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Deleting And Annexing Data From And To The
Least-Squares Linear Regression Matrix Inverse

Timothy Hall*

Abstract

Given a collection X of m observations of n variables, and m observations of a response variable
Y, it is commonly of interest to calculate the least-squares regression fit of the data according to
the model Y = X 3. The least-squares regression estimators of 5 are commonly given by B =

(XTX) ~! XTY where the statistical inference on the values of /3 are based on the (assumed) error
structures of the model. )

Since X7 X inis an n x n matrix (regardless of m), and (XTX)f exists only when m > n,
the complexity of calculating (X Tx ) " becomes significantly problematical as n becomes large.
Furthermore, if even one observation changes in X, (X Tx ) -t must be recalculated to find the new

values of 3.
However, since a deletion or annexation of s-many observations from/to X means m — s (or m)

. . . -1

observations are retained from the original X, the new value of (X Tx ) may be calculated from
-1 . .

the old value of (X7 X) * without the need to recalculate a new n x n matrix inverse. The update

of (X Tx ) ~! based on its old value and the deleted or annexed data may be accomplished through
matrix addition, negation, multiplication, and the calculation of an s X s matrix inverse. When
s = 2, there is a simple formula for such an inverse. For s = 1, the inversion is scalar division.

This paper presents the analytical, calculation, and programming methods for updating the
least-squares regression matrix inverse after deleting or annexing any number of observations. The
utility of these methods are especially manifest when s is relatively small compared to n (regardless
of m > n).
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1. Introduction

Given a collection X of m observations of n variables, and m observations of a response
variable Y, it is commonly of interest to calculate the least-squares regression fit of the data
according to the model

Y =Xp (D

The least-squares regression estimators of S are commonly given by
B=(XTx)"' xTy )

where the statistical inference on the values of ﬁ are based on the (assumed) error structures
of (1).

Since X7 X in (2) is an n X n matrix (regardless of m), and (X Tx ) ! exists only when
m > n, the complexity of calculating (X Tx ) ! becomes significantly problematical as n
becomes large, i.e., n > 3. Furthermore, if even one observation changes in X, (X Tx ) -1

must be recalculated to find the new values of B .
However, since a deletion or annexation of s-many observations from/to X means m—s
. . . —1
(or m) observations are retained from the original X, the new value of (X Tx ) may be
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calculated from the old value of (X Tx )_1 without the need to recalculate a new n X n

matrix inverse. The update of (X Tx ) ! based on its old value and the deleted or annexed
data may be accomplished through matrix addition, negation, matrix multiplication, and
the calculation of an s X s matrix inverse. When s = 2, there is a simple formula for such
an inverse. For s = 1, the inversion is scalar division.

This memorandum documents the analytical, calculation, and programming methods
for updating the least-squares regression matrix inverse after deleting or annexing any num-
ber of observations. The utility of these methods are especially manifest when s is relatively
small compared to n (regardless of m > n).

2. Calculation Methods

In the following development, the number of observations will always be assumed to be at
least as large as the number of variables. Observations may only be deleted from the data
if doing so would not violate this assumption.

Furthermore, it shall be understood that no null, void, or otherwise missing data, nor
indicator or signaling, non-numeric data, are allowed in any position of X. The concept of
deletion and annexation are otherwise not well-defined.

Given X (,, 1 5)xn, data of m + s observations of n variables, suppose (X Tx );in has
already been calculated. Let

X — < Qsx1  VUsx(n—1) >
Tmx1 Zm><(n—1) (m+s)xn
Asx1 Usx (n—1)

W = Tmx1 me(n—l)

Tpx1  Upx(n-1) (m~+s+p)xn

— < Tmx1  Zmx(n—1) >
Q=
Ypx1 uPX(n_l) (m+p)xn

for s,p > 1.

Here we may view X as the original data matrix, and W as the result of appending
p-many observations of n-many variables to the end of X. Similarly, we may also view
W as the original matrix, and () as the result of deleting s-many observations of n-many
variables from the beginning of W.

_ -1
Since (XTX ) ! is invariant under exchanges of rows in X, and ((XT)TX T>

is invariant under exchanges of columns! in X7, for any matrix X, the annexation or
elimination of rows in forming W and @), respectively, need not occur at the end or at the

'Proof. Let X% be any matrix for n, m > 1. For i # j, define ei; to be the m x m identity matrix with
the ‘" and j*" rows interchanged.

Then
Xo = €1 Cingy "+ Cigip X
is the matrix X with a rearrangement of its rows for some permutation {i1, 42, ..., } and {j1, j2,. .., ji } of
{1,2,...,m}.
Hence,
- —1 - —1
(Xo XO) = ((6i1j16i2j2 "€ X)) i injo “‘ez‘mX)
T T T T -1
= (X Cinjr " CiagaCirj1 €irg1 Ciaga 7 Cigdy X)
However,

T
€irjrCirjr = Imxm
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beginning of X, respectively. The rows may be appended to, or deleted from, any position
in the matrix. Furthermore, the annexations or eliminations may be performed as columns
as well in X7

Then
of. ri o v
xTx = 1xs 1xm ) < sx1 sx(n—1) )
< Ug;z—l)Xs Z(j;L—l)Xm 'mx1 me(n—l)
_ gaTa +;TT)1x1 gaT” +;TZ)1x(n—1)
(WratZ0r) g 0 0+ 202) 0 iy )
TAX (Bx)1x(n-1)
(BX)(n—l)xl (DX) (n-1)x(n-1) nxn
where
Ax =aola+rTr
Bx =atv+rTZ
Dx =vlv+ 277
Also
T
Osx1  Usx(n—1) Asx1  Usx(n—1)
WTW = Tmx1 me(n—l) Tmx1 me(n—l)

Toxl Upx(n=1) / px(mistp) \ Tex1 0 Upx(n=1) / (misip)xn

T T T Qsx1  Usx(n—1
_ A xs T1xm 71><p 7 ( )
=\ T 7T uT T'mx1 mx(n—1)
(n—1)xs (n—1)xm (n—1)xp

Ypx1  Upx(n—-1)
oTv+rT7Z + vTu)
(’UT’U +72T7 4+ uTu)

(aTa +rlr 4+ VTW)
(vTa + 7Ty 4+ uTv)

1x1 1x(n—1)

(n—1)x1 (n—1)x(n-1)

nxn

for each 1 < r < k. This means
T -1 T -1
() " = (x7)
Similarly, for i # j, define c;; to be the n x n identity matrix with the it" and j** columns interchanged.

Then
T T
X1 = Ciyj1Ciago " Cigip X

is the matrix X7 with a rearrangement of its columns for some permutation {i1,42,...,i,} and
{j17j27 cee 7]k} Of{1727 . .777,}.
Hence,
—1 -1
T T
T T T T
<(X1 ) Xi ) = ((Ciljl Cigja " ° 'Cikij ) Ciyj1 Cizga 'Cikij )
T -1
T T T T T
= ((X ) Cipjr " CigjaCiyjy Ci1g1 Cinga - Cip i X )
However,

L
CiTj,‘Cu‘]T — InXn

((Xf)TxlT)*l ()" xr)

for each 1 < r < k. This means

1
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:< TA Biym-1) >
Bh_1yx1 Pin-1)xn-1)

where

A=ala+rTr+4Ty
B=aTv+rTZ +~%u
D=vlv+ 277 +uu

To find (WTW) _1, Gaussian elimination may be applied to its components:

< TA le(n—l) ‘ 1 le(n—l) >
B(n—1)><1 D(n—l)x(n—l) O(n—l)xl I(n—l)x(n—l)

-1

Multiply the second row by D(n—l)x(n—l)'

) zg Bix(n-1 1 OIIX(n—l)
D= B, _1x1 In—)x@m-1) | Om-1)x1 D

(n—1)x(n—1)

Subtract the second row times By (,,—1) from the first row.

A —leT)—lBT 01 (n—1) ‘ 1 —BlDfxl (n—1)
D~ B(n—l)xl In-1)x(n-1) | Om-1)x1 D(_n—l)x(n—l)
Divide the first row by k = A — BD™' BT,
1 1 -1
X ; O1x(n-1) ‘ E _EBiDlx(n—l)
D7Bi nyx1 Ln-nxm-1) | Opm—1yx1 Dy 1yxm)

Subtract the first row times D‘lB(j;L_l)Xl from the second row.

UU =

1 —1
1 O1x(n-1) ’ LB . _%BDIM ey
On-1x1 Ln-vyx@-1) | —xD7'Bli_1yx1 D7 (Tn—nyxn—1y + £BTBD™Y) )y

This result gives the actual inverse, since

—1
< TA Bix(n-1) > ) 1%T ) _%B‘Dllx%n—l) )
B_1yx1 Dm-1)x(n-1) DBy D7 Tn-vyxm-n + £BTBDTY)
1 %Al_ 1Bp-1BT (1—%ABD‘1 + BD™! (Itn—1)x(n-1 +1%BTBD_1))1x(n—1)
T —1pT Tpp-1 -1 TBD™!
(#B" = +DD'B"), . (=#B"BD™' + DD (In-1yx(n-1) + §B"BD™Y)) (1) neny
( 1 (-+ABD~'+ BD~!' + 1 (BD'BY) BD71)1x(n—1) )

O(n—1)x1 TIn—1yx(n—1)
1 (BD™' =+ (A= BD'BT)BDY), ., >
O(n—1)x1 It 1yx(n—-1)

1 O1x(n-1) >
On—1)x1  Ln—1)x(n-1)

—1
X 1%T X _%BDlerfr"*l) ) ( TA Bix(n-1) )
“tD7 Bl DT Tnx ey + £ BTBDTY 0y eny )\ Blasnxa D-nx-
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i (18- 1BD7D)
_ ( —I%AD* B —z?’ BTB .
+D_1 ( (?—l%x(n—l)l )BT +D_1 ( (711—17)1><(n—71)1 ) (n—1)x(n—-1)
+xB BD (n—1)x1 +yB BD
1 1pT ! 1 pT O1x(n-1)
= —3ADB* + DB ) 1 y—1RT 1 y—1RT
_ _ —+D""B*"B++D "B*'B
T T e 1) X (11—
(+ED BT (BDTUBY) ) (I-% k -1 (n-)
—( 1 11T 1 pT O1x(n-1) >
((1_%(A_BD7 B ))Di B )(n—1)><1 In-1)x(n-1)
:( 1 01x(n-1) )
On—1)x1 Ln-1)x(n-1)
Therefore,
1 1 -1
(WTW)_lz 1 1ET 1 _EBlzlxi([?_l) 1
—%D B(n—l)xl D (I(n—l)X(n—1)+EB BD )(n—l)x(n—l) nxn
)
where
< A Bix(n_1) ) (aTa+rTr+4T7), (aTU—i—rTZ—l—WTu)lX(n_l)
Bliyx1 Din-vyxn-n) (UTO‘+ZTT+UT"Y)(n—1)x1 (UT”+ZTZ+“TU)(n—1)x(n—1) nxn
and
k=A—-BD'BT
is a scalar.

Applying the same process to X7 X, we have

1 1 -1
7= B e e
—iDx'Bx Dx (f(n—nx(n—l) +§B§BXDE<>
nxn
with
kx = Ax — BxDy'B%
and for QT'Q, we have
1 1 -1
(QTQ)_l = ( 1 %1 T 1 _%BQD? T 1 >
1P By Dg ([(n—1>x(n—1) + 2o BaBalq )
with
kq = Aq — BeDg'Bj
and
Ag = rTr 44Ty
Bg = rTZ + yTu
Do =2"Z+u"u
Define
(XTX)_l — TXI (X2)1><(n_1)
(XZ)(n—l)xl (X?’)(n—l)X(n—l)
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where

Now note that

1 _ 1
Dx X3 = [(n—l)x(n—l)—i_gB;(BXDXl and X3Dx = I(n—l)x(n—l)—i_aDXlB;(BX
and 1 1
BY¥X,=-—BYBxDy' and X, By = ——Dy'B¥Bx
k;( k}(
so that

Dx X3+ BxXs = Iy_1)x(n-1) = X3Dx + X3 Bx
However, since
1

xI = —kXD)}lB)T( and X, =

1
——BxDy!
kx

then 1 1
BY = —ZDXXE and By = —ZXQDX

which mean

1 1
Dx X3+ <—EDXX§F> X2 = Itn-1)x(n-1) = X3Dx + X3 <—EX2DX>

or
1
X1

L

Dx <X3 - X7 X2> = In-1)x(n-1) = <X3 -5 X2> Dx

Hence,
1

Dy' = X3 X

xI'x, )

~1
Lemmal If I, #v (ZTZ)_1 T and (v (ZTZ)_1 UT> exists, then

(27z£0T0) " = (272) " 5 (272) T (Lo 20 (272) vT>_1 v(Z"2)7

Proof We have
(272) " o = (272) 0T Ly £ 0 (272) 7] - Loxs 20 (272) 07 |0
and therefore
(272) "7 (Lws £ 0 (272) ™ UT>_1 v

(ZTZ)_1 vlv = L ) _1 L
£ (272) " (Loxs 20 (272)0T) 0 (272) T 0T

_ <(ZTZ)‘1 o (sts +v(272)7 UT>_1 v (ZTZ)_1> (277 +v"v)
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which means

crsre (272) e ((22) 7 (s (272) ) o (272) ) (200
s (212) " (2 (272) o () (1o (@) ) o (272) ) ()
2 (212) " (#2) 2 m) - (772) " (1o (72) ) o(272) ) (2 87)
(22 (@2 (s (272) ) (7)) ) (22

Similarly,

-1 -1

To(272) 7 =0T Ly £ 0 (272) 7T [Imi»u(ZTZ)‘luT}_lv(ZTZ)

and therefore
ry (27 2) = ( o7 <Iijsiv(ZTZ)_IUT)_iv(ZT_ZI)_l ) )
£0Tv (272) " (Lo 20 (272) 7 0T) 0 (272)7
= (272 £ ") ((ZTZ)‘1 o (Loxs 20 (272) 7 07) T (ZTZ)_1>
which means

crsr (o (272) " - (za) (7)1 (ko (72) ) o(22) )
e (272) (72) e (£72) " (27 ((sz) W (ko (272) nT)lv(sz)l)
() £) (s272) " - (272 m) (7)o (1o (272) ) o (272)”)
~(zzam) ((22) " ((22) 1 (rezo(22) ) o(22) )

Hence,

(272 +v™0) " = (272) " = ((ZTZ)_l 0T (Loxs +0(272) ™ UT>_1 v(Z%2)7

and ©

(277 —v"0) " = (272) '+ ((ZTZ)‘1 o7 (Lo =0 (272) ™ »UT>_1 v (ZTZ)‘1>
(6)

[
Note also that, using (6), we have

(272) " = ((Z27Z +0T0) —v"v)
= (ZTZ + vTv)_l + <(ZTZ + vTv)_l o7 (ISXS —v (ZTZ)_l UT)_l v (ZTZ + UTU)_1>
(7N
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2.1 Deleting Observations
Qsx1  VUsx(n—1)

Given W = | rmx1 Zimx(n-1) data of m + s + p observations of n vari-
Tpx1  Upx(n—1) (m4s+p)xn

ables, and (WTW)

nxne I S-many observations are deleted from W to form

Q= ( Tmx1 Zmx(n-1) )
Ypx1 upx(n—l) (m+p)xn

then (QTQ) ! may be calculated through (3), namely
1 1 -1
(Q'Q) " = ( 1 ZQ—lBT D=1 (1 _%BQD? Tp -1 ) ®)
“wePe Bo Po ( (n-1x(n-1) + 55 BoBeDg ) s
with
kg = Aq — BeDy'B)
and
Ag = rlr 44Ty
Bg = 17z +4Tu
Do =2"7Z+u"u
From (6) we have
Dol = (277 +u"u)”!
= ((ZTZ +ulu + UTU) - vTv)_l
=D '+ D W7 (ISXS — vD_lvT)_l vD™!

where !
Dt =W;y— W1W2TW2 ©
and
_ %% (W2) 1 (n—
wTwW 1 _ 1x(n—1) (10)
( ) ( (W2T)(n—1)x1 W3) n-1)x(n-1)
by analogy with (4).

Hence, (Q7Q) s completely described by (8), (9), and (10), given (W W) ! with
D invertible and Iy, # vD 1ol

Note that (5) could have been used if data were being deleted off the top of W to form
X.

See the Appendix for more information on calculating (I sxs — vD‘lvT) ~! from known
components.

2.2 Annexing Observations

Given X = < Gsx1 ;SX(”_D ) data of m + s observations of n variables, and
T'mx1 mx(n—1) (m+s)xn

(X Tx )an’ if p-many observations are annexed to X to form

Qsx1  Usx(n—1)
W= Tmx1 Znxmn-1)

Tpx1  Upx(n—1) (m+s+p)xn
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then (WTW) ! may be calculated through (3), namely

1 ~1BD;!
(WTW)_l = L -1 S
—#D7 Bl DT Ty + 5B BDT) iy )
(11
with
k=A-BD'BT
and
A=ala+rTr+47y
B=a"v+r"Z ++"u
D=v"v+2"Z +u"u
From (5) we then have
D' = (o4 272 +u"u) !
= ((Z27Z +v"0) + uTu)_l
= D5' = DT (I + uD3 ") " ubDy!
where 1
Dy'=X; - YXaTXz (12)
1
and
_ X; (X2)1 % (n—
YTy 1 _ 1x(n—1) (13)
(X7 ( (X oy st

Hence, (VVTVV)_1 is completely described by (11), (12), and (13), given (XTX) _1,

with D invertible and I,x) # —uDy'u”.
Note that (7) could have been used if data were being annexed to the top of () to form
w.

2.3 Exception Handling

Since the conditions I« = vD o7 and Iyxs = —vD~'w” cannot be true at the same
time, then if Iy, = vD 1T, we may choose at least one additional row for the role of
( Asx1 Usx(n—1) ) as a substitute in (a), and then annex the extra row(s) to the result to
obtain the desired deletion.

Likewise, since the conditions [,,x, = uD)_(luT and [,», = —uD cannot be true
at the same time, then if I, = —uD;(1 uT, we may choose at least one arbitrary extra row
for the role of ( Ypx1  Upx(n—1) ) as a substitute in (b), and then delete the extra row(s)
from the result to obtain the desired annexation.

These steps may need to be taken when D! or D)_(1 does not exist.

luT

3. Sequential Application

Claim 2 Suppose s-many rows are deleted from W to form Q, followed by deleting m-
many rows from Q) to form R. Suppose further that (s + m)-many rows are deleted from

W to form R*. Then (RTR)_l = (R*TR") -
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Claim 3 Suppose m-many rows are annexed to R to form Q, followed by annexing m-
many rows to Q to form W. Suppose further that (s + m)-many rows are annexed to R to
form W*. Then (WTW) ™" = (W Tw*)~",
Proof. Both of these claims may be proven by the same method, where the “forward”
of one claim’s proof may be considered the “reverse” of the other claim’s proof.
Qsx1l  Usx(n—1)
Given W = Tmx1 me(n_l) data of m + s + p observations of
Tpx1  Upx(n-1) (m+s+p)xn

n variables, and (WTW)_ if s-many observations are deleted from W to form Q) =

nxn’

< Tmx1  Zmx(n—1) ) , then (QTQ)_1 may be calculated as
Tpx1 Upx(n=1) / (mip)xn

1 _1 —~1
RO ( R a2el )
_ 1 —1npT —1 1 T —1
“rePq Bo Dg (I(n—nx(n—l) *rgBoBalq ) e
with
Ag Bqg
Q'Q = < T )
By Do /..,
and
kg = Aq — BoDy'B)
and
Ag=rTr+~Ty
Bg = rT'Z + yTu
Do =277 +u"u
Dg' =D £ DT (Iigy F oD~ 7)) wD !
1
Dt =W — —WlwW
3 Wl 2 2
where

Wi (W2)1 () )

wTw) ! =
( ) ((W2T)(n—1)><1 (W3)("—1)><("_1)

Now if m-many observations are deleted from () to form R = ( Tox1  Upx(n—1) )

pxn’

then (RTR) - may be calculated as

1 L R
(RTR)™ = . P
DB Dt (Ln-yyxno + 1 BEBrDy) nxn

with
AR BR )
RTR =
and
_ 1T
kr = Ar — BRDy By
and

Ap=~Ty
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Br =7"u

DR:uTu
-1
1 ~1 —1,T —1,T —1
Dy =Dg' £+ D;'Z (Imxm$ZDQ Z ) ZD

However, if (s + m)-many observations are deleted from W to form R*, then Ar+ and
Bp~ are calculated as for R, and (R*TR*) ~!is calculated with

D' =D 4 DT (Iapmyx(osm) T JD 2T L ID!

where
Vsx(n—1
Hotmpx(n-n) = ( mex((n—l)) >

It suffices to show that
D}k%—l — D}—%l

since Ap = Ap+~ and Bp = Bp-.
‘We have

T
1.7 Vsx(n—1 -1 Usx(n—1
Tistmyx(sm) T TDT 7 = Tisim)x (sm) T < mex((n—l)) >D ( mex((n—l)) >

Isxs FvD! FoD~1ZT
FZD! T Isxm ¥ ZD7 127

> (s+m)x(s+m)
Hence,

—1 4T —1 Ns S MS m
([(s+m)><(8+m) FJDJ ) - < Pm>><<8 Smim >
(s+m)x(s+m)

where
—1 —1 —1
N = (ISXS - vD*lvT) (ISXS T oD T 4+ oD 127 (Imxm - ZDg;ZT) ZD*lfUT) (ISXS =S vD*lvT)
—1 -1
M =+ (Lxa FoD ") 0D 2" (Inxm ¥ 2D5' 2")
—1 -1
P =% (Lnxm 7 2D5' 27 ZD 7" (Ixs ¥ 0D~ 0"

S = (Imxm =S ZD(SlZT)71
Then J7 (I(8+m)x(s+m) F JD_lJT)_1 J may be expressed as follows.

T
< VUsx (n—1) Nsxs  Msxm VUsx (n—1)
mx(n 1) Prxs  Smxm me(nfl)

T T T T Vsx (n—1)
( N+2Z° P (7L71)><s (v M+2z S)(nfl)xm )< Zm><(n71) )

( TNy + 2T Po+vTMZ + ZTSZ)

(n—1)x(n—1)
1 sts¥vD71 T 1oy -1
(Toxs FoD™h0T) < +0D 2T (Lxm F 2D5' 27) " ZD 10T ) (Toxs FoD7I0T) o
= +27 (Lnxm F ZD5" Z7) " ZD 0T (Lixs FoD0T) 0
+07 (Lixs FoD W) 0D 2T (L F 2D5' 27) " Z
+Z7 (Inxm F ZD5'27) ' Z
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ZT (Lnxm F 2D5'27) ' 2 (I(n,l)x(m) + D (Lo FoD~07) 7 v)

= +0 (Loxs F0D07) ™ 0 (T tyx oy £ D727 (e 7 2D5'27) ™" Z)
0T (Lixs FoDT) " 0D Z7 (s F ZD5  Z7) ™ ZD 707 (Lixs FoD~07) 1w
-1

Z" (Lnxm ¥ 2D 2%) " 2 (D71 £ ™' (Lixe F oD~ '0") 0D ™) D
= _I — -
T —1 17\—1 (n—1)x(n—1)
o (o Fob 70 ”< £D7 27 (I ¥ 2D 27) " 2 (D71 4 DT (Lo F 0D~ 07) 0D ) D )

vl (ISXS T vDilvT)fl v
+ (To-1x (1) £ 07 (Lxa F0D™07) 0D ™) 27 (I ¥ 2D5' 27) ™ 2DG' D

Therefore,

. _ _ _ 1
Dyt =D £ DT (Isimys(spm) FJDHIT) T JDTH
D1+ DT (I, FoD~07) oD ?

—1
+ (D—l + DT (Ioes T oD~ 7)™ vD‘l) ZT (Imxm + ZDélZT) ZDg!
—1

=Dy '+ Dy Z" (Imxm - ZDC‘QlZT) ZDg!
— D}_zl

4. Commutative Application

Claim 4 Suppose m-many rows are deleted from Q) to form R, followed by annexing c-
many rows to R to form Y. Suppose further that c-many rows are annexed to () to form S,

followed by deleting m-many rows from S to form Y*. Then (YTY) o (Y*TY*) -1

Tmx1 me(n—l)>
Tpx1 o Upx(n=1) / (mip)xn

to form R = ( Tox1  Upx(n—1) )pxn’ then (RTR)_1 may be calculated as

-1
(RTR)_l _ é _kLRBRDR
= -1 -1 -1
~t:Pr Bi Dg (f(n—1>x<n—1>+$B£BRDR) e

Proof. Suppose m-many observations are deleted from QQ = (

with
Ar Bgr >
RTR =
and
_ —1pT
kr = Agr — BRDy Bp
and
Ap=7"v
Br = vTu
Dpr = uu

-1
—1 -1 —1-T —1-T -1
Dp' =Dg'+Dg'z (Imxm—ZDQ Z ) ZDy
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Now suppose c-many observations are annexed to R toform Y = < Tpxt Upx(n—1) > ,
lexa Gex (n—1) (p+c)x

then (YTY) ! may be calculated as

1 1 —1
(YTY)_l = E 1 1 WBYDY 1
= 1 - - 1 —
_EDY B; DY (I(n—l)x(n—l) + EBgBYDY > xn

with
Ay By >
YTy =
and
_ —1pT
ky = Ay — By Dy, By
and

Ay =Ty + 171
By = ’yTu + ng
Dy =uTu+g¢'yg
Dy = D' = Di'g" (Iexe +9Dg'a") " aDg!
Tmx1  Zmx(n—1)

However, if c-many observations are annexed to () = ( >
Tpx1 Upx(n—1) / (mip)xn

Tmx1 Zm><(n—1)

toform S = | Ypx1  Upx(n-1) , then (STS) ! may be calculated as
lexa Yex (n—1) (m+p+ec)xn
1 1 -1
(STS)_l _ ks _gBSDS
= 1 -1 -1 1 -1
~15Ds'B§ D (I<n—1>x(n—1> + 25 B5BsDg ) o
with
As  Bs
sts = ( )
ng DS nxn
and
ky = As — BsDg'BY
and
Ag=rTr+4Ty+1"1
Bs=rTZ +~yTu+11yg
Ds=2"Z+u"u+g"g
-1
Dg'=Dg' - Dg'g" (ICXC + gDélgT) gDg'
Tmx1 me(n—l)
And if m-many observations are deleted from S = Tox1  Upx(n—1)

lext Gex (n—1) (m+p+ec)xn

to form Y* = < Tpxt Upx(n—1) ) , then (Y*TY*)_l may be calculated as
lex Gex(n—1) (p+c)x

1 1 -1
_ . — L By-Dy!
(v Ty*) ™ = ( M by Y )
nxn

—1pT —1 1 pT —1
Foy = Dy:By. Dy. <I(n—1)X(n—1) + WBY*BY*DY*>
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with
AY* BY* >
Y*TY* —
( Bg* Dy~ nxn

and

_ —-1pT

ky« = Ay« — By+Dy, . By«
and

Ay~ = ’VT’}/ + 171
By« =~Tu+1Tg
Dy« =ulu+gTg
_ — _ _ -1 _
Dyt =Dg' + DG ZT (Iywm — ZD5'Z") ™ ZDg!

However, since Dy + = Dy, then D;i = D;,l, which means (Y*TY*)_1 = (YTY)_l,
since Ay« = Ay and By« = By. 1

Corollary 5 Suppose m-many rows are deleted from () = < Tmx1 - Zmx(n-1) >
Tox1 Upx(n—1) / (mip)xn

to form R = ( ypx1 Upx(n—1) )pxn'

Tmx1 Zmx (n—1)
Suppose further that c-many rows are annexed to Q) to form S = Tpx1  Upx(n—1)

lext Gex (n—1) (m+p+ec)xn
Then

— _ _ -1 _ _ _ _ -1 _
D'+ DG g (Iexe — gD g") " gDg' = D' —DR' 27 (L + ZDR* Z7) ™ Z D3}
(14)

Note the special case in this corollary where m = 1 or ¢ = 1. When m = 1, we have
D-1_ (zDz")" zDy!
R 1+ZDz' 2T
calculate than the left hand side. A similar result holds for ¢ = 1.

on the right hand side of (14), which might be significantly easier to

5. Initialization

At the beginning of an analysis there may be no data to populate X. As an initialization,

let X = I,,«n, where n is the number of variables for which data is available. In this case,

(XTX) ™" = Lixn.

When the first observation ( Yixl  Ulx(n—1) ) is received, then define

X1 = ( Yix1 ulx(n—l) >
O—n)x1 Ln—1)x(n-1) / ,xp
and update (X Tx )_1 based on X7, which is X with the first observation deleted, then

( Yix1l  Ulx(n—1) ) annexed in the (new) first row. This gives (X;*FXl) -
When the next observation ( Q1x1 Vix(n—1) ) is received, then define

a1x1 V1x(n-1)

Xo = Yix1 Ul (n—1)
O-2)x2 Ln-2)x(n—2) / ,1sem
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and update (X f X 1)_1 based on X5, which is X; with the second observation deleted,
then ( A1x1 Vix(n—1) ) annexed in the (new) first row. This gives (X;‘FX2)_1.
Continue this process until n observations have been received, which would be the first

moment (in this process) where the data matrix X contains all observations (rather than the
“filler” rows of the form (0,0,...,0,1,0,...,0);,,,)-

6. Additional Calculation Details

Additional calculation details, including a step-by-step algorithm for annexing and deleting
an arbitrary set of data, an implementation example in MAPLE, and several exact numerical
examples are available by request from the author.

7. Appendix: The Elementary Calculation Of (I & zM _1xT)_1
Claim 6 For xqxp and Myw«p, we have
(LLM + :chlmT)il =Ilaxa Fx (M + me)il zT

Corollary 7 For xqxp, we have

1

—1 —
(IaXa:t:c:cT) :Iaxa:Fm<beb:|:me) zT

The size of s is usually significantly less than n, which facilitates the calculations of (I sxs —vD™ 1UT) -t
and (Ipxp + uD;(luT)il. Indeed, if s = 1, then Isxs — vD 'v® is a scalar, and if s = 2 there is a
simple formula for the inverse. Since all deletions from W and all annexations to X may be accomplished by
sequential application of the cases where s = 1 or s = 2 (and larger values of s where specialized algorithms
are available), these special cases of the update methods are sufficient to implement all values of s.

However, for vector gsx1, since

T T T T
99 T\ _ T qaq (99") s (99") s,
(sts F 1:thq) (IsXs :l:qq ) = Isxs :tqq F 1:|:qTq 1:thq

o tqt L Eala)d”
= Isxs qq 1:thq

(1+q"q) qg"
1+4¢7q

= ILoxs £ qu +
= sts

and

T T (ad"),y, (ag")
Toxst T) Toxs 99 = Tove+ T qq . SXs SXs
( xe 44 < sxs F 1+4¢7q sxs =49 F 1+4¢7q 1+4¢7q

= Isxs

may be written as qq” where gsx1 = Vsx (n—1)E(n—1)x1 and

then it (vD~'oT)  or (uDy'u’)

g q# 1,01 gpx1 = Upx (n—1) F(n—-1)x1 and q¥q # —1, we would have

1 7\t vD™ T
(ISXS—UD v ) :sts+m (15)
or LT
_ -1 uDy u
(Toxs+ uDX") = oy — T 19
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