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Abstract
In this study we model solar irradiance at ground based sites in the continental US in order to predict into
the future. The obvious nonstationary, non-Gaussian data have nightly zeros, or slightly negative values,
producing dual frequency spectra with large values on the diagonals with offsets of 24 hours. Analysis
of this particular covariance structure implies a a non-Gaussian process model with cyclostationary noise
structure. Fitting stationary vs cyclostationary models reveals simpler and more accurate results are obtained
using the cyclostationary framework.
Key Words: Time Series Analysis; Cyclostationary; Spectrum Analysis; Prediction & Forecasting

1 Introduction

Solar energy is one of the fastest growing energy sectors, accounting for 36% of all new electric generat-
ing capacity in the United States in the first three quarters of 2014. However both solar and wind inputs
are relatively hard to predict due to large peaks and troughs in electricity generation resulting from local
meteorological conditions. These swings in electricity generation can produce shortages and surges which
have resulted in the need for frequent interventions from, e.g. coal power plants, which can be costly to
operate at short notice and produce a lot of carbon. US net load data in states with large solar and wind
power production, like California, have markedly different characteristics as a result of renewable inputs.
Therefore it is of great interest to those attempting to forecast net load on the power grid to reliably predict
the input from renewable sources. In this study, we consider the problem of short term prediction of solar
irradiance, 2-8 hours in advance.

The problem of modeling solar irradiance was originally tackled using univariate time series data and
simple autoregressive moving average (ARMA), k-nearest neighbor or artificial neural networks models [12,
Ch. 15]. Usually this type of analysis is carried out with detrended and normalized data that is produced by
division by a deterministic model such as Ineichen’s model. With the incorporation of nonlocal information,
short term forecasts can be significantly improved. Most of the uncertainty in solar irradiance is due to
local cloud motion and dynamics, so the use of total sky imaging technology, see [4], produced data which
allowed for the estimation of cloud motion vectors and hence the recovery of the solar irradiation when
the cloud motion was projected into the future. To increase the forecasting window from minutes to hours,
satellite data can be incorporated.

In this study, we seek to (i) further examine the covariance structure of such a nonstationary process,
especially to (ii) estimate and characterize the particular diurnal changes in mean and variance of the series in
the frequency domain, and finally to (iii) model the process using a very simple (a) stationary autoregressive
and (b) cyclostationary process model and compare the (I) the residuals and (II) the result of a prediction
based on both simple models. The main tool is the Loève spectrum, which allows for analysis general
nonstationary processes.
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1.1 Organization

This paper is organized into five sections, beginning in §2 with some necessary notation, tools and terminol-
ogy. An introduction, literature review, and motivation are given in §3. Modeling, analysis, and prediction
of multivariate ground data using an AR and VAR (periodically correlated AR) model are given in §4, along
with discussion of the shortcomings of both approaches. We conclude in §5 with remarks and future work.

2 Notation and Terminology

We begin by recalling a few elementary definitions.

Definition 1 A discrete-time weakly stationary process xt has the following two properties

E{xt}= µ; Cov{xt ,xt−τ}= R(τ). (1)

That is, the expected value of the process does not depend on the time and the autocovariance function of
the process is dependent only upon the lag.1

Definition 2 A discrete process xt is second order cyclostationary (or periodically correlated) with period
T > 1 if T is the smallest integer such that the downsampled processes formed by extracting every T -th
sample,

{. . . ,xt−T ,xt ,xt+T , . . .}; t = 0, . . . ,T −1, (2)

are weakly stationary [10, 20, 9]. The mean, m(t), of xt is periodic, and the covariance R(s, t) is doubly
periodic with period T , explicitly,

E{xt}= m(t) = m(t +T ); Cov{xs,xt}= R(s, t) = R(s+T, t +T ) (3)

Some autoregressive (AR) models are stationary.

Definition 3 Autoregressive (AR) processes are generated by the following model equation [3]

xt =
p

∑
j=1

φ jxt− j + εt (4)

where εt is white Gaussian noise process with zero mean, p is the model order, and {φ j}p
j=1 are the model

parameters.

AR models are stationary when the roots of their associated characteristic equation lie within the unit circle,
see [3]. Parameter estimation and order selection for AR models is well known, usually involving the Yule-
Walker equations, see e.g. [21, Ch 6] for these details.

Some periodic AR, or PAR, models fall within the class of cyclostationary processes.

Definition 4 Periodic AR(p) models with period T , or PAR(p)-T models, can be expressed by the following
model equation

xt =
p

∑
i=1

φi(t)xt−i +σ(t)ζt (5)

where p is the model order and the coefficients φi(t) and σ(t) are periodic with period T , i.e. φi(t) =
φi(t +T ) for each i, σ(t) = σ(t +T ) are real and {ζt : t ∈ Z} is white noise [10, p 233]. The last term,
σ(t)ζt , is called the shocks sequence and the model in which σ(t) = σ is called the constant-variance
shocks (CVS) model.

1The strong form of stationarity requires that the finite dimensional distributions of the process agree independently of the lag,
see e.g. [19].
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Consider the CVS PAR(1) model. When φ1(t) = φ < 1, that is, φ(t) is constant, the CVS PAR(1) model
reduces to a stationary AR(1) model. In order for the CVS PAR(1) model to be cyclostationary, the following
condition must be satisfied

T−1

∏
t=0

φ(t)< 1. (6)

This condition ensures that the autocorrelation function, for s > t,

R(t,s) = E{xt ,x∗s}= E{xt ,x∗t }
s

∏
k=t+1

φ(k) (7)

is bounded provided the variance function R(t, t) = R(t +T, t +T )< ∞.
The PAR(1) model can be written in the following vector format, [10, p 233],

xn = φ−1
0 φ1xn−1 +φ

−1
0 θ0ζn (8)

where

xn =


xnT

xnT−1
...

xnT−T+1

 ; ζn =


ζnT

ζnT−1
...

ζnT−T+1

 ; φ1 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

φ(1) 0 . . . 0

 (9)

and

φ0 =


1 −φ(T ) 0 . . . 0
0 1 −φ(T −1) . . . 0
...

...
...

. . .
...

0 0 0 . . . −φ(2)
0 0 0 . . . 1

 ; θ0 =


1 −σ(T ) 0 . . . 0
0 1 −σ(T −1) . . . 0
...

...
...

. . .
...

0 0 0 . . . −σ(1)
0 0 0 . . . 1


(10)

This model equation shows that PAR(1) processes can be expressed as vector autoregressive moving
average, or VARMA, processes. This alternative vector formulation offers motivation for the use of vector-
based models in §4 as general modeling tools, though there is no guarantee that the model actually fit is
cyclostationary. There is a lot of literature on the subject of almost cyclostationary sequences (ACS) that is
beyond the scope of this work [? ]

The analogous Yule-Walker equations for the general PAR(p) processes are given in, e.g. [23, p 335-7]
or [17]. They are derived by multiplying the expression (5) by xs and taking the expected value. Here using
p = 1 we obtain

R(t, t− s)+φ(t)R(t−1, t− s) = δsσ
2(t); 0≤ t,s < T (11)

where δs = 1 when s = 0 and 0 otherwise. Recall that cyclostationary processes have autocorrelations
R(s, t) with the property (3) so R(s, t)’s indices can be written modulo T . As far as parameter estimation is
concerned, substitution of different t,s in this equation leads to a system of equations that can be solved to
find the coefficients φ1(t) = φ(t) and the sequence σ(t).

2.1 Frequency-domain methods

Spectrum analysis applies strictly to stationary processes. Formally, the spectrum is defined as follows.
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Definition 5 The Cramér spectral representation theorem, [5, 21], states that for a stationary process x(t),
there exists a stationary, orthogonal increments process dZ( f ) such that

x(t) =
∫ 1/2

−1/2
ei2π f tdZ( f ) (12)

When it exists, the spectrum of the process is then defined as S( f ) = E{|dZ( f )|2}.

The spectrum also has the following convenient relation with the autocorrelation function of the process.

Theorem 1 (Einstein-Wiener-Khintchine) The spectrum S( f ) and autocorrelation function R(τ) of a sta-
tionary, zero mean process xt are related by a Fourier transform

R(τ) =
∫ 1

2

− 1
2

S( f )e−i2π f tdt. (13)

For example, it is easy to verify from the autocorrelation function of the stationary AR(p) process, that
the spectrum of the stationary AR(p) process is [21, p. 168]

S( f ) =
σ2

ε

|1−∑
p
j=1 φ je−i2π f j|2

. (14)

In practice, one estimates the spectrum of a process using a tapered, smoothed periodogram estimator,
or better a multitaper estimator, as described in the appendix.

One method of determining frequency domain properties of nonstationary series is through the Loève
spectrum. The existence of the Loève spectrum depends on harmonizability.

Definition 6 Two sequences x(t) and y(t) are jointly second order harmonizable if, [16],

E{x(t1)y(t2)}= ei2π(ν1t1±ν2t2)d ˜γx,y(ν1,ν2) (15)

with ˜γx,y(ν1,ν2) spectral covariance of bounded variation∫ 1
2

− 1
2

∫ 1
2

− 1
2

|d ˜γx,y(ν1,ν2)|< ∞. (16)

Under harmonizability, we have

x(t) =
∫ 1

2

− 1
2

ei2πνtdχx(ν); y(t) =
∫ 1

2

− 1
2

ei2πνtdχy(ν) (17)

and we write dχx(ν) = X(ν)dν where

X(ν) = ∑
t∈Z

x(t)e−i2πνt , and Y (ν) = ∑
t∈Z

y(t)e−i2πνt . (18)

Definition 7 The Loève dual frequency cross spectrum, sometimes Loève bifrequency cross spectrum or
simply Loève spectrum, is defined as [20, p 187] [27, 15, p. 7]

S̃x(ν1,ν2) = E{X(ν1)Y (∗)(ν2)} (19)

and in the sense of distributions

dγ̃x,y(ν1,ν2) = E{X(ν1)Y (∗)(ν2)}dν1dν2 (20)
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Note that the Loève spectrum can be computed using either (a) two different series x(t), y(t) at different
frequencies, (where it is called a cross spectrum when unclear from the context) which allows one to examine
common frequency components which contribute to the variance or (b) the same sequence x(t) (where it
is called an autospectrum) which allows for analysis of the nonstationary properties of the signal across
frequency. A particularly useful normalized form of the Loève spectrum, looking ahead to Eqn. (33) is
the Loève coherence. We consider mainly autospectra or autocoherences in this paper but [18] shows some
examples of Loève cross spectra.

The Loève spectrum of a PAR(1) model is, Def. 4,

S̃x(ν1,ν2) = ∑
s,t

R(s, t)e−i2π(tν1−sν2) = ∑
s,t

R(t, t)
s

∏
k=t+1

φ(k)e−i2π(tν1−sν2) (21)

but can also be written in terms of the matrices using expression (8), in the following way

f(λ ) = φ(e−iλ )−1
φ
−1
0 θ0θ

∗
0 [φ
−1
0 ]∗[φ(e−iλ )−1]∗ (22)

where φ(z) = IT×T − φ
−1
0 φ1z. Where in this expression, the Loève spectrum is written as a frequency-

dependent vector.
An analogous (nonstationary) form of the Einstein-Wiener-Khintchine theorem, Thm. 1, sheds light on

the interpretation of the Loève spectrum. If one takes the Fourier transform of the correlation function of two
processes x(t) and y(t), denoted R(t1, t2), and Fourier transforms the result, one obtains the dual-frequency
cross-spectrum γx,y( f1, f2)

R(t1, t2) = Cov{x(t1),y∗(t2)}=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

γx,y( f1, f2)ei2π(t1 f1−t2 f2)d f1d f2 (23)

The Loève spectrum has two frequency indices which correspond, by way of the Fourier transform, with the
two temporal indices. The dual frequency spectrum can be converted to a dual frequency magnitude squared
coherence (MSC) by normalizing

cx,y( f1, f2) =
γx,y( f1, f2)√
Sx( f1)Sy( f2)

(24)

where Sx( f ) = γx,x( f , f ) is the (auto)spectrum of the process x(t) and cx,x( f1, f2) is the autocoherence.
In practice one can compute the Loève spectrum using the multitaper approach described in [27], and

as described in the appendix. Here, exclusively multitaper estimates are used because of their superior
statistical properties, see e.g. [21, 25, 28].

When interpreting the Loève spectrum, note that when the series is stationary, the Loève spectrum is
nonzero only on the diagonal. Any significant off-diagonal frequency pairs should be examined carefully as
they reflect frequencies that work coherently [28]. Some simple examples of Loève spectra computed using
seismic data are given in [18]. It is worth noting that the support of any cyclostationary process in terms
of Loève spectra is a set of diagonal lines (see [11, p 330]) separated in frequency with (angular) spacing
2π/T . This is shown in Fig. 1 to come.

Example 1 Consider the stationary AR(2) model given by

xt = 0.8xt−1−0.2xt−2 +0.2ζt ; (25)

where ζt is a white noise signal with zero mean and unit variance. The Loève spectrum in Fig. 1a shows no
significant off-diagonal elements.
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(a) (b)

Figure 1: Panels (a) show a 1024 point sample of an AR(2) process given in (25) in the time domain (top
plot), a portion of the Loève (middle plot) and multitaper spectra (NW = 6.5,K = 12; bottom plot). The
theoretical AR(2) spectrum is given by the dashed line in the bottom panel. Panels (b) show an example
of a 1024 point simulated PAR(1) model, Eqn. (26). Note the prominent off-diagonal streaks in the Loève
autocoherence due to cyclostationarity; in general the support of a cyclostationary process lies on diagonals
in dual frequency space.

Example 2 Following the example in [10, p 38-9] of PAR(1), Eqn (5), the signal is constructed using

φ1(t) = 0.6+0.4cos2πt/T (26)

and constant shocks. The Loève spectrum is in the right panel of Fig. 1.

For additional examples of Loève spectra, consult [20, p 247-257] for cross-correlations or [18] for the
multitaper Loève auto spectrum.

3 Motivation & Observational Data Analysis

3.1 Ground data

Data from 7 stations across the continental US in the NOAA Surface Radiation Budget Monitoring (SURFRAD)
network can be obtained from http://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html. The
SURFRAD network was established in 1993 and provides, among other data products, downwelling solar
irradiance data sampled at 3-minutes (1-minute sampling was introduced in the early 2000’s). Bondville, IL
data is mainly used in this study.

3.2 Observational Data Analysis

Solar irradiance varies by 2-3W/m2 with the 11-year solar cycle, as measured from space [13, see Fig. 1].
Additionally, both from the spectrum, and from individual box plots, see Fig. 2, it is clear that these data
have seasonally varying mean and variance.
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(daily) (yearly)

Figure 2: The top panel shows a multitaper (NW = 4,K = 6) spectrum calculated from Bondville IL data
with 3-minute sampling. These data clearly contain a peak at one year, followed by daily components and
harmonics thereof. The bottom left panel, labeled daily, shows boxplots of solar irradiance from Bondville,
IL from Nov 7, 2012 to Nov 6, 2013 by hour of the day and by season, where seasons here have been
centered on the winter solstice. The changing length of the day and the changing seasonal amplitude are
prominent. In the bottom right panel, labeled yearly, the entire Bondville data have been used (1995-2014),
and the maximum of the data in each weeklong block has been selected (week 0 being the week of January
1). These plots show the strength of the yearly modulation as well as the changes in variance throughout the
daily cycle.
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Figure 3: The Loève dual frequency (normalized) coherence generated from 2048 hours (85 days) of data
from Bondville, Illinois beginning 4pm Sept 26, 2013 with hourly sampling (this results in Rayleigh resolu-
tion R = 64nHz, and multitaper bandwidth W = 257nHz. There are prominent diagonal lines with one day
spacing, c.f. right panel of Fig. 1.

It is important to stress that though the spectrum was shown in Fig. 2, to identify periodic components
and their harmonics in these data, the assumption of additive harmonic components is overly simplistic.
The Loève autocoherence, Eqn. 33, can be used to quantify nonlinear and nonstationary frequency domain
relationships see [27, 28].

The main feature which can be discerned from the Bondville, IL solar irradiance Loève autocoherence in
Fig. 3 is that there are distinct diagonal bands in frequency with separation 11.57µHz or 24 hours (multitaper
parameters were chosen as NW = 4,K = 6 here). This indicates that there are strong correlations at all
frequencies between the data and itself shifted one day, two days, and at some frequencies three days ahead.
One also notices a peculiar “quilted” appearance to this Loève autocoherence due to normalization by the
spectrum (Fig. 2 top), where the patches have side length about 11.57µHz.The quilted appearance can also
be due to leaked discrete atoms contributed by a periodic mean, e.g. [10, p 175].

The difficulty in model selection for cyclostationary processes is exacerbated by the difficulty in re-
moving trends. Over long time scales, any nonstationary model used to represent solar irradiance will also
have diagonals with line components near the yearly and 11-year components. The difficulty in fitting line
components like those seen in the bottom right panel of Fig. 3 using a simple AR model, without significant
model complexity (high model order p), results in overly smooth parametric Loève spectra, which do not
capture periodic components. These trends have to be estimated and removed in another way.

4 Time Series Models

In this section, we fit simple AR and nonstationary models to these data, and we compare the stationary
approach to the nonstationary approach, contrasting the parametric spectra we get with the nonparametric
estimates, as well as comparing trends in the residuals and the result of prediction using both of the models.
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Figure 4: An AR(2) model is fit to the Desert Rock Data in the left panel. The red curve (overlaid) is
the parametric spectrum, while the blue line shows the original nonparametric MT spectrum estimate. The
coefficients given by the optimization procedure give a nonstationary model fit, that is, the roots of the
characteristic equation lie outside the unit circle. The right panel shows the result of a prediction based on
this covariance structure. Since the fitted model is nonstationarity, the prediction is not valid and the model
gives an erroneous result.

Figure 5: Steps of the VAR(2) model fitting (left and center plots) and the result of a 5d prediction (right
plot) on the Desert Rock Data (prediction in green, data in blue).

In this section, hourly data is used for computational simplicity.

4.1 Stationary Models

Using the Python statsmodels package version 0.6.1, an AR(2) model was fit to these data. Fig. 4
shows the (standard) graphical process of model fitting. AR parameters were chosen as [µ,φ1,φ2] = [
172.48190203 1.05768942 -0.18225387] ,following the notation of Eqns (1) and (4). The fitted model is
nonstationary, having roots for its characteristic equation outside the unit circle, see e.g. [3]. The Durbin-
Watson test statistic for serial correlation was reported as 2.11, indicating slightly negative serial correlation.

The unfortunate consequence of a prediction based on an AR model with coefficients leading to a non-
stationary model is that it produces nonsense, see the right panel of Fig. 4.
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4.2 Cyclostationary Models

Motivated by the vector based implementation, Eqn. (8), of the PAR(1) model defined in Def. 4 one can use
a vector based approach. A vector-based autoregression, or VAR(p), model has model equation, see [10, p
233-4] 

xt

xt+1
...

xt+T−1

=
p

∑
i=1


A(i)

0,0 A(i)
0,1 . . . A(i)

0,T−1

A(i)
1,0 A(i)

1,1 . . . A(i)
1,T−1

...
...

...
A(i)

T−1,0 A(i)
T−1,1 . . . A(i)

T−1,T−1




xt−iT

xt+1−iT
...

xt−1+iT

+


ζt

ζt+1
...

ζt+T−1

 . (27)

where we have chosen T as the (known) cyclostationary period. If the process is cyclostationary with period
T , then the vector process is stationary. VAR models can also be fitted using Python statsmodels, see Fig.
5. As can be seen from Eqns (8), the vector ARMA model contains the PAR(1) model. Fig. 5 shows the
estimated coefficient matrices for a VAR(2) model fit to the solar data and the result of an example five day
prediction.

The results of prediction using the two simple models are given in the right panels of Figs. 4 and 5. The
conclusion that we come to with the stationary AR model is that it is entirely inappropriate for the data at
hand. The VAR(2) model does much better in reproducing the daily peak, though the daily maximum in the
forecast appears to be increasing.

Fig. 6 shows the ordinary autocorrelation functions, (one frequency) spectrum, and histograms of the
residuals for both types of models. It is clear from left panel of Fig. 6 that there is periodicity in the
autocorrelation function after the AR(2) model is removed. The residuals from the VAR(2) model do not
have this feature, though they don’t damp sharply to zero, and the ordinary spectrum retains a slight redshift.

It turns out that this can be removed by a combination VAR(2) & AR(2) model fit, see panel (c) of Fig.
6. The embedded model autocovariances damp quickly to zero, the spectrum appears nearly white, and the
histogram of the residuals appears to have much lighter tails than the other two models.

5 Conclusions

5.1 Summary

We have gathered evidence for the use of cylostationary covariance structure on the solar irradiance data.
We have used this to generate parametric models based on the assumption of (a) stationarity and (b) cyclo-
stationarity, fitted the models, examined the residuals, and used both methods for prediction. We found that
the cyclostationary model, however more like the nonparametric Loève spectrum, still does not capture the
complexity of the overall process, while a combination of the two methods appears to whiten the spectral
characteristics in the residual.

5.2 Discussion

In summary, this study shows the utility of a cyclostationary covariance structure in modeling solar irradi-
ance. The study of cyclostationary signal processing has been a major topic of discussion for over 50 years
[6]. A number of books [10, 20, 7] have been written as well as review articles [9] and workshops [8] on the
subject. Here cyclostationary structure arises in a particularly important natural context.

JSM2015 - Section on Statistics and the Environment

1221



(a) (b) (c)

Figure 6: Autocorrelation functions (top) for the AR(2) model (a), the VAR(2) model (b), and the VAR(2)
followed by AR(2) model (c) the spectra, histograms of the residuals, and the Loève spectra (bottom). .
Loève spectra are calculated with 2048 hours of data for direct comparison with Fig. 3, however these figures
are not normalized and are squared versions of Eqn. (23). The bottom right Loève spectrum, corresponding
to the embedded VAR(2) and AR(2) models combined amount to a much whiter residual. Note different
color scales.f
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5.3 Data Sources

Downwelling global solar data is available from NOAA via ftp ftp://aftp.cmdl.noaa.gov/data/radiation/
surfrad/.

Energy facts were obtained from the US Energy Information Administration Electricity data browser,
Solar Energy Industries Association 2014 Fact sheet and the Institute for Energy research.

6 Appendix: Multitaper calculation of Loève Spectrum

General overviews of spectrum analysis are available in [2, 1]. The multitaper approach to spectrum estima-
tion seeks to control the variance of the usual periodogram spectrum estimate by averaging K independent
estimates of the spectrum which in turn are obtained by estimating the spectrum using K different orthogonal
tapers. A good choice for the tapers are the Slepian sequences, which are concentrated in a given bandwidth
in frequency and are near zero elsewhere, so they control bias by limiting leakage from faraway frequen-
cies. By extension of multitaper spectrum estimation, one can use the multitaper approach to computing the
Loève spectrum. This section contains a brief overview of this technique.

Slepian Sequences

The multitaper method of spectrum estimation makes use of the discrete prolate spheroidal, dpss or Slepian
sequences, {v(k)n (N,W )}N−1

k,n=0, which form a set of K length-N, orthogonal sequences L 2-optimally concen-
trated on the band (−W,W ), W < 1/2 in frequency [24]. They satisfy the eigenvalue equation

N−1

∑
m=0

sin2πW (n−m)

π(n−m)
v(k)m (N,W ) = λk(N,W ) · v(k)n (N,W ) (28)

where the eigenvalue λk(N,W ) also denotes the fraction of energy in the band (−W,W ), and the index k
sorts the sequences in descending order of energy concentration, 1 > λ0 > λ1 > .. . > λN−1 > 0. The first
K ≈ 2NW of the λk’s are close to one, while the others rapidly drop to zero. We will drop the dependency on
(N,W ) in the rest of this appendix. When using a multitaper spectrum, it is important to quote the bandwidth
parameter W which is often chosen as a function of the time-bandwidth product NW .

Solving the eigenvalue problem to get the dpss’s is nontrivial, but there is an alternate formulation using
a tridiagonal matrix which is computationally tractable [26]. See [22], for example, for an implementation
in Fortran.

Multitaper Spectrum Computation

The multitaper spectrum is a weighted average of magnitude squared Fourier transformed tapered data
sequences. Denoting the eigencoefficients as

y(k)( f ) =
N−1

∑
t=0

xtv
(k)
t e−i2π f t , (29)

and the eigenspectra as
Ŝ(k)( f ) = |y(k)( f )|2, (30)

the multitaper spectrum estimate is constructed as the following weighted average

Ŝ( f ) =
∑

K−1
k=0 d2

k ( f )Ŝ(k)( f )

∑
K−1
k=0 d2

k ( f )
(31)
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where the optimum frequency-dependent weights, dk( f ), are determined using an adaptive scheme, see [25]
§V. One can obtain a basic spectrum estimate using dk( f ) = 1/

√
K. The multitaper offers, among numerous

advantages listed in, say [21], control of variance through averaging independent estimates and control of
bias using approximately bandlimited tapers.

Multitaper spectrum estimation has been implemented in Python using the pymutt package [14].

6.1 Loève Spectrum

The multitaper estimate of the Loève spectrum is computed as follows [18]. If x1( f ), . . . ,xK( f ) and y1( f ), . . . ,yK( f )
are eigencoefficients of two series xt and yt with set bandwidth W and number of Slepian tapers K, then the
Loève spectrum is estimated simply as [28]

Ŝx,y( f1, f2) =
1
K

K−1

∑
k=0

xk( f1)y
(∗)
k ( f2). (32)

This is recognizable as a dual-frequency cross-spectrum. As before, one can normalize the Loève spectrum
to obtain the Loève coherence defined as follows

ĉx,y( f1, f2) =
|Sx,y( f1, f2)|2

Sx,x( f1)Sy,y( f2)
(33)

where Sx,x( f1) and Sy,y( f2) are multitaper estimates of the spectrum (31) using uniform weighting.
Estimation of the Loève spectrum using a periodogram technique is discussed in [20, p 223]. This dual

frequency estimator suffers from the same deficiency as the ordinary periodogram, that is, the estimator is
asymptotically unbiased but is inconsistent; its variance does not vanish as N → ∞. In general the sam-
pling distributions for dual frequency spectra and coherences are the same as those for ordinary spectra and
coherences [28], so the χ2

2K−2 distribution of multitaper spectrum estimates is carried over to multitaper
dual frequency spectra [27]. That is, for fixed bandwidth, the multitaper Loève dual frequency spectrum is
consistent.
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