively by travel cost (6). 

De Abrene e Silva et al. apply SEM to 2003 Origination-Destination travel survey data collected in the 

Greater Montréal Area (7). A SEM related land use and travel behavior and showed intuitive results (e.g., 

car travel frequency positively influenced by commuting distance, transit and non-motorized vehicles 

were negatively related showing competing mode choices).  

Kim built a SEM to identify factors that influence mobility of the elderly near Seattle, Washington (8). 

The constructed model includes latent factors for mobility and urban form. There are numerous 

relationships between observed variables like ethnicity and education that are related to mobility, but no 

statistical significant relationship was found between latent factors. 

These studies all use the Linear Structural Relations (LISREL) model, which has an accompanying 

software package with fitting and diagnostics functionality (9, 10). Here, a Bayesian approach is adopted, 

one which has more modeling flexibility and is quite easy to use in practice (11).  
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2. Data 

We study data from a Computer-Aided Dispatch/Automatic Vehicle Location (CAD/AVL) system which 

system maintains trip-level performance data for reporting to the NTD. A trip is a route that is run 

according to a schedule. For example, Route 10 could be run every weekday starting at 7 am. Each time it 

is run, it is constitutes a separate trip. It would typically take an hour or so to run, use a single bus and 

cover several miles. It is considered a basic unit of revenue production (and schedule).  

Table 1 gives the descriptions of the variables of interest (12). Results will be presented for all routes, but 

first, the analysis is illustrated for a single route, Route 10.  Route 10 is a major east-west transit corridor 

and is one of the region’s busiest. Summary statistics are shown in Table 2. The set of observations come 

from the CAD/AVL database and comprise trip measurements over 394 days (29 Aug 2010 to 27 Sept 

2011) from a medium-sized city in the Northeast of the United States.  

Table 1. Variables of interest with their definitions. 

Variable Description 

num_stops_scheduled number of bus stops assigned to this trip in the schedule data 

vehicle_rev_miles total amount of revenue miles or kilometers  this bus traveled 

during this trip 

vehicle_rev_hours total amount of revenue hours it took the bus to run this trip 

total_ons load balanced number of passengers that boarded through all 

doors at all bus stops on this trip 

total_offs the load balanced number of passengers that alighted through 

all doors at all bus stops on this trip 

max_load load balanced maximum number of passengers that were on the 

vehicle at a given time during the trip 

passenger_miles total of all the distances in miles or kilometers traveled by each 

of the passengers on this trip. 

passenger_hours total for all the passengers of the amount of time (measured 

from door open to door open)  each traveled on this trip. 

'passenger_hours' includes dwell time at the layover prior to the 

start of the trip, assuming there is boarding activity. 

 

The data were cleaned using following protocol. Cases where the vehicle revenue miles or vehicle 

revenue hours zero were removed and well as those with training drivers. Cases were removed where the 

vehicle hours were more than three hours and cases where the vehicle miles are less than two as these 

were deemed anomalous. Finally, logs were taken of passenger miles and passenger hours. The data were 

subsetted by route in order to speed up estimation (which can take several hours) and to compare 

parameter estimates by route. 
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Table 2. Summary statistics for Route 10 data, n = 23,953. 

Variable Average Sample Std dev 

num_stops_scheduled 104.810 36.466 

vehicle_rev_miles 10.899 4.283 

vehicle_rev_hours 1.033 0.390 

total_ons 48.972 27.367 

total_offs 47.934 26.147 

max_load 27.172 15.088 

log_passenger_miles 4.571 1.122 

log passenger_hours 2.419 0.868 

 

3. The Latent Model 

The first step before constructing a structural equation model is exploratory factor analysis. Typically, the 

data are normalized by subtracting the average and dividing by the estimated standard deviation. 

Exploratory factor analysis is commonly used to group together observational variables with common 

latent factors for dimensionality reduction. Consider the following model, 

Y                                                                                                                               (1) 

where Y is a 1p vector of (centered and scaled) measurements (in our case, 8p  ),  is a p q

matrix of loadings which is to be estimated from the data,  is a 1q vector of latent factors (also to be 

estimated), and  is a 1p random vector of errors independent of  , ~ (0, )MVN   , 

1( , , )pdiag     . Typically, q p . The model in eq. 1 is underdetermined from data, so some 

additional criterion is used. We can write,  

      ),0(~ MVNY                                                                                                              (2) 

where 
T

     , cov( , )Y    . 

Given a data set, one can match the sample covariance ̂ with 
T

    . In practice, the estimate 

of  is rotated to increase the dispersion of its columns, which increases the ability to interpret the factors 

(this is the varimax approach). 

  

JSM2015 - Transportation Statistics Interest Group

1252



 

Table 3. Estimated loadings and latent factors. Significant factor loadings are in bold, showing three 

distinct factors. 

Variable Latent factor 1 Latent factor 2 Latent factor 3 

num_stops_scheduled 0.856 0.128 0.170 

vehicle_rev_miles 0.944 0.170 0.158 

vehicle_rev_hours 0.776 0.258 0.264 

total_ons 0.250 0.832 0.491 

total_offs 0.262 0.881 0.308 

max_load 0.159 0.674 0.641 

passenger_miles 0.311 0.374 0.863 

passenger_hours 0.261 0.405 0.799 

 

In Table 3, we identify three factors. Usually one considers loadings with absolute values over 0.5 to be 

significant. Our three latent factors are interpreted as revenue capacity, demand, and productivity (hence 

the labels in Table 1). Max load could have gone into either demand or productivity, but it has a greater 

loading in demand, so it is assigned there. (Including four factors produces an uninterpretable fourth 

factor with low loadings.) 

Based on these estimated factors, we construct a plausible structural equation model to link these latent 

factors. Revenue capacity represents the ability of the system to capture revenue--bus stops where 

passengers can be picked up and the distance and hours buses are scheduled to run and accept fares. 

Demand is the realized demand, paying customers getting on the bus. This is represented by boardings, 

alightings and the maximum number of passengers on a bus on any given trip. Productivity is a 

combination of revenue capacity and demand. It is production in the sense of capacity that is generating 

revenue. It is measured by passengers miles and hours, essentially a tally of paying customers captured 

and transported; it measures how much of the service is actually used. Our hypothesized relationship is 

that productivity is a linear combination of revenue capacity and demand. We further hypothesize that 

demand is a function of capacity; that is capacity is positively correlated with demand. Transit planners 

would expect believe this to be true: increased capacity offered through scheduling is consumed.  

Below are the observational equation (eq. 3) and structural equation (eq. 4).  
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

  

     

 

  
                                                                                                              (4) 

11 ~ (0, )N          

2 2

~ (0, )N
                                                                                                      

~ (0, )N    

  and 
1

  are independent. 

where 1 , 2 , and   correspond to the three latent factors revenue capacity, demand and productivity.  

In this formulation, all latent variables have zero mean and all the observational variables maintain their 

original scales. This differs from some formulation that set equal to one a single lambda for each latent 

variable. 

4. Results 

Parameters were estimated using Just Another Gibbs Sampler (JAGS) called from ‘R’ (13). Code was 

adapted from examples associated with Lee (11). Markov Chain Monte Carlo (MCMC) convergence 

processes were monitored and found to be satisfactory. Residuals were also computed and found not to 

indicate structural issues. The model is deemed to adequately fit the data. Figure 1 shows the model with 

parameter estimates. 

 

Figure 1. Structural equation model estimated for route 10, comprising 23,953 records over 13 months. 
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As specified by the model, the latent variables have estimated means of zero (Table 4). As expected, the 

estimated offsets i are close to the samples means in Table 2. This gives us some confidence in the 

structural part of the model. 

Table 4. Posterior distributional properties of latent variable means.  

Variable Mean SD 2.5% Median 97.5% 

1  (demand) -0.007 0.006 -0.018 -0.008 0.004 

2 (revenue capacity) 0.003 0.010 -0.018 0.003 0.022 

  (productivity) 0.007 0.008 -0.008 0.007 0.022 

As expected, observational variables are tightly related to their corresponding latent variables with R-

squared values ranging from 0.788 to 0.999. 

Demand is positively associated with revenue capacity ( ˆ 0.460  ) and explains 22.5% of its variance. 

It is unclear whether the revenue capacity is built to respond to demand or vice versa. Nevertheless, the 

relationship is in the expected, positive direction. The model does not consider economic or demographic 

effects which one would expect to be greater influences on demand. Yet we do see a statistically 

significant relationship between what is deployed and what is used. 

The second structural equation shows greater influence of demand than capacity on productivity, i.e., 

captured revenue ( 1̂ 0.208  , 2
ˆ 0.866  ). Again, it is expected that productivity, by its very definition 

of infrastructure use would be highly dependent on counts of boarding and alighting passengers. It is also 

evident that revenue capacity has a lesser, but significant role. 

All routes were processed by subsetting the data. Figure 2 shows the estimated coefficients of 

determination (R-squared) for all routes along with 95% credible intervals.  

  

Figure 2. R-squared values with 95% credible intervals for 
22 1     for each route.  
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Routes 1-19 & 50 are urban and cross the central business district. Routes 20-33 are suburban and 91-96 

are exurban and primarily serving commuters in adjacent counties with jobs downtown. There is no 

apparent relationship between route type and the degree to which revenue capacity influences demand.  

Figure 3 shows the R-squared values for productivity as a linear function of revenue capacity and 

demand. Owing to the definition of productivity as a function of paying customers, these values are as 

expected, high for all routes.  

 

Figure 3. R-squared values with 95% credible intervals for 1 1 2 2         for each route. 

5. Conclusion 

The link between transit capacity and usage has been studied at the aggregate level, to access policy and 

planning. The study presented here investigates the lower level relationship between that capacity which 

is scheduled and that which is used. We find an overall positive relationship, scheduled capacity is used 

day to day, but that relationship varies across routes and the variation bears no apparent relationship to 

route function. Structural equation modeling was used to elicit this relationship. A Bayesian approach 

afforded greater modeling flexibility and estimation of key statistical relationships. 
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