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Abstract

Given a collection X of m observations of n variables, and m observations of a response variable

Y , it is commonly of interest to calculate the least-squares regression fit of the data according to

the model Y = Xβ. The least-squares regression estimators of β are commonly given by β̂ =
(

XTX
)

−1
XTY where the statistical inference on the values of β̂ are based on the (assumed) error

structures of the model.

Since XTX in is an n× n matrix (regardless of m), and
(

XTX
)

−1
exists only when m ≥ n,

the complexity of calculating
(

XTX
)

−1
becomes significantly problematical as n becomes large.

Furthermore, if even one observation changes in X ,
(

XTX
)

−1
must be recalculated to find the new

values of β̂.

However, since a deletion or annexation of s-many observations from/to X means m−s (or m)

observations are retained from the original X , the new value of
(

XTX
)

−1
may be calculated from

the old value of
(

XTX
)

−1
without the need to recalculate a new n× n matrix inverse. The update

of
(

XTX
)

−1
based on its old value and the deleted or annexed data may be accomplished through

matrix addition, negation, multiplication, and the calculation of an s × s matrix inverse. When

s = 2, there is a simple formula for such an inverse. For s = 1, the inversion is scalar division.

This paper presents the analytical, calculation, and programming methods for updating the

least-squares regression matrix inverse after deleting or annexing any number of observations. The

utility of these methods are especially manifest when s is relatively small compared to n (regardless

of m ≥ n).
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1. Introduction

Given a collection X of m observations of n variables, and m observations of a response

variable Y , it is commonly of interest to calculate the least-squares regression fit of the data

according to the model

Y = Xβ (1)

The least-squares regression estimators of β are commonly given by

β̂ =
(

XTX
)−1

XTY (2)

where the statistical inference on the values of β̂ are based on the (assumed) error structures

of (1).

Since XTX in (2) is an n×n matrix (regardless of m), and
(

XTX
)

−1
exists only when

m ≥ n, the complexity of calculating
(

XTX
)

−1
becomes significantly problematical as n

becomes large, i.e., n ≥ 3. Furthermore, if even one observation changes in X,
(

XTX
)

−1

must be recalculated to find the new values of β̂.

However, since a deletion or annexation of s-many observations from/to X means m−s

(or m) observations are retained from the original X, the new value of
(

XTX
)

−1
may be
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calculated from the old value of
(

XTX
)

−1
without the need to recalculate a new n × n

matrix inverse. The update of
(

XTX
)

−1
based on its old value and the deleted or annexed

data may be accomplished through matrix addition, negation, matrix multiplication, and

the calculation of an s × s matrix inverse. When s = 2, there is a simple formula for such

an inverse. For s = 1, the inversion is scalar division.

This memorandum documents the analytical, calculation, and programming methods

for updating the least-squares regression matrix inverse after deleting or annexing any num-

ber of observations. The utility of these methods are especially manifest when s is relatively

small compared to n (regardless of m ≥ n).

2. Calculation Methods

In the following development, the number of observations will always be assumed to be at

least as large as the number of variables. Observations may only be deleted from the data

if doing so would not violate this assumption.

Furthermore, it shall be understood that no null, void, or otherwise missing data, nor

indicator or signaling, non-numeric data, are allowed in any position of X. The concept of

deletion and annexation are otherwise not well-defined.

Given X(m+s)×n data of m + s observations of n variables, suppose
(

XTX
)

−1

n×n
has

already been calculated. Let

X =

(

αs×1 vs×(n−1)

rm×1 Zm×(n−1)

)

(m+s)×n

W =





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





(m+s+p)×n

Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

for s, p ≥ 1.

Here we may view X as the original data matrix, and W as the result of appending

p-many observations of n-many variables to the end of X. Similarly, we may also view

W as the original matrix, and Q as the result of deleting s-many observations of n-many

variables from the beginning of W .

Since
(

XTX
)

−1
is invariant under exchanges of rows in X, and

(

(

XT
)T

XT
)

−1

is invariant under exchanges of columns1 in XT , for any matrix X, the annexation or

elimination of rows in forming W and Q, respectively, need not occur at the end or at the

1Proof. Let Xm×n be any matrix for n,m ≥ 1. For i 6= j, define eij to be the m×m identity matrix with

the ith and jth rows interchanged.

Then

X0 = ei1j1ei2j2 · · · eikjkX

is the matrix X with a rearrangement of its rows for some permutation {i1, i2, . . . , ik} and {j1, j2, . . . , jk} of

{1, 2, . . . ,m}.

Hence,

(

X
T
0 X0

)

−1

=
(

(ei1j1ei2j2 · · · eikjkX)T ei1j1ei2j2 · · · eikjkX
)

−1

=
(

X
T
e
T
ikjk

· · · eTi2j2e
T
i1j1

ei1j1ei2j2 · · · eikjkX
)

−1

However,

e
T
irjreirjr = Im×m
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beginning of X, respectively. The rows may be appended to, or deleted from, any position

in the matrix. Furthermore, the annexations or eliminations may be performed as columns

as well in XT .

Then

XTX =

(

αT
1×s rT1×m

vT(n−1)×s
ZT
(n−1)×m

)(

αs×1 vs×(n−1)

rm×1 Zm×(n−1)

)

=

(
(

αTα+ rT r
)

1×1

(

αT v + rTZ
)

1×(n−1)
(

vTα+ ZT r
)

(n−1)×1

(

vT v + ZTZ
)

(n−1)×(n−1)

)

n×n
(

AX (BX)1×(n−1)
(

BT
X

)

(n−1)×1
(DX)(n−1)×(n−1)

)

n×n

where

AX = αTα+ rT r

BX = αT v + rTZ

DX = vT v + ZTZ

Also

W TW =





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





T

n×(m+s+p)





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





(m+s+p)×n

=

(

αT
1×s rT1×m γT1×p

vT(n−1)×s
ZT
(n−1)×m

uT(n−1)×p

)





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





=

(
(

αTα+ rT r + γTγ
)

1×1

(

αT v + rTZ + γTu
)

1×(n−1)
(

vTα+ ZT r + uTγ
)

(n−1)×1

(

vT v + ZTZ + uTu
)

(n−1)×(n−1)

)

n×n

for each 1 ≤ r ≤ k. This means
(

X
T
0 X0

)

−1

=
(

X
T
X
)

−1

Similarly, for i 6= j, define cij to be the n× n identity matrix with the ith and jth columns interchanged.

Then

X
T
1 = ci1j1ci2j2 · · · cikjkX

T

is the matrix XT with a rearrangement of its columns for some permutation {i1, i2, . . . , ik} and

{j1, j2, . . . , jk} of {1, 2, . . . , n}.

Hence,

(

(

X
T
1

)T

X
T
1

)

−1

=

(

(

ci1j1ci2j2 · · · cikjkX
T
)T

ci1j1ci2j2 · · · cikjkX
T

)

−1

=

(

(

X
T
)T

c
T
ikjk

· · · cTi2j2c
T
i1j1

ci1j1ci2j2 · · · cikjkX
T

)

−1

However,

c
T
irjr cirjr = In×n

for each 1 ≤ r ≤ k. This means

(

(

X
T
1

)T

X
T
1

)

−1

=

(

(

X
T
)T

X
T

)

−1
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=

(

A B1×(n−1)

BT
(n−1)×1 D(n−1)×(n−1)

)

where

A = αTα+ rT r + γTγ

B = αT v + rTZ + γTu

D = vT v + ZTZ + uTu

To find
(

W TW
)

−1
, Gaussian elimination may be applied to its components:

(

A B1×(n−1)

BT
(n−1)×1 D(n−1)×(n−1)

∣

∣

∣

∣

1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

Multiply the second row by D−1
(n−1)×(n−1)

.

(

A B1×(n−1)

D−1BT
(n−1)×1 I(n−1)×(n−1)

∣

∣

∣

∣

1 01×(n−1)

0(n−1)×1 D−1
(n−1)×(n−1)

)

Subtract the second row times B1×(n−1) from the first row.

(

A−BD−1BT
01×(n−1)

D−1BT
(n−1)×1 I(n−1)×(n−1)

∣

∣

∣

∣

1 −BD−1
1×(n−1)

0(n−1)×1 D−1
(n−1)×(n−1)

)

Divide the first row by k = A−BD−1BT .

(

1 01×(n−1)

D−1BT
(n−1)×1 I(n−1)×(n−1)

∣

∣

∣

∣

1
k

− 1
k
BD−1

1×(n−1)

0(n−1)×1 D−1
(n−1)×(n−1)

)

Subtract the first row times D−1BT
(n−1)×1 from the second row.

(

1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

∣

∣

∣

∣

1
k

− 1
k
BD−1

1×(n−1)

− 1
k
D−1BT

(n−1)×1 D−1
(

I(n−1)×(n−1) +
1
k
BTBD−1

)

(n−1)×(n−1)

)

This result gives the actual inverse, since

(

A B1×(n−1)

BT

(n−1)×1 D(n−1)×(n−1)

)

(

1
k

− 1
k
BD−1

1×(n−1)

− 1
k
D−1BT

(n−1)×1 D−1
(

I(n−1)×(n−1) +
1
k
BTBD−1

)

(n−1)×(n−1)

)

=

(

1
k
A− 1

k
BD−1BT

(

− 1
k
ABD−1 +BD−1

(

I(n−1)×(n−1) +
1
k
BTBD−1

))

1×(n−1)
(

1
k
BT − 1

k
DD−1BT

)

(n−1)×1

(

− 1
k
BTBD−1 +DD−1

(

I(n−1)×(n−1) +
1
k
BTBD−1

))

(n−1)×(n−1)

)

=

(

1
(

− 1
k
ABD−1 +BD−1 + 1

k

(

BD−1BT
)

BD−1
)

1×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

=

(

1
(

BD−1 − 1
k

(

A−BD−1BT
)

BD−1
)

1×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

=

(

1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

and
(

1
k

− 1
k
BD−1

1×(n−1)

− 1
k
D−1BT

(n−1)×1 D−1
(

I(n−1)×(n−1) +
1
k
BTBD−1

)

(n−1)×(n−1)

)

(

A B1×(n−1)

BT

(n−1)×1 D(n−1)×(n−1)

)
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=









1
k
A− 1

k
BD−1BT

(

1
k
B − 1

k
BD−1D

)

1×(n−1)




− 1
k
AD−1BT

+D−1

(

I(n−1)×(n−1)

+ 1
k
BTBD−1

)

BT





(n−1)×1





− 1
k
D−1BTB

+D−1

(

I(n−1)×(n−1)

+ 1
k
BTBD−1

)



D(n−1)×(n−1)









=





1 01×(n−1)
(

− 1
k
AD−1BT +D−1BT

+ 1
k
D−1BT

(

BD−1BT
)

)

(n−1)×1

(

I − 1
k
D−1BTB + 1

k
D−1BTB

)

(n−1)×(n−1)





=

(

1 01×(n−1)
((

1− 1
k

(

A−BD−1BT
))

D−1BT
)

(n−1)×1
I(n−1)×(n−1)

)

=

(

1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

Therefore,

(

W TW
)−1

=

(

1
k

− 1
k
BD−1

1×(n−1)

− 1
k
D−1BT

(n−1)×1 D−1
(

I(n−1)×(n−1) +
1
k
BTBD−1

)

(n−1)×(n−1)

)

n×n

(3)
where

(

A B1×(n−1)

BT

(n−1)×1 D(n−1)×(n−1)

)

=

(
(

αTα+ rT r + γTγ
)

1×1

(

αT v + rTZ + γTu
)

1×(n−1)
(

vTα+ ZT r + uTγ
)

(n−1)×1

(

vT v + ZTZ + uTu
)

(n−1)×(n−1)

)

n×n

and

k = A−BD−1BT

is a scalar.

Applying the same process to XTX, we have

(

XTX
)−1

=

(

1
kX

− 1
kX

BXD−1
X

− 1
kX

D−1
X BT

X D−1
X

(

I(n−1)×(n−1) +
1
kX

BT
XBXD−1

X

)

)

n×n

with

kX = AX −BXD−1
X BT

X

and for QTQ, we have

(

QTQ
)−1

=

( 1
kQ

− 1
kQ

BQD
−1
Q

− 1
kQ

D−1
Q BT

Q D−1
Q

(

I(n−1)×(n−1) +
1
kQ

BT
QBQD

−1
Q

)

)

with

kQ = AQ −BQD
−1
Q BT

Q

and

AQ = rT r + γTγ

BQ = rTZ + γTu

DQ = ZTZ + uTu

Define

(

XTX
)−1

=

(

X1 (X2)1×(n−1)
(

XT
2

)

(n−1)×1
(X3)(n−1)×(n−1)

)
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where

X1 =
1

kX

X2 = −
1

kX
BXD−1

X

X3 = D−1
X

(

I(n−1)×(n−1) +
1

kX
BT

XBXD−1
X

)

Now note that

DXX3 = I(n−1)×(n−1)+
1

kX
BT

XBXD−1
X and X3DX = I(n−1)×(n−1)+

1

kX
D−1

X BT
XBX

and

BT
XX2 = −

1

kX
BT

XBXD−1
X and XT

2 BX = −
1

kX
D−1

X BT
XBX

so that

DXX3 +BT
XX2 = I(n−1)×(n−1) = X3DX +XT

2 BX

However, since

XT
2 = −

1

kX
D−1

X BT
X and X2 = −

1

kX
BXD−1

X

then

BT
X = −

1

X1
DXXT

2 and BX = −
1

X1
X2DX

which mean

DXX3 +

(

−
1

X1
DXXT

2

)

X2 = I(n−1)×(n−1) = X3DX +XT
2

(

−
1

X1
X2DX

)

or

DX

(

X3 −
1

X1
XT

2 X2

)

= I(n−1)×(n−1) =

(

X3 −
1

X1
XT

2 X2

)

DX

Hence,

D−1
X = X3 −

1

X1
XT

2 X2 (4)

Lemma 1 If Is×s 6= v
(

ZTZ
)

−1
vT and

(

v
(

ZTZ
)

−1
vT
)

−1
exists, then

(

ZTZ ± vT v
)−1

=
(

ZTZ
)−1

∓
(

ZTZ
)−1

vT
(

Is×s ± v
(

ZTZ
)−1

vT
)

−1
v
(

ZTZ
)−1

Proof. We have

(

ZTZ
)−1

vT v =
(

ZTZ
)−1

vT
[

Is×s ± v
(

ZTZ
)−1

vT
]

−1 [

Is×s ± v
(

ZTZ
)−1

vT
]

v

and therefore

(

ZTZ
)−1

vT v =





(

ZTZ
)

−1
vT
(

Is×s ± v
(

ZTZ
)

−1
vT
)

−1
v

±
(

ZTZ
)

−1
vT
(

Is×s ± v
(

ZTZ
)

−1
vT
)

−1
v
(

ZTZ
)

−1
vT v





=

(

(

ZTZ
)−1

vT
(

Is×s ± v
(

ZTZ
)−1

vT
)

−1
v
(

ZTZ
)−1
)

(

ZTZ ± vT v
)
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which means

±I = ±I +

(

(

Z
T
Z
)

−1

v
T
v −

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
)

(

Z
T
Z ± v

T
v
)

)

= ±
(

Z
T
Z
)

−1 (

Z
T
Z
)

+
(

Z
T
Z
)

−1

v
T
v −

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1

)

(

Z
T
Z ± v

T
v
)

= ±
(

Z
T
Z
)

−1 ((

Z
T
Z
)

± v
T
v
)

−

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
)

(

Z
T
Z ± v

T
v
)

=

(

±
(

Z
T
Z
)

−1

−

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
))

(

Z
T
Z ± v

T
v
)

Similarly,

vT v
(

ZTZ
)−1

= vT
[

Is×s ± v
(

ZTZ
)−1

vT
] [

Is×s ± v
(

ZTZ
)−1

vT
]

−1
v
(

ZTZ
)−1

and therefore

vT v
(

ZTZ
)−1

=





vT
(

Is×s ± v
(

ZTZ
)

−1
vT
)

−1
v
(

ZTZ
)

−1

±vT v
(

ZTZ
)

−1
vT
(

Is×s ± v
(

ZTZ
)

−1
vT
)

−1
v
(

ZTZ
)

−1





=
(

ZTZ ± vT v
)

(

(

ZTZ
)−1

vT
(

Is×s ± v
(

ZTZ
)−1

vT
)

−1
v
(

ZTZ
)−1
)

which means

±I = ±I +

(

v
T
v
(

Z
T
Z
)

−1

−
(

Z
T
Z ± v

T
v
)

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
))

= ±
(

Z
T
Z
)(

Z
T
Z
)

−1

+ v
T
v
(

Z
T
Z
)

−1

−
(

Z
T
Z ± v

T
v
)

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
)

=
((

Z
T
Z
)

± v
T
v
)(

±Z
T
Z
)

−1

−
(

Z
T
Z ± v

T
v
)

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1

)

=
(

Z
T
Z ± v

T
v
)

(

±
(

Z
T
Z
)

−1

−

(

(

Z
T
Z
)

−1

v
T

(

Is×s ± v
(

Z
T
Z
)

−1

v
T

)

−1

v
(

Z
T
Z
)

−1
))

Hence,

(

ZTZ + vT v
)−1

=
(

ZTZ
)−1

−

(

(

ZTZ
)−1

vT
(

Is×s + v
(

ZTZ
)−1

vT
)

−1
v
(

ZTZ
)−1
)

(5)

and

(

ZTZ − vT v
)−1

=
(

ZTZ
)−1

+

(

(

ZTZ
)−1

vT
(

Is×s − v
(

ZTZ
)−1

vT
)

−1
v
(

ZTZ
)−1
)

(6)

Note also that, using (6), we have

(

ZTZ
)−1

=
((

ZTZ + vT v
)

− vT v
)−1

=
(

ZTZ + vT v
)−1

+

(

(

ZTZ + vT v
)−1

vT
(

Is×s − v
(

ZTZ
)−1

vT
)

−1

v
(

ZTZ + vT v
)−1
)

(7)
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2.1 Deleting Observations

Given W =





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





(m+s+p)×n

data of m+ s+ p observations of n vari-

ables, and
(

W TW
)

−1

n×n
, if s-many observations are deleted from W to form

Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

then
(

QTQ
)

−1
may be calculated through (3), namely

(

QTQ
)−1

=

( 1
kQ

− 1
kQ

BQD
−1
Q

− 1
kQ

D−1
Q BT

Q D−1
Q

(

I(n−1)×(n−1) +
1
kQ

BT
QBQD

−1
Q

)

)

n×n

(8)

with

kQ = AQ −BQD
−1
Q BT

Q

and

AQ = rT r + γTγ

BQ = rTZ + γTu

DQ = ZTZ + uTu

From (6) we have

D−1
Q =

(

ZTZ + uTu
)−1

=
((

ZTZ + uTu+ vT v
)

− vT v
)−1

= D−1 +D−1vT
(

Is×s − vD−1vT
)−1

vD−1

where

D−1 = W3 −
1

W1
W T

2 W2 (9)

and
(

W TW
)−1

=

(

W1 (W2)1×(n−1)
(

W T
2

)

(n−1)×1
(W3)(n−1)×(n−1)

)

(10)

by analogy with (4).

Hence,
(

QTQ
)

−1
is completely described by (8), (9), and (10), given

(

W TW
)

−1
, with

D invertible and Is×s 6= vD−1vT .

Note that (5) could have been used if data were being deleted off the top of W to form

X.

See the Appendix for more information on calculating
(

Is×s − vD−1vT
)

−1
from known

components.

2.2 Annexing Observations

Given X =

(

αs×1 vs×(n−1)

rm×1 Zm×(n−1)

)

(m+s)×n

data of m+s observations of n variables, and

(

XTX
)

−1

n×n
, if p-many observations are annexed to X to form

W =





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





(m+s+p)×n
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then
(

W TW
)

−1
may be calculated through (3), namely

(

W TW
)−1

=

(

1
k

− 1
k
BD−1

1×(n−1)

− 1
k
D−1BT

(n−1)×1 D−1
(

I(n−1)×(n−1) +
1
k
BTBD−1

)

(n−1)×(n−1)

)

n×n

(11)

with

k = A−BD−1BT

and

A = αTα+ rT r + γTγ

B = αT v + rTZ + γTu

D = vT v + ZTZ + uTu

From (5) we then have

D−1 =
(

vT v + ZTZ + uTu
)−1

=
((

ZTZ + vT v
)

+ uTu
)−1

= D−1
X −D−1

X uT
(

Ip×p + uD−1
X uT

)−1
uD−1

X

where

D−1
X = X3 −

1

X1
XT

2 X2 (12)

and
(

XTX
)−1

=

(

X1 (X2)1×(n−1)
(

XT
2

)

(n−1)×1
(X3)(n−1)×(n−1)

)

(13)

Hence,
(

W TW
)

−1
is completely described by (11), (12), and (13), given

(

XTX
)

−1
,

with DX invertible and Ip×p 6= −uD−1
X uT .

Note that (7) could have been used if data were being annexed to the top of Q to form

W .

2.3 Exception Handling

Since the conditions Is×s = vD−1vT and Is×s = −vD−1vT cannot be true at the same

time, then if Is×s = vD−1vT , we may choose at least one additional row for the role of
(

αs×1 vs×(n−1)

)

as a substitute in (a), and then annex the extra row(s) to the result to

obtain the desired deletion.

Likewise, since the conditions Ip×p = uD−1
X uT and Ip×p = −uD−1

X uT cannot be true

at the same time, then if Ip×p = −uD−1
X uT , we may choose at least one arbitrary extra row

for the role of
(

γp×1 up×(n−1)

)

as a substitute in (b), and then delete the extra row(s)

from the result to obtain the desired annexation.

These steps may need to be taken when D−1 or D−1
X does not exist.

3. Sequential Application

Claim 2 Suppose s-many rows are deleted from W to form Q, followed by deleting m-

many rows from Q to form R. Suppose further that (s+m)-many rows are deleted from

W to form R∗. Then
(

RTR
)

−1
=
(

R∗TR∗
)

−1
.
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Claim 3 Suppose m-many rows are annexed to R to form Q, followed by annexing m-

many rows to Q to form W . Suppose further that (s+m)-many rows are annexed to R to

form W ∗. Then
(

W TW
)

−1
=
(

W ∗TW ∗
)

−1
.

Proof. Both of these claims may be proven by the same method, where the “forward”

of one claim’s proof may be considered the “reverse” of the other claim’s proof.

Given W =





αs×1 vs×(n−1)

rm×1 Zm×(n−1)

γp×1 up×(n−1)





(m+s+p)×n

data of m + s + p observations of

n variables, and
(

W TW
)

−1

n×n
, if s-many observations are deleted from W to form Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

, then
(

QTQ
)

−1
may be calculated as

(

QTQ
)−1

=

( 1
kQ

− 1
kQ

BQD
−1
Q

− 1
kQ

D−1
Q BT

Q D−1
Q

(

I(n−1)×(n−1) +
1
kQ

BT
QBQD

−1
Q

)

)

n×n

with

QTQ =

(

AQ BQ

BT
Q DQ

)

n×n

and

kQ = AQ −BQD
−1
Q BT

Q

and

AQ = rT r + γT γ

BQ = rTZ + γTu

DQ = ZTZ + uTu

D−1
Q = D−1 ±D−1vT

(

Is×s ∓ vD−1vT
)−1

vD−1

D−1 = W3 −
1

W1
W T

2 W2

where
(

W TW
)−1

=

(

W1 (W2)1×(n−1)
(

W T
2

)

(n−1)×1
(W3)(n−1)×(n−1)

)

Now if m-many observations are deleted from Q to form R =
(

γp×1 up×(n−1)

)

p×n
,

then
(

RTR
)

−1
may be calculated as

(

RTR
)−1

=

(

1
kR

− 1
kR

BRD
−1
R

− 1
kR

D−1
R BT

R D−1
R

(

I(n−1)×(n−1) +
1
kR

BT
RBRD

−1
R

)

)

n×n

with

RTR =

(

AR BR

BT
R DR

)

n×n

and

kR = AR −BRD
−1
R BT

R

and

AR = γT γ
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BR = γTu

DR = uTu

D−1
R = D−1

Q ±D−1
Q ZT

(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1

Q

However, if (s+m)-many observations are deleted from W to form R∗, then AR∗ and

BR∗ are calculated as for R, and
(

R∗TR∗
)

−1
is calculated with

D∗−1
R = D−1 ±D−1JT

(

I(s+m)×(s+m) ∓ JD−1JT
)−1

JD−1

where

J(s+m)×(n−1) =

(

vs×(n−1)

Zm×(n−1)

)

It suffices to show that

D∗−1
R = D−1

R

since AR = AR∗ and BR = BR∗ .

We have

I(s+m)×(s+m) ∓ JD−1JT = I(s+m)×(s+m) ∓

(

vs×(n−1)

Zm×(n−1)

)

D−1

(

vs×(n−1)

Zm×(n−1)

)T

=

(

Is×s ∓ vD−1vT ∓vD−1ZT

∓ZD−1vT Im×m ∓ ZD−1ZT

)

(s+m)×(s+m)

Hence,

(

I(s+m)×(s+m) ∓ JD−1JT
)−1

=

(

Ns×s Ms×m

Pm×s Sm×m

)

(s+m)×(s+m)

where

N =
(

Is×s ∓ vD
−1

v
T
)

−1
(

Is×s ∓ vD
−1

v
T + vD

−1
Z

T
(

Im×m ∓ ZD
−1
Q Z

T
)

−1

ZD
−1

v
T

)

(

Is×s ∓ vD
−1

v
T
)

−1

M = ±
(

Is×s ∓ vD
−1

v
T
)

−1

vD
−1

Z
T
(

Im×m ∓ ZD
−1
Q Z

T
)

−1

P = ±
(

Im×m ∓ ZD
−1
Q Z

T
)

−1

ZD
−1

v
T
(

Is×s ∓ vD
−1

v
T
)

−1

S =
(

Im×m ∓ ZD
−1
Q Z

T
)

−1

Then JT
(

I(s+m)×(s+m) ∓ JD−1JT
)

−1
J may be expressed as follows.

(

vs×(n−1)

Zm×(n−1)

)T (

Ns×s Ms×m

Pm×s Sm×m

)(

vs×(n−1)

Zm×(n−1)

)

=
(

(

vTN + ZTP
)

(n−1)×s

(

vTM + ZTS
)

(n−1)×m

)

(

vs×(n−1)

Zm×(n−1)

)

=
(

v
T
Nv + Z

T
Pv + v

T
MZ + Z

T
SZ
)

(n−1)×(n−1)

=

















vT
(

Is×s ∓ vD−1vT
)

−1

(

Is×s ∓ vD−1vT

+vD−1ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1vT

)

(

Is×s ∓ vD−1vT
)

−1
v

±ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1vT

(

Is×s ∓ vD−1vT
)

−1
v

±vT
(

Is×s ∓ vD−1vT
)

−1
vD−1ZT

(

Im×m ∓ ZD−1
Q ZT

)

−1
Z

+ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
Z
















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=









ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
Z
(

I(n−1)×(n−1) ±D−1vT
(

Is×s ∓ vD−1vT
)

−1
v
)

+vT
(

Is×s ∓ vD−1vT
)

−1
v
(

I(n−1)×(n−1) ±D−1ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
Z
)

+vT
(

Is×s ∓ vD−1vT
)

−1
vD−1ZT

(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1vT

(

Is×s ∓ vD−1vT
)

−1
v









=









ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
Z
(

D−1 ±D−1vT
(

Is×s ∓ vD−1vT
)

−1
vD−1

)

D

+vT
(

Is×s ∓ vD−1vT
)

−1
v

(

I(n−1)×(n−1)

±D−1ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
Z
(

D−1 ±D−1vT
(

Is×s ∓ vD−1vT
)

−1
vD−1

)

D

)









=

(

vT
(

Is×s ∓ vD−1vT
)

−1
v

+
(

I(n−1)×(n−1) ± vT
(

Is×s ∓ vD−1vT
)

−1
vD−1

)

ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1

Q D

)

Therefore,

D∗−1
R = D−1 ±D−1JT

(

I(s+m)×(s+m) ∓ JD−1JT
)−1

JD−1

=





D−1 ±D−1vT
(

Is×s ∓ vD−1vT
)

−1
vD−1

±
(

D−1 ±D−1vT
(

Is×s ∓ vD−1vT
)

−1
vD−1

)

ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1

Q





= D−1
Q ±D−1

Q ZT
(

Im×m ∓ ZD−1
Q ZT

)

−1
ZD−1

Q

= D−1
R

4. Commutative Application

Claim 4 Suppose m-many rows are deleted from Q to form R, followed by annexing c-

many rows to R to form Y . Suppose further that c-many rows are annexed to Q to form S,

followed by deleting m-many rows from S to form Y ∗. Then
(

Y TY
)

−1
=
(

Y ∗TY ∗
)

−1
.

Proof. Suppose m-many observations are deleted from Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

to form R =
(

γp×1 up×(n−1)

)

p×n
, then

(

RTR
)

−1
may be calculated as

(

RTR
)−1

=

(

1
kR

− 1
kR

BRD
−1
R

− 1
kR

D−1
R BT

R D−1
R

(

I(n−1)×(n−1) +
1
kR

BT
RBRD

−1
R

)

)

n×n

with

RTR =

(

AR BR

BT
R DR

)

n×n

and

kR = AR −BRD
−1
R BT

R

and

AR = γT γ

BR = γTu

DR = uTu

D−1
R = D−1

Q +D−1
Q ZT

(

Im×m − ZD−1
Q ZT

)

−1
ZD−1

Q

JSM2015 - Section on Statistical Computing

1237



Now suppose c-many observations are annexed to R to form Y =

(

γp×1 up×(n−1)

lc×1 gc×(n−1)

)

(p+c)×n

,

then
(

Y TY
)

−1
may be calculated as

(

Y TY
)−1

=

(

1
kY

− 1
kY

BY D
−1
Y

− 1
kY

D−1
Y BT

Y D−1
Y

(

I(n−1)×(n−1) +
1
kY

BT
Y BYD

−1
Y

)

)

n×n

with

Y TY =

(

AY BY

BT
Y DY

)

n×n

and

kY = AY −BYD
−1
Y BT

Y

and

AY = γTγ + lT l

BY = γTu+ lT g

DY = uTu+ gT g

D−1
Y = D−1

R −D−1
R gT

(

Ic×c + gD−1
R gT

)−1
gD−1

R

However, if c-many observations are annexed to Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

to form S =





rm×1 Zm×(n−1)

γp×1 up×(n−1)

lc×1 gc×(n−1)





(m+p+c)×n

, then
(

STS
)

−1
may be calculated as

(

STS
)−1

=

(

1
kS

− 1
kS

BSD
−1
S

− 1
kS

D−1
S BT

S D−1
S

(

I(n−1)×(n−1) +
1
kS

BT
SBSD

−1
S

)

)

n×n

with

STS =

(

AS BS

BT
S DS

)

n×n

and

kY = AS −BSD
−1
S BT

S

and

AS = rT r + γTγ + lT l

BS = rTZ + γTu+ lT g

DS = ZTZ + uTu+ gT g

D−1
S = D−1

Q −D−1
Q gT

(

Ic×c + gD−1
Q gT

)

−1
gD−1

Q

And if m-many observations are deleted from S =





rm×1 Zm×(n−1)

γp×1 up×(n−1)

lc×1 gc×(n−1)





(m+p+c)×n

to form Y ∗ =

(

γp×1 up×(n−1)

lc×1 gc×(n−1)

)

(p+c)×n

, then
(

Y ∗TY ∗
)

−1
may be calculated as

(

Y ∗TY ∗
)−1

=

( 1
kY ∗

− 1
kY ∗

BY ∗D−1
Y ∗

− 1
kY ∗

D−1
Y ∗B

T
Y ∗ D−1

Y ∗

(

I(n−1)×(n−1) +
1

kY ∗
BT

Y ∗BY ∗D−1
Y ∗

)

)

n×n
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with

Y ∗TY ∗ =

(

AY ∗ BY ∗

BT
Y ∗ DY ∗

)

n×n

and

kY ∗ = AY ∗ −BY ∗D−1
Y ∗B

T
Y ∗

and

AY ∗ = γTγ + lT l

BY ∗ = γTu+ lT g

DY ∗ = uTu+ gT g

D−1
Y ∗ = D−1

S +D−1
S ZT

(

Im×m − ZD−1
S ZT

)−1
ZD−1

S

However, since DY ∗ = DY , then D−1
Y ∗ = D−1

Y , which means
(

Y ∗TY ∗
)

−1
=
(

Y TY
)

−1
,

since AY ∗ = AY and BY ∗ = BY .

Corollary 5 Suppose m-many rows are deleted from Q =

(

rm×1 Zm×(n−1)

γp×1 up×(n−1)

)

(m+p)×n

to form R =
(

γp×1 up×(n−1)

)

p×n
.

Suppose further that c-many rows are annexed to Q to form S =





rm×1 Zm×(n−1)

γp×1 up×(n−1)

lc×1 gc×(n−1)





(m+p+c)×n

.

Then

D−1
S +D−1

S gT
(

Ic×c − gD−1
S gT

)−1
gD−1

S = D−1
R −D−1

R ZT
(

Im×m + ZD−1
R ZT

)−1
ZD−1

R

(14)

Note the special case in this corollary where m = 1 or c = 1. When m = 1, we have

D−1
R −

(ZD
−1
R )

T
ZD

−1
R

1+ZD−1
R

ZT
on the right hand side of (14), which might be significantly easier to

calculate than the left hand side. A similar result holds for c = 1.

5. Initialization

At the beginning of an analysis there may be no data to populate X. As an initialization,

let X = In×n, where n is the number of variables for which data is available. In this case,
(

XTX
)

−1
= In×n.

When the first observation
(

γ1×1 u1×(n−1)

)

is received, then define

X1 =

(

γ1×1 u1×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)

n×n

and update
(

XTX
)

−1
based on X1, which is X with the first observation deleted, then

(

γ1×1 u1×(n−1)

)

annexed in the (new) first row. This gives
(

XT
1 X1

)

−1
.

When the next observation
(

α1×1 v1×(n−1)

)

is received, then define

X2 =





α1×1 v1×(n−1)

γ1×1 u1×(n−1)

0(n−2)×2 I(n−2)×(n−2)





n×n
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and update
(

XT
1 X1

)

−1
based on X2, which is X1 with the second observation deleted,

then
(

α1×1 v1×(n−1)

)

annexed in the (new) first row. This gives
(

XT
2 X2

)

−1
.

Continue this process until n observations have been received, which would be the first

moment (in this process) where the data matrix X contains all observations (rather than the

“filler” rows of the form (0, 0, . . . , 0, 1, 0, . . . , 0)1×n).

6. Additional Calculation Details

Additional calculation details, including a step-by-step algorithm for annexing and deleting

an arbitrary set of data, an implementation example in MAPLE, and several exact numerical

examples are available by request from the author.

7. Appendix: The Elementary Calculation Of
(

I ± xM−1xT
)

−1

Claim 6 For xa×b and Mb×b, we have

(

Ia×a ± xM
−1

x
T
)

−1

= Ia×a ∓ x
(

M ± x
T
x
)

−1

x
T

Corollary 7 For xa×b, we have

(

Ia×a ± xx
T
)

−1

= Ia×a ∓ x
(

Ib×b ± x
T
x
)

−1

x
T

The size of s is usually significantly less than n, which facilitates the calculations of
(

Is×s − vD−1vT
)

−1

and
(

Ip×p + uD−1
X uT

)

−1
. Indeed, if s = 1, then Is×s − vD−1vT is a scalar, and if s = 2 there is a

simple formula for the inverse. Since all deletions from W and all annexations to X may be accomplished by

sequential application of the cases where s = 1 or s = 2 (and larger values of s where specialized algorithms

are available), these special cases of the update methods are sufficient to implement all values of s.

However, for vector qs×1, since

(

Is×s ∓
qqT

1± qT q

)

(

Is×s ± qq
T
)

= Is×s ± qq
T ∓

qqT

1± qT q
−

(

qqT
)

s×s

(

qqT
)

s×s

1± qT q

= Is×s ± qq
T ∓

qqT ± q
(

qT q
)

qT

1± qT q

= Is×s ± qq
T ∓

(

1± qT q
)

qqT

1± qT q

= Is×s

and

(

Is×s ± qq
T
)

(

Is×s ∓
qqT

1± qT q

)

= Is×s ± qq
T ∓

qqT

1± qT q
−

(

qqT
)

s×s

(

qqT
)

s×s

1± qT q

= Is×s

then if
(

vD−1vT
)

s×s
or
(

uD−1
X uT

)

p×p
may be written as qqT where qs×1 = vs×(n−1)E(n−1)×1 and

qT q 6= 1, or qp×1 = up×(n−1)F(n−1)×1 and qT q 6= −1, we would have

(

Is×s − vD
−1

v
T
)

−1

= Is×s +
vD−1vT

1− ET vT vE
(15)

or
(

Ip×p + uD
−1
X u

T
)

−1

= Ip×p −
uD−1

X uT

1 + F TuTuF
(16)
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