
Advances in the Development of a High-Level Matrix Language

Luis Frank∗ Guillermo Frank†

Abstract
MINI is a computer program (written entirely in standard C) designed to solve matrix operations

using scripts whose syntax practically emulates the traditional mathematical notation. The compar-
ison of MINIs first version against equivalent software showed that MINI had a higher computing
speed than that of other well-known software, at least for solving linear systems or for inverting
large matrices. However, MINI’s first version lacked many features of other popular software such
as the possibility to operate with blocks of matrices or to extract eigenvalues and eigenvectors. In the
paper that follows we describe how such possibilities were incorporated into a new release of MINI
but without losing the original minimalist philosophy of the program. We also compare the speed
and accuracy of this new version against that of leading software for scientific computation. Finally
we show that even with the new additions MINI outperforms other software justifying therefore the
development of new software for matrix operations.

Key Words: Matrix Language, Software, Linear Algebra

1. Introduction

MINI is an open-source computer program designed to solve matrix operations by means of
scripts whose syntax resembles the handwritten mathematical notation. The program was
written entirely in C language and conceived under a minimalist philosophy. To that end,
the built-in functions were limited to those strictly necessary to interpret simple matrix
operations (summation, multiplication and transposition) and to solve linear systems of
the form Ax = b, which in turn allows the inversion of matrices. As a result a first
version of MINI (hereinafter called version 0.0) was released in 2014 and presented at
2014 Joint Statistical Meetings (Frank G. and L. Frank, 2014a) together with a comparison
of it’s performance against other popular software for scientific computation. That version,
although faster than the competing software, lacked some functions, e.g. the selection
of blocks of elements within matrices, necessary for many algorithms that involve matrix
manipulation.

2. Objectives

The aim of this paper is to present an improved version of MINI (version 1.0), this time
compiled on two operating systems, and to evaluate its efficiency when large scripts are
executed. A brief description of MINI’s new built-in functions will be given in the next
section, as well as an example script that decomposes a non-singular matrix A into the
factor-matrices Q and R following a standard numerical procedure. The example is in-
tended to explain the use of MINI’s new features and the general syntax of scripts. The
QR-decomposition script will then be used to compute the singular values of A through a
larger and more complex script, which we shall use to compare MINI’s performance with
other softwares for scientific computation. Note that the proposed comparison is clearly
∗University of Buenos Aires, School of Agriculture, Av. San Martı́n 4453, C1417DSE Buenos Aires,

Argentina.
†University of Buenos Aires, Physics Department, Intendente Güiraldes 2160 - Pabellón I, Ciudad Univer-

sitaria, C1428EGA, Buenos Aires, Argentina.

JSM2015 - Section on Statistical Computing

1005

unfavorable for MINI, as most of the programs perform the SVD-decomposition through
built-in functions instead of scripts. Finally, we shall discuss the findings and suggest ideas
for the development of MINI.

3. Recent improvements in MINI

New Built-in Functions

The functions listed in table 1 are available in the current version of MINI (version 1.0).
The basic operations (addition, subtraction, multiplication, inverse, transpose, etc.) men-
tioned in the table were already available in the version 0.0 of the program and therefore do
not require further explanation. The novelty of version 1.0 are three different kinds func-
tions designed to ease the handling of matrices and blocks within matrices. These functions
are of different three types depending on the type of brackets they use. The functions whose
arguments are written between braces have the purpose of defining or modifying the dimen-
sions of a matrix. Those written with brackets are used to manipulate blocks of elements,
whereas those written with parentheses are functions in the traditional mathematical sense.
Let’s see each case in more detail.

In MINI’s scripting language the braces have in three different purposes. First, they
may be used for finding the dimensions of a matrix writing for example size={A}. Sec-
ond, they can be used to assign new dimensions to an already defined matrix just writing
{A}=size. And third, they can be used to create an empty matrix from an existing di-
mension vector. An example of this is discussed in the next subsection. It suffices to note
that this last option is the only way to create matrices in MINI. The brackets are used to
specify the indexes of certain elements of a matrix. The expression B[i] refers to the
matrix that arises from taking the elements B whose indexes are declared in vector i. The
indexes contained in i are simply the account of elements of B along the columns first and
then along the rows next. Therefore, if B is a 3 × 3 matrix, the indexes {1, 4, 7} refer to
the elements of the first column; the indexes {1, 5, 9} refer to the diagonal elements; the
indexes {7, 8, 9} refer to the elements of the last row, ans so on. The parentheses are used to
define mathematical functions in the traditional sense. For example, the expression ln(a)
returns the natural logarithm of the scalar a. This syntax is still under development so two
remarks are pertinent:

(a) So far, the only built-in functions that support an argument are those listed in Table
1, i.e. the trace and the determinant for matrices, and the scalar functions provided
in the libraries of standard C.

(b) The users can define their own functions via scripts with the extension .min. These
scripts can in turn invoke other scripts provided that (i) the variables of both scripts
do not overlap (remember that all variables in MINI are global) and (ii) the scripts
invoked do not invoke other scripts. The qr.min script, to be discussed later, de-
composes matrix A in two matrices (Q and R) and may be invoked by typing qr().

(c) The name of the input variables of the user-defined functions always remains fixed.
In qr(), for example, the input variable is a square matrix called A which can not
be called in any another way. For this reason the user-defined functions as qr() do
not contain arguments between the parentheses, although we do not rule out that in
future versions of MINI the user will be able change the name for the input variables.

(d) The compound functions ended in .min are executed directly from the command
line of the operating system. From MINI’s point of view, executing .min files or

JSM2015 - Section on Statistical Computing

1006

Table 1: Built-in functions available in MINI version 1.0
Instruction Description
A display variable A. If A does not exist, nothing happens.
A={} clear variable A. If A does not exist, nothing happens.
mydata={} delete file mydata. If mydata.txt does not exist, nothing happens.
a=3.1415 assign (evaluate) the value 3.1415 to variable a.
A=mydata load mydata.txt (in matrix format) into a. (wrong: mydata=mydata).

See A=A below.
A=A save variable A to a new file A.txt. Overwrites old files.
A=A assign (copy) variable A to A.
b={A} get size and memory position of A and copy it in b as [pos,rows,cols].
{A}=b create a new variable A with dimensions specified by b =[pos,rows,cols].

If A exists, relocate data specified by b =[pos,rows,cols] to A.
To be used with caution!

C=B[a] get the elements of B sepecified by a and copy them to C. (B=B[a] is valid)
B[a]=C place data in C into the elements of B sepecified by a. (B[a]=B is valid)
b(A) function b() applied to A. Functions currently available:

for matrices, trace tr() and determinant det();
for scalars, sqrt(), exp(), ln(), cos(), sin(), acos(), asin(),
and int() (returns the integer part of a real number).

f() user defined subroutine specified in f.min file.
B=A’ transpose matrix A.
C=A+B matrix sum.
C=A-B matrix difference.
C=A*B matrix multiplication or scalar by matrix multiplication.
C=Aˆb matrix A multiplied b times (A is a square matrix and b is an integer).
c=aˆb scalar power; a and b are real numbers.
c=a/B means aB−1. B−1 obtained by gaussian elimination.
c=A\b means A−1b. A−1 obtained by gaussian elimination.

Less efficient than a/B.
i=>loop if i is non-zero, then goto label loop.
a>b returns 1 if true or 0 otherwise. Same thing for a<b.
a==b returns 1 if a is equal to b, or 0 otherwise.

JSM2015 - Section on Statistical Computing

1007

commands written one by one on the command line is practically the same. So, to
execute the function myfunction.min the user must type in the OS command
line the following:

>./mini.e myfunction.min

The operator => is used to generate iterative cycles, as will be explained in more detail in
the forthcoming section.

Improvements in MINI’s Scripting Language

MINI’s scripting language was originally conceived to follow the standard mathemati-
cal notation, but also some notation shortcuts widely spread “in the industry”, that is in
programs like MATLAB (MathWorks 2014), GNU Octave (2014), RLaB (Searle 2005,
Kostrun 2014), Euler Math Toolbox (Grothmann 2014), etc. To review the similarities and
differences among MINI and those programs, and to present the improvements introduced
in MINI’s latest version as well, let’s see an example script written in MINI’s matrix lan-
guage for decomposing a full column rank matrix A into the factor matrices Q and R.
Recall that if A is a singular or non-square matrix then the QR-decomposition of A is not
unique. The decomposition algorithm, adapted from Olver (2010, p.16), is as follows

A0 = A
Q = In (Q may also be set to 0n×n, whatever easier)

for j = 1, . . . , n

Qj = Aj/
√

A′jAj (if A′jAj = 0, stop)
for k = j + 1, . . . , n

Ak = Ak −Q′jAkQj

end
end

R = Q′A0

where In is an n × n identity matrix and the subscripts j and k in Q and A indicate the
j-th and k-th columns of each matrix. Note that if A′jAj = 0 the procedure is forced to
stop because A has at least two linear dependent columns.

Example 1. QR-decomposition of an n × n matrix A into the factor matrices Q and R
following the modified Gram-Schmidt process with normalization during the algorithm. If
A is a nonsingular matrix, Q is an orthogonal n × n matrix and R is an n × n upper
triangular matrix. Otherwise, Q has r orthogonal columns (and n − r zero-columns) and
R has r non-zero-rows (r is the rank of A), and the product Q′Q is no longer equal to In
although the identity A = QR still holds, but is not unique.

A0=A
null=0
one=1
two=2

size={A}
n=size[two]
size[two]=one

{NULL}=size
{ONES}=size
{cumsum}=size

i=one
j=n
LOOP

NULL[i]=null

JSM2015 - Section on Statistical Computing

1008

ONES[i]=one
cumsum[i]=i
i=i+one
j=j-one

j=>LOOP
Q=NULL’
Q=Q*NULL

cumsum-ONES
cumsum=ans*n
cumsum=ans+ONES

i=cumsum
j=n
LOOPP

x=A[i]
x’
x*ans
sqrt(ans)
q=x/ans
Q[i]=q
k=i+ONES
h=j-one

loop
a=A[k]
a’
q*ans
ans*q
a-ans
A[k]=ans
k=k+ONES
h=h-one
h>null

ans=>loop
i=i+ONES
j=j-one
j>one

ans=>LOOPP
x=A[i]
x’
x*ans
sqrt(ans)
q=x/ans
Q[i]=q
R=Q’
R=R*A0

First, note that in the example above all scalars and matrices are assigned to a variable
because MINI only allows operations among variables. The assignment may be done di-
rectly, as e.g. one=1, or by loading a matrix stored in a text file, as A=A.txt (not in
the example), where the left-hand-side A is the newly created variable and the file in the
right-hand-side is a text file with the extension .txt or no extension at all.

Next, we create the matrix Q = 0n. To do so, we first get the size-vector of any matrix,
for example A, writing size={A} between braces. So far, this is the only way to create a
vector in MINI. The newly created vector size is a row vector in which the first element
is the memory position where matrix A is stored, and the second and third elements are
the number of rows and columns of A. Later in the script we modify the number rows
of size by writing size[two]=one, which means that the second element of size is
replaced by the variable one. Once we have defined a matrix with the desired number of
rows and columns, we can create an empty vector of that size, called for example NULL,
simply writing {NULL}=size and then “fill it in” element by element by means of an
iterative cycle to be explained below. Note that simultaneously with NULL we also create
a row vector called cumsum whose elements {0, . . . , (i − 1)n + 1, . . . , (n − 1)n + 1}
are the indexes of the elements of the first column of a vectorized n × n matrix. As will
become apparent shortly the purpose of this vector of indexes is to update the elements of
the columns of Q and A using e.g. the syntax Q[i]=ans, where i is a vector of indexes
and Q[i] the elements of Q listed in i.

Once we create the vector NULL, we are able to compute Q multiplying NULL’ by
NULL. Recall that MINI performs one operation at a time, so Q has to be computed in
two steps. In the first step we transpose NULL and in the second we multiply the result by
NULL to get a zeros-matrix. However, to create NULLwe used an interative cycle that starts
at LOOP and ends at j=>LOOP. This syntax indicates the program to return to the point
labeled LOOP every time the equality j = 0 is not satisfied at j=>LOOP or to continue

JSM2015 - Section on Statistical Computing

1009

with the next operations otherwise.1 So, defining j as a natural number bigger than 0 and
introducing a counter j=j-one that updates j each time the operations within the cycle
are performed, we get an iterative cycle similar to the for-cycle of MATLAB, GNU Octave,
RLaB or Euler Math Toolbox. However, if instead of introducing a counter, we just set
j = 0 after some arbitrary condition is met, then we get the traditional if-cycle of the other
softwares. Besides, note that the starting label (LOOP) may be placed anywhere before or
after the evaluation point j=>LOOP, so that it turns out that the operator “=>” also works
as a kind of “goto” command which does not exist in structured languages. The identation
on the left margin along the cycles only has exhibition purposes, but is not recommended
in practice to avoid interpretation mistakes. At the end of the example script the reader may
write the commands Q=Q and R=R to save the matrices Q and R in a .txt files. They are
the opposite of A=A.txt at the begining of the script. How does MINI know if the user
wants to load or to save a matrix? If the matrix does not exist, MINI understands that the
user wants to load it. On the contrary, if the matrix already exists, MINI understands that
the user wants to save it.

So far MINI allows the nesting of only one script within another. That is, it is possible to
invoke a script from another script. To do so, the user should write the name of the invoked
script followed of parenthesis, for example qr(), to call the script for QR-decomposition
given above. The script to be invoked must be saved with the extension .min, for example
qr.min. Recall, however, that all variables in MINI are global, so the user should check
that the invoked script does not overwrite variables already in use in the main script. In
the appendix we attach a script for SVD-decomposition of an arbitrary matrix A where we
exploit the nesting of scripts. To run svd the proper syntax is

$./mini.e svd.min

written on the OS command line.

4. Testing MINI against other Softwares

In a previous paper Frank G. and Frank L. (2014a) showed that MINI was faster than
other software for solving linear systems. Although this is a remarkable result, it is not
extrapolable to more realistic situations in which, for example, it would be necessary to
extract blocks from matrices, run iterative cycles repeatedly or hold large arrays in memory.
Therefore we extended the comparison to the computation of the three matrices (U, S and
V) arising from the SVD-decomposition of a dense matrix A. The script used to compute
U, S and V is the one shown in the appendix and the matrices used for comparison are the
same used by Frank and Frank in 2014. Table 2 shows the time (in seconds) to decompose
ten 103×103 and 103×102 matrices into singular values via built-in functions and scripts,
respectively. The comparison involved 5 softwares on two operating systems.

Note that whenever possible every program was executed on Xubuntu Linux, MS Win-
dows or on MS Windows but using the Cygwin environment. The SVD-decomposition was
performed appealing to the built-in functions available in each software except in MINI,
where we used only the script attached in the appendix. That is because the minimalist phi-
losophy of MINI prioritizes writing scripts to the incorporation of functions into the source
code. For a fair comparison, MINI’s script was translated to the other four languages and
executed on the other softwares. However, in all the programs the original 103 by 103 ma-
trices proved too big to be handled with scripts and were replaced by 103 by 102 matrices.2

The reader may note that Table 2 shows quite a few missing values because it was not
1“LOOP”, “LOOPP” and “loop” are arbitrary labels.
2The reduced matrices were those defined by the first 102 columns of the original matrices.

JSM2015 - Section on Statistical Computing

1010

Table 2: Time in seconds to decompose ten matrices into singular values.
Ubuntu/ Xubuntu MS Windows
Built-in Script Built-in Script

Euler Math Toolbox 22.8 (2013) – – 436 1,127
GNU Octave 3.6.4 (2013) 366 10,675 183 3,666
MATLAB 7.8/6.1 (2009/2001) 89 843 150 725
MINI 1.0 (2015) sequential – 10,580 – 3,571
MINI 1.0 (2015) parallel – 1,067 – 479
RLaB 2.1 (2001) – – 239 –

possible to reproduce the experiment on all combinations of OS and source of functions.
Besides, MINI was compiled in two different ways, to run in sequential and parallel mode.

5. Conclusions

MINI outperformed the benchmark software when ran in parallel mode on MS Windows,
and was the second best on Xubuntu Linux. A detailed diagnosis on MINI’s running pro-
cesses revealed that 40 to 60% of its computing time was spent in the execution of loops
and the assignment of variables to elements within matrices, while less than 10% of the
time was used to solve linear systems with the gaussian elimination routine. The result
supports our initial conjecture that the efficiency of most scientific computation software is
nowadays limited mostly by the sophistication of the command interpreter rather than the
built-in numerical algorithms.

The computation by means of scripts (in MATLAB, GNU Octave and Euler Math tool-
box) was in general 5 to 10 times slower than by means of built-in functions, which turns
out to be a serious limitation for MINI because its minimalist philosophy discourages the in-
clusion of complex built-in functions (for example for SVD-decomposition) into the source
code.This limitation, however, may be partially compensated by parallel execution as par-
allel execution reduces the computing time almost to one tenth.

Regarding the OS we warn the reader that the performance of MATLAB, GNU Octave
or MINI, when running on different OS, are not comparable because the OS were installed
on a different computers. So no further conclusions may be drawn on this topic. It is
encouraging however that MINI’s relative performance on the Cygwin environment was
similar to that of other programs compiled directly on MS Windows because this means
that there is a chance to improve MINI’s computing time by compiling the code directly on
Windows.

In summary, the findings suggest that optimizing the compilation process and working
in parallel mode can keep MINI competitive without adding new built-in functions that
complicate the source code. These issues together with direct compilation on MS Windows
will be explored in future. Besides, MINI still lacks a collection of (optimized) scripts that
facilitate the migration of users from more developed softwares. This is another issue to be
developed in the near future.

REFERENCES

Burden R and Douglas Faires L., 1998. “Análisis numérico.” 6ta. Edición. Thomson Editores.
The Cygwin Project. Cygwin DLL 2.1.0. Downloadable from https://www.cygwin.com/
Grothmann R., 2014. “Euler Math Toolbox version 2014-06-26.” Downloadable from http://euler.rene-grothmann.de/.
MathWorks 2014. “MATLAB R2014a.” http://www.mathworks.com/products/matlab/
Frank G. and L. Frank, 2014a. “Designing a Computer Program for Matrix Operations.” 2014

JSM2015 - Section on Statistical Computing

1011

Frank G. and L. Frank, 2014b. “The Mini Matrix Language Project.” https://sites.google.com/site/scientificmini/
Olver P., 2010. Orthogonal Bases and the QR Algorithm. Univeristy of Minnesota. http://www.math.umn.edu/∼olver/

aims / qr.pdf
Press W., Teukolsky S., Vetterling W. and B. Flannery, 2002. “Numerical Recipies in C: the Art of Scientific

Computation.” Second Edition. Cambridge University Press.
GNU Octave, 2014. “GNU Octave 3.8.1.” http://www.gnu.org/software/GNU Octave/
Searle I., 2005. “RLaB 2.1.05 for Windows.” http://rlab.sourceforge.net/
Kostrun M., 2014. “RLaBplus 1.0.” http://rlabplus.sourceforge.net/

A. Singular Value Decomposition

Consider an n × p matrix A, where n ≥ p. This matrix may be factored as A = USV′

where the dimensions of U, S and V are n × r, r × r, and p × r, respectively. S is a
diagonal matrix of r singular values, where r is the rank of A, that is, r is the number of
linearly independent columns of A. This representation is called the “reduced form” of the
SVD-decomposition of A because it omits the singular values equal to zero that correspond
to linearly dependent columns of A. However, most mathematical textbooks define U, S
and V as n × n, n × p, and p × p matrices, respectively. Such dimensions arise from the
addition of n − r zero-columns to U, p − r zero-rows and p − r zero-columns to S, and
p − r zero-columns to V, whenever A is not of full rank. Hereinafter we shall consider
only the reduced form of the SVD-decomposition, although the reader should keep in mind
that this form is the same for full column rank matrices.

The singular values of A are always real numbers equal to the square root of the eigen-
values of the symmetric matrix A′A and V is a matrix of the r eigenvectors of A′A.
Therefore V is an orthogonal matrix, so that V′V = Ir is always verified. U is also an
orthogonal matrix that satisfies U′U = Ir. Then appealing to these properties we are able
to get U, S and V by computing the eigenvalues and eigenvectors of A′A through the
already described QR-algorithm . In short, the procedure is as follows:

(1) Compute the eigenvalues of A′A with theQR-algorithm. To avoid further computa-
tional burden compute also the rank of A, for example by counting the non-zero-rows
of Q.

(2) Compute the eigenvectors of A′A with the QR-algorithm. If A is not of full (col-
umn) rank, that is r < p, resize S and V to the reduced form of the SVD-decomposition
and proceed to the next step.

(3) Compute U solving column by column the linear system (Vr×rS
′
r×r)U

′ = A′n×r.
Finally, return Un×r, Sr×r and Vp×r.

The following pseudocode summerizes the whole computation. For simplicity, we shall
assume that A is full column rank.

Set

G = A′A
G0 = G
λOLD = 1p
V = Ip
S = 0p×p
U = 0p×p

JSM2015 - Section on Statistical Computing

1012

First step. Compute eigenvalues and S

for h = 1 . . . 1000
λNEW = 0p
{Q,R} = QR(G)
G = Q′GQ

for i = 1 . . . p
λi

NEW = gij , ∀ i = j
end

δ = λNEW − λOLD

if |δ′δ| < 10−8 stop
λOLD = λNEW

end
for i = 1 . . . p

sij =
√
λi

NEW, ∀ i = j
end

Second step. Compute eigenvectors and V.

G = G0

for h = 1 . . . 20
{Q,R} = QR(G)
V = VQ
G = RQ

end

Third step. Compute U and return the results.

B = VS′

for i = 1 . . . n
U′i = B−A′i (solution to the linear system BU′ = A′)

end
return {U,S,V}

Example 2. SVD-decomposition of an n × p (n ≥ p) full column rank matrix A. The
script returns the factor matrices U,S,V whose dimensions are n × p, p × p and p × p,
respectively. At the end of the process it must be verified that U′U = Ip, V′V = Ip and
A = USV′ as well.

null=0
one=1
two=2
three=3
delta=0.00000001
iter=20

A=mydata.txt
size={A}
n=size[two]

m=size[three]

zeros()
U=ans
S=U’
S=S*U
n=m
identity()
V=ans
n=one

JSM2015 - Section on Statistical Computing

1013

ones()
q0=ans
p=m
c=m

A1=A
G=A’
G=G*A
G0=G

[1] Eigenvalues

qq=q0
z=1000
LOOP01

A=G
qr()
A=A1
Q’
G=ans*G
G=G*Q

i=one
j=p
loop01

i-one
ans*p
ans+i
G[ans]
qq[i]=ans
i=i+one
j=j-one

j=>loop01

d=qq-q0
q0=qq
z=z-one
d’
d*ans
sqrt(ans)
ans<delta
one-ans
z=ans*z

z=>LOOP01

[2] Eigenvectors

G=G0
z=iter
LOOP02

A=G
qr()
A=A1
V=V*Q
G=R*Q
z=z-one

z=>LOOP02

h={}
i={}
j={}
k={}
a={}
z={}

[3] U,S,V computation

V0=V

n=c
identity()
W=ans

i=c
LOOP03

j=c
loop03

k=i-one
k=c*k
k=k+j
h=V[k]
W[k]=h

j=j-one
j=>loop03

i=i-one
i=>LOOP03

V={}
V=W
W={}
k={}

i=one
j=c
LOOP04

i-one
ans*c
ans+i
h=ans
qq[i]

JSM2015 - Section on Statistical Computing

1014

sqrt(ans)
S[h]=ans
i=i+one
j=j-one

j=>LOOP04
B=V*S

z=n
n=one
m=c
ones()
ONES=ans
k=ONES
n=z
z=k

i=one
j=c
LOOP05

k[i]=i
i=i+one
j=j-one

j=>LOOP05
h=k-ONES
h=h*c
h=h+ONES
m=ONES*c

j=n
LOOP06

b=A[k]

b=b’
B\b
U[h]=ans
k=k+m
h=h+ONES
j=j-one

j=>LOOP06
U=U’

k=z
i=one
j=c
LOOP07

k[i]=i
ONES[i]=one
i=i+one
j=j-one

j=>LOOP07

j=p
LOOP08

V0[k]
V[k]=ans
k=k+m
j=j-one

j=>LOOP08

[4] Return U(nxc),
S(cxc), V(pxc) such
that A=U.S.V’

JSM2015 - Section on Statistical Computing

1015

