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Abstract
Monothetic clustering is a divisive clustering method based on recursive bipartitions of the data set
determined by choosing splitting rules from any of the variables to conditionally optimally partition
the multivariate responses. Like in other clustering methods, the choice of the number of clusters is
important in this method. Connections between monothetic clustering and decision trees motivate
the consideration of pruning methods as aids in selecting the number of clusters. We apply different
cross-validation techniques to find the number of clusters that optimize prediction error and compare
that approach to permutation-based hypothesis tests at each bi-splitting step, retaining splits with
“small” p-values. A simulation study is performed to evaluate the performance of the new methods
and compare to some other existing techniques.
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1. Introduction

Clustering algorithms attempt to group subjects based on (multivariate) observations into
clusters so that the dissimilarity within clusters is smallest while the between cluster dis-
similarities are largest. Let yiq be the ith observation on variable q with q = 1, . . . , Q,
where Q is the number of response variables, i = 1, . . . , n where n is the sample size. We
seek to divide the n objects into partitions PJ = C1, . . . , CJ , with J the number of clusters
and Cj the j-th set of objects. One of the main tools for interpreting clusters is to describe
the members of each cluster and so the choice of J impacts the group memberships and
thus the interpretation of the results. If J is too small, it puts “unlike” subjects together. On
the other hand, if J is too large, it would split observations that should be together. Picking
the “correct” J is critical for any cluster analysis.

As a simple example to illustrate cluster analysis, we consider a data set introduced by
Ruspini (1970) with 70 observations on two variables, x and y. The scatterplot of the data
set is shown in Figure 1. Also, possible cluster solutions with different numbers of clusters
can be seen in Figure 2. Visually, the two and four cluster solutions seem to be reasonable,
but if five clusters are chosen, another solution can be given as in Figure 2c. Visually,
for the two cluster solution, observations that have small x or small y will belong to one
cluster, observations that have large x and y belong to another cluster. In the four cluster
solution, the separation between clusters are still visually recognizable, but as we go into
the five cluster case, the interpretation and even definition of clusters are less clear. Popular
cluster analysis methods such as k-means and Ward’s agglomerative hierarchical method
can partition the data set into clusters, but they lack the capability to help researchers in
interpreting the characteristics of each cluster and provide no clear way of predicting new
observations. Monothetic cluster analysis (Chavent, 1998) provides at least partial solutions
to both issues.

Here, we first describe the use of monothetic cluster analysis in Section 2. Next, we
give an overview of some of well-known methods for choosing the number of clusters in
a cluster analysis (Section 3) and introduce two novel methods that use the idea of cross-
validation and permutation tests to pick the “correct” number of clusters (Section 4). Fi-
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Figure 1: Ruspini data set

(a) Two clusters (b) Four clusters (c) Five clusters

Figure 2: Different possible cluster solutions for Ruspini’s data.

nally, in Section 5, a comparison among those methods is performed by simulation for
different data set scenarios. Some conclusions are mentioned in Section 6.

2. Monothetic Cluster Analysis

Monothetic cluster analysis (Chavent, 1998) is an algorithm that provides a hierarchical,
recursive partitioning of multivariate responses based on binary decision rules that are built
from individual response variables. Inspired by regression trees (Breiman et al., 1984), the
monothetic clustering algorithm searches for splits from each response variable that provide
the best split of the multivariate responses in terms of a global criterion called inertia.
It then recursively applies the same algorithm to each sub-partition, recording splitting
rules to define the tree. The result of the algorithm is a set of hierarchical binary rules
for determining cluster membership. Therefore the resulting hierarchy can be read and
displayed as a decision tree.

Specifically, the within cluster inertia is the total variability around the cluster centroid.
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(a) Decision tree
(b) Plot with splitting rules

Figure 3: Binary partitioning tree with maps of optimal splits. Three splits, four clusters.

In the case of Euclidean distance being used, the inertia for cluster j would be

I(Cj) =
∑

i∈Clusterj

Q∑
q=1

(yiq − y·q)2. (1)

The objective of the algorithm when splitting cluster C is to maximize the difference in
inertia between C and the new sub-partition C1 and C2,

max {I(C)− I(C1)− I(C2)} , (2)

which is then recursively applied to each sub-partition. James et al. (2013) and others have
shown that the Euclidean distances for all observations within a cluster and variation around
the means within a cluster are equivalent, so the within cluster inertia can be equivalently
calculated from the dissimilarity matrix as

I(Cj) =
1

n

∑
i∈Clusterj

∑
j=i+1

d2ij . (3)

This result is used to justify the application of many distance-based methods to non-Euclidean
dissimilarities (Anderson, 2001). While not used here, the monothetic clustering algorithm
can also be directly applied to non-Euclidean distances and other dissimilarities.

Figure 3 shows an example of the splitting rules and the created clusters for the Ruspini
data set using monothetic clustering. The monothetic clustering algorithm suggests the first
split at the y-value of 91. In the newly created cluster that includes the data points that had
y > 91, the algorithm suggest splitting at the x-value of 68.5, while for observations with
lower y-values, it suggests partitioning at the x-value of 47. The set of splitting rules can be
summarized in hierarchical tree form as shown in Figure 3a with each rule being generated
from one variable at a time. The rules can be used to generate an interpretation of the four
selected clusters as: Cluster 1 includes observations that have y < 91 and x < 47, while
observations having y < 91 and x > 47 belong to cluster 2. Similarly, having y > 91 and
x < 68.5 are the characteristics of the observations in cluster 3, and the rest of the data set
that has large y (> 91) and x (> 47) belongs to cluster 4.

Compared to classical methods like Ward’s hierarchical clustering or k-means, the ben-
efit of monothetic clustering is the ability to interpret the clusters and predict for new ob-
servations by exploiting the decision tree. However, the partitioning based on one variable
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at a time is not as flexible as some other algorithms, limiting its performance for compli-
cated data structures and cluster shapes. Chavent et al. (2007) suggested that monothetic
clustering should be used in studies where the interpretation of only a few clusters is the
focus.

3. Some Popular Metrics for Choosing Number of Clusters

Many metrics for choosing the number of clusters have been mentioned in the clustering
literature, such as a paper on the comparison of popular metrics by Milligan and Cooper
(1985), and also implemented in popular statistical software such as the package NbClust
(Charrad et al., 2014) in R (R Core Team, 2015). However, there is no universally “good”
metric for all clustering problems or algorithms even though some are more popular than
others. For the purpose of this paper, we chose two popular metrics that have good perfor-
mance and are suitable for monothetic clustering to compare to our new approaches.

3.1 Average silhouette width

One common measure is the average silhouette width (Rousseeuw, 1987). The silhouette
width is a measure of how “comfortable” an observation is in the cluster it resides in. Let
a(i) be the average dissimilarity between observation i and other observations in the same
cluster, d(i)k be the average dissimilarity between i and other observations in cluster k, and
b(i) = mink(d(i)k) be minimum “distance” from i to other clusters, then the silhouette
width is defined to be

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (4)

s(i) can obtain the values from −1 to 1 corresponding to the state of observation i in its
cluster. The recommended interpretation is that if the silhouette width is between 0 and 1
it is “happiest” in its existing cluster; if it is 0, the observation is ambivalent about cluster
membership vs. next closest cluster; and if it is between −1 and 0 the observation “wants
to leave” the current cluster.

A global measure for a cluster solution is found by averaging all n silhouette widths,
defining the average silhouette width as

s̄ =

∑n
i=1 s(i)

n
. (5)

The cluster structure with J clusters that has the maximum average silhouette width will
be considered as the “optimal” structure. Kaufman and Rousseeuw (1990) suggested that
unusual observations be removed from the average silhouette width calculation as they had
too much impact on it.

Average silhouette width is explicitly recommended by Kaufman and Rousseeuw (1990)
for selecting the number of clusters in their Partitioning Around Medoids (PAM) algorithm.
It can be applied to any cluster solution if the dissimilarity matrix and cluster memberships
are available. Although average silhouette width is a clear criterion for choosing the num-
ber of clusters in a clustering problem, it has a major limitation in that it cannot select a
single cluster solution because it is not defined on J = 1. In practice, large average silhou-
ette width values for J = 2 are often observed when no real clusters exist in the data set,
making its use for selecting J = 1 or J = 2 problematic.
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(a) Average silhouette: selects 4 clusters (b) CH’s pseudo-F : selects 4 clusters

Figure 4: The choice of clusters for the Ruspini data made by Average silhouette width
and CH’s pseudo-F methods. Both of them suggest the use of the J = 4 cluster solution.

3.2 Caliński and Harabasz (CH)’s pseudo-F

Caliński and Harabasz (1974) proposed the use of the idea of an F -statistic as a criterion
to choose the number of clusters, J , in order to maximize the variation between clusters
relative to the variation within clusters. Hence, their pseudo-F can be calculated as

pseudo−F =
B(J)/(J − 1)

W (J)/(n− J)
(6)

where B(J) is the between cluster sums of squares (possibly from dissimilarity matrix us-
ing Equation 3) and W (J) is the within cluster sums of squares which can also be found
as a result of Equation 3 from a dissimilarity matrix. Because the pseudo-F is the ratio of
the variance of the groups to the variance in the residuals, the setting of J clusters is con-
sidered good when the observations are similar within groups (small W (J)) but different
between groups (large B(J)). However, like the average silhouette metric, the pseudo-F
needs at least two clusters to be calculated so it cannot select a single cluster solution and
often shows large values for J = 2 when only one cluster is present.

In Figure 4, the average silhouette width and CH’s pseudo-F methods are applied to the
Ruspini data to find the “optimal” number of clusters. In both methods, the criteria agree
with each other and reach their maxima at J = 4, suggesting choosing the four cluster
solution for this data set.

4. Proposed Methods for Choosing the Number of Clusters

Average silhouette width and pseudo-F are simple criteria for deciding on the optimal
number of clusters but they both show the limitation of being unable to ever select a sin-
gle cluster structure. Moreover, with the tree-based splitting rules of monothetic clustering
resembling those in regression trees, popular methods inspired from regression and classi-
fication trees are possible to consider. Two methods which are explored in this paper are an
adaptation of a cross-validation technique and using the pseudo-F to perform a permutation
test.
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4.1 M -fold Cross-Validation

Cross-validation (CV) is a popular method to “tune” many methods (see Hastie et al., 2009).
In regression and classification trees, the size of tree is decided by a pruning algorithm in
which a too complicated tree is firstly built, then cross-validation is used to prune the tree
to a smaller size that balances fit and complexity of the tree. The M -fold cross-validation
starts by randomly dividing the data set into M equal-sized subsets. A subset (1/M of
observations) then is withheld as the validating set, and the rest of the observations are used
as the training set. In monothetic cluster analysis, each training set can be used to build the
monothetic clustering splitting rule tree. Since the withheld observations are not used in
the splitting process, the mean squared error of the observed yiq and predicted responses
ŷ(−i)q (which are the cluster means on the variable q from training data when Euclidean
distance is used) for the withheld set provides an approximately unbiased estimate for the
test error for the m-th subset as

MSEm =
1

nm

Q∑
q=1

∑
i∈m

(yiq − ŷ(−i)q)2. (7)

This process is repeated for the M subsets of the data set and the average of these test
errors is the cross-validation-based estimate of the mean squared error of predicting a new
observation. For a J cluster solution, the overall cross-validation based estimate is

CVJ =
1

M

M∑
m=1

MSEm. (8)

Comparing CVJ for different values of J can be used in different ways to pick a so-
lution. The smallest CVJ among them can be used as a choosing criterion (minCV rule).
Another approach is using the 1SE rule (Breiman et al., 1984) in which the solution is the
simplest one within 1 standard error of the minimum, where the standard error (SE) is

SE =

√√√√ 1

M − 1

M∑
i=1

(MSEi −MSE)2. (9)

Both approaches are used in regression or classification tree pruning, with the 1SE rule
typically giving more conservative tree size selection.

Because monothetic clustering is one of the few clustering algorithms that provides a
clear cluster prediction rule (at least with Euclidean distance), we can use the binary rules
to assign a new observation to a cluster and use the multivariate cluster mean to predict
the response to find the cross-validation error estimate. Extensions of these ideas to other
metrics or dissimilarities have not been developed as far as we know.

An example of the criteria for the Ruspini data is in Figure 5. The prediction mean
squared error (CVJ ) decreases when the number of clusters J increases. Ideally, we should
see CVJ decrease and then increase, showing a clear choice of J that minimizes prediction
error. In this case, the number of clusters explored was not large enough to observe an in-
crease in CVJ , if it occurs. That is the reason why the minCV rule suggested the maximum
number of clusters considered, which was 9. When adding the amount of 1 standard error
to this minimum CVJ , it creates a region that covers solutions of 4 to 9 clusters. Because
4 is the smallest cluster solution in the region, it is the solution suggested by the 1SE rule.
We can see that 1SE rule is much more conservative than the minCV rule, and it often picks
the solution at or near the “elbow” in the CVJ plot.
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Figure 5: The choice of clusters for Ruspini data made by 10-fold CV where minCV selects
9 clusters and 1SE selects 4.

Because the mean squared error can be calculated for J = 1, the cross-validation
method can compare between the solution of one cluster vs. more than one cluster. How-
ever, the method cannot be applied for any non-Euclidean distance because the form of
ŷ(−i)q is unclear with other metrics. Additionally, repeatedly building a new clustering
structure for each validating subset and each J can be computationally expensive for large
n or large Q.

4.2 Hypothesis tests at each bipartition

Each bipartition creates two distinct groups of observations. The need to split can be as-
sessed using hypothesis testing with the null hypothesis being no difference in the two
groups at the node, that the split should not be performed. The idea of a formal hypoth-
esis test for trees using the p-value to stop tree growth has been used in the context of
conditional inference trees (Hothorn et al., 2006). The tree is grown until a split has a
p-value higher than a pre-determined threshold (say α of 0.01 or 0.05) and then that split
or any other sub-divisions are not considered for that node. This threshold is continually
adjusted when the split goes further down the tree to account for inflated Type I error rates
as sequences of tests are combined.

In monothetic clustering, some adjustments need to be made to the process to account
for the differences in the situation from those encountered by Hothorn et al. (2006). To
allow applications with any dissimilarity measure, a nonparametric method based on a per-
mutation test is used. Anderson (2001) developed a multivariate nonparametric testing
approach called perMANOVA that involves calculating the pseudo-F -ratio directly from
any symmetric distance or dissimilarity matrix using Equation 6 where the sum of squares
are calculated directly from the dissimilarities (Equation 3). The p-value can then be cal-
culated by tracking the pseudo-F across permutations and comparing the results to our
observed result.

This p-value also needs to be adjusted to account for multiple hypothesis tests required
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to reach a node further down in the tree. For example, in Figure 3, the hypothesis test
at the second node to create clusters 1 and 2 (x is optimally cut at 47) is conditional on
the hypothesis test at their father node (where y was cut at 91 having rejected the null
hypothesis). The probability of a Type I error on at least one of these two tests is inflated
unless we control for the accumulating number of tests. This probability is getting higher
and higher as the depth in the tree grows. A simple solution to control the family-wise
error rate for a set of tests is using the Bonferroni-adjustment which involves multiplying
the p-value by the number of tests required to get to that level of tree. Specifically, we use

p− valueadj = depth× No. of (Fperm ≥ Fobserved)

No. of perm.
, (10)

where the depth is calculated as the height of the tree with the root node at depth = 1.
One other complication that arises in these tests is that in monothetic clustering, the split

is based on the variable that has the maximum decrease in the difference inertia between the
big cluster and two new clusters (Equation 2). This algorithm ensures that the splitting is the
“best” possible choice at that node. This affects the permutation-based hypothesis test by
creating smaller p-values than desired because the chosen split is already the most extreme
result possible on the variable that defined the bipartition and creates another source of
inflated Type I error rates in this situation. We suggest a potential solution by using only
variation from the Q − 1 variables not used to define the candidate split in the calculation
of the pseudo-F statistic. Then the hypothesis test will assess whether the binary split is
useful on other variables by assessing the differences between the two groups on the other
Q − 1 variables. This modification means the test cannot be performed in a data set that
has only one variable (Q = 1).

An example of the results for the Ruspini data is in Figure 6. Each circle is a bipartition
of the data set. In the first four partitions, the p-values from the permutation-based hypoth-
esis tests are small (< 0.05), suggesting that all of the null hypotheses of no difference in
the true multivariate group means should be rejected. However, at the fifth split (data are
further split at a x-value of 45) it results in a very large adjusted p-value (p = 1), indicating
that the split should not be made. Visually, in the cluster which has observations having
y > 91 and x < 68.5, a partition at x = 45 looks like a slice in the middle of the points.
If we consider the difference between two new partitions in terms of the y-values only, the
observations are basically the same. So in this case, the hypothesis testing method suggests
the five cluster solution.

The advantage of using this criterion in picking the cluster solution is that it can choose
the one cluster solution. The test can be performed at the root of the decision tree to decide
if the data set should be partitioned at all. It can also be applied in non-Euclidean settings.
Another advantage is the test can be embedded into the tree building procedure, so that the
test is performed every time a split is about to be made. With this combination, the cluster
analysis algorithm stops when the predefined significance level is crossed, hence making
the algorithm more computationally efficient. Nevertheless, the removal of the splitting
variable would create a trade-off when one variable is dominant in deciding how the data
set should be split. The test will return a large p-value for this test because the two new
clusters may not be very different after removing the dominant variable. It may depend on
the application to assess whether this is an advantage or limitation of this method.

5. Simulation Study

In order to see how the different criteria work for different types of data, we set up a
simulation study including three scenarios with different numbers of clusters and varying

JSM2015 - Section on Statistical Learning and Data Mining

1154



Figure 6: The choice of clusters for Ruspini data by hypothesis testing where 5 clusters are
selected.

dimensions.

5.1 Simulation Set Up

The data for the simulation study were created following three different settings, inspired
by Tibshirani et al. (2001) and Walesiak and Dudek (2014).

1. The null model in 10 dimensions is generated with observations that are uniformly
distributed within the range (-1, 1) in 10 dimensions. This is a special case with one
big cluster.

2. The random 4-cluster model in 3 dimensions is generated with four clusters that have
standard normal distributions. The mean values are sampled from a N(0; 5I) distri-
bution and the cluster sizes are randomly chosen from either 25 or 50 observations.
Every data set in which the distance between any pairs of clusters was less than 2 was
discarded from the simulations. This is a difficult case, because the clusters are not
well-separated (the smallest Euclidean distance between points in any two clusters is
only 2 units).

3. The random 4-cluster model in 10 dimensions is generated with four clusters that
have standard normal distributions. The mean values are sampled from a N(0; 1.9I)
distribution and the cluster sizes are randomly chosen from either 25 or 50 observa-
tions. Similar to the previous case, every data set in which the distance between any
pairs of clusters are less than 2 was discarded from the testing data. This is an even
more difficult case than the first two. Although the minimum distance is the same
as the previous case, increasing the dimensions makes the points in different clusters
closer, because the distance is the sum over all dimensions.

In each setting, 500 data sets were created from each scenario. Each method was run
on the same simulated data sets, with permutation-based hypothesis testing run with two
different significance levels, α = 0.01 and 0.05. TheM -fold CV method was run withM =
10, and the minimum and one standard error criteria were applied to choose the optimal
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 7: Simulation results

solution. The maximum size of the monothetic cluster tree was set to be 9 clusters. This
result should be far enough from the true number of clusters in all cases to be considered
over-fitting.

Along with these methods, average silhouette width and CH’s pseudo-F was run using
the existing methods in the cluster package (Maechler et al., 2015). We wrote R code to
implement the two new proposed methods which is available by request. The permutation
tests are done using the vegan package (Oksanen et al., 2015).

Computational performance was tracked duting the simulation study and hypothesis
testing is much faster than the CV process. The explanation is that the algorithm stops
immediately when the terminal node adjusted p-values exceed the pre-defined significance
level. The cross-validation method is slower because the monothetic cluster analysis needs
to be built 10 times for each size of cluster solution (10-fold CV), and all size solutions
need to be examined to pick the optimal one on the criteria. However, the differences in
time are not prohibitive to the use of CV unless large Q or n are encountered.

5.2 Results of The Simulation Study

The results of simulation study with the number of cases that each method chose in each
simulation scenario are summarized in Table ?? and Figure 7. The two traditional methods,
average silhouette width and CH’s pseudo-F , did quite well in selecting the correct number
of clusters when there was actually more than one true cluster. Their correct detection rates
were high and similar. Both methods were not capable of detecting the solution of one
cluster and chose two clusters when one was correct, making any detection of two clusters
with these methods suspicious.

In the first scenario with only one true cluster in 10 dimensions, only the hypothesis
testing method works well. Particularly, when α = 0.01, this method was quite successful
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Table 1: Estimated number of clusters by different methods.
Unit: percent of time (out of 500). label

Setting Estimates of number of clusters

1 2 3 4 5 6 7 8 9

Null model in 10 dimensions
Average silhouette width NAa 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH’s pseudo-F NAa 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MinCV 0.0 0.0 0.0 0.0 0.0 0.2 1.4 17.6 80.8
CV + 1SE 0.0 2.2 22.8 49.8 17.8 6.6 0.6 0.2 0.0
Hypothesis testing (α = 0.01) 93.6 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hypothesis testing (α = 0.05) 76.4 21.0 2.2 0.4 0.0 0.0 0.0 0.0 0.0

Random 4-cluster model in 3 dimensions
Average silhouette width NAa 11.6 22.4 64.4 1.4 0.2 0.0 0.0 0.0
CH’s pseudo-F NAa 2.8 4.8 79.0 11.0 2.4 0.0 0.0 0.0
MinCV 0.0 0.0 0.0 0.0 0.0 0.0 1.6 5.8 92.6
CV + 1SE 0.0 0.0 2.6 53.2 30.2 10.6 3.0 0.4 0.0
Hypothesis testing (α = 0.01) 2.8 4.4 8.6 58.2 21.4 4.4 0.2 0.0 0.0
Hypothesis testing (α = 0.05) 0.6 2.2 6.0 56.0 26.8 7.2 1.2 0.0 0.0

Random 4-cluster model in 10 dimensions
Average silhouette width NAa 1.4 5.0 89.0 4.2 0.4 0.0 0.0 0.0
CH’s pseudo-F NAa 4.4 5.2 83.8 6.6 0.0 0.0 0.0 0.0
MinCV 0.0 0.0 0.0 8.0 10.6 15.0 19.4 17.2 29.8
CV + 1SE 0.0 0.2 10.4 80.6 7.8 1.0 0.0 0.0 0.0
Hypothesis testing (α = 0.01) 0.0 0.0 0.0 32.6 42.2 18.8 5.6 0.8 0.0
Hypothesis testing (α = 0.05) 0.0 0.0 0.0 25.4 40.4 23.6 8.6 2.0 0.0

a The smallest number of clusters chosen cannot be 1 for these methods.
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at correctly preventing a search past the root node with the J = 1 solution rejected 6%
of the time for this level. The inflated Type I error rates might come from assessing splits
that are selected to be optimal globally from given choices even when no real difference
exists. If monothetic clustering did not optimize a global criterion, this would not occur.
This error rate was much higher when all variables were included in the test statistic (results
not presented here) and these early results led to the modified test statistic used here. For
a larger number of dimensions, Q, the hypothesis testing method struggled but the more
conservative α value did provide more correct results.

In all scenarios, the minCV value was often the largest number of clusters considered. 9
clusters were picked more than 80% of the time in the null model and the 4-cluster, Q = 3
dimensions scenarios, and more than 30% in the Q = 10, 4-cluster scenario. This result
suggests that the criterion does not provide much penalty for over-fitting and that it is not
suitable as a criterion for choosing the number of clusters.

The 1SE rule with CV is much better than minCV and close to other methods in per-
formance except in Scenario 1. Some mistakes in Scenarios 2 and 3 might be due to the
variability in dividing the data into 10-fold validating and training data sets. In a partic-
ular application, the CV selection process could be repeated and a consensus of results
selected which would decrease the variability due to random variation in validation-split
membership.

6. Remarks

Some methods, such as CH’s pseudo-F and average silhouette width, because of a limita-
tion in their definition, cannot select the one cluster solution so they can’t help a researcher
to decide between one versus more than one cluster. In this regard, both new methods,
M -fold cross validation and permutation-based hypothesis testing, are attractive as they
provide direct information about the utility of a single cluster versus other sizes, but they
also have their weaknesses. The hypothesis testing method works well in data sets with a
relatively small number of dimensions but suffer as the dimension grows. Both hypothesis
testing and cross-validation have some amount of randomness in their algorithms, but with
a large number of permutations, the resulting p-value from hypothesis testing tends to be
consistent, while the variability in the results of cross-validation is more serious and may
be impacting its performance.

The speed of the monothetic clustering algorithm to build the clusters for a pre-defined
size from a data set depends largely on the number of dimensions and, to a lesser degree,
the sample size. Because of those reasons, cross-validation is the slowest among consid-
ered methods because it involves M re-fittings of the monothetic cluster solution for every
potential cluster size. Conversely, permutation-based hypothesis testing is quite fast due to
the speed of the permutation code and because only a part of a single monothetic cluster
solution may be required for a run.

Whenever there are new observations, the prediction of their cluster along with its char-
acteristics can be easily traced down from the created rules in the tree. If needed, the CV
criterion can be used to estimate the prediction error. If the cross-validation based methods
are to be used, the 1SE criterion should be preferred. In order to overcome the randomness
in the method to produce a more consistent result, multiple runs of cross-validation splitting
process should be used to identify the most commonly selected optimal cluster size.

With the above remarks, we suggest an algorithm for finding the number of clusters in
monothetic clustering using a combination of methods. First, the permutation test could
be used to assess evidence for more than one cluster using the modified pseudo-F statistic
and a small significance level, α. If the initial p-value is small enough to reject the null
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hypothesis that the two groups are not different, then CH’s pseudo-F maximization can be
used to find the correct size of the cluster solution from two on.
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