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Abstract 
 
Partially accelerated life testing (PALT) is preferable over accelerated life testing (ALT) 
in situations where a model linking the stress to the distribution parameters is 
unavailable. Under the assumption of a generalized exponential life distribution, a 
parametric bootstrap-based method of obtaining confidence intervals for the mean life is 
introduced. Its performance is studied against that of intervals obtained using the 
traditional delta method using Monte Carlo simulation. Results show that the bootstrap-
based method performs better than the traditional approach. 
 
Key Words: Resampling, PALT, Maximum Likelihood, Acceleration Factor, Mean 
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1. Introduction 
 
Products which under nominal use conditions last for a long period pose a problem in 
determining their mean life using standard life tests because only a very small fraction of 
them will fail under a testing period of reasonable duration. In such situations, 
practitioners resort to accelerated life tests (ALT). As Nelson (1980) puts it: “Accelerated 
life testing of a product or material is used to get information quickly on its life 
distribution. Test units are run under severe conditions and fail sooner than under usual 
conditions. A model is fitted to the accelerated failure times and then extrapolated to 
estimate the life distribution under usual conditions. This is quicker and cheaper than 
testing at usual conditions, which is usually impractical because life is so long.” When 
the acceleration factor is known or there exists a mathematical model which specifies the 
life-stress relationship, the Accelerated Life Testing is the best way to get information 
quickly on the life distribution. However, there are some situations in which neither the 
acceleration factor is known nor do life-stress models exist or are very hard to assume. In 
such cases partially accelerated life tests (PALT) provide a better method. 
 
Under the PALT method, a portion of the test units are placed under the nominal use 
(field use, design use) stress conditions and the remaining units are tested under a 
suitably selected higher than nominal stress level. The life distribution under the higher 
stress level is assumed to be the same as that under nominal use, but with the scale 
parameter multiplied by an acceleration factor. This factor is estimated together with the 
other distribution parameters. Since there is more failure data from the units that received 
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higher than nominal stress level, the combined data provide better estimates of the 
common parameters. 
` 
One drawback of the PALT method is that unlike in the ALT, some units have to be 
tested under nominal use. Thus this method is not suitable for components that are very 
long lasting. But items such as chemicals that have shelf-lives that are measured in 
months or a year or two can be tested using this method.  
 
1.1 A Brief Review of Relevant Literature 
 
There are a large number of publications on ALTs and a relatively smaller but an 
appreciable number also available for PALTs. For brevity, we will refrain from 
discussing all of these, but limit the discussion to a select few of these publications. An 
excellent coverage of Accelerated Life tests is given in Nelson (1990). Other books 
include Mann, Schafer, and Singapuwalla (1974), Lawless (1982), Tobias and Trindade 
(2011), and Meeker and Escobar (1998).  
 
One of the more recent publications is Jayawardhana and Samaranayake (2003), that 
discussed obtaining lower prediction bounds for a future observation from a Weibull 
population at design (nominal use) stress level, using Type II censored accelerated life 
test data. The scale parameter of the life distribution is assumed to have an inverse power 
relationship with the stress level. They showed that the method works well when the low  
and high stresses are reasonably far apart. Alferink and Samaranayake (2011) considered 
accelerated degradation models and developed confidence intervals for mean life using 
the Delta method and the bootstrap, assuming lognormal distribution with variance 
dependent on stress. Another interesting paper is Kamal, Zarrin, and Islam (2013), who 
presented a step stress ALT plan that works well.  In step stress, the components are first 
put at a lower stress and the unfailed components are subjected to higher stress after a 
specific period. More recently, Jayawardhana and Samaranayake (2014), obtained 
predictive density of a future observation at nominal use conditions using ALT method 
under lognormal life distribution and Type II censoring with non-constant variance.  
 
Among the publications on PALTs, the following warrant mentioning. Saxena and Zarrin 
(2013) used the constant stress Partially Accelerated Life Test (CSPALT) and assumed 
Type-I censoring under the Extreme Value Type-III distribution. The Extreme Value 
Type-III distribution has been recommended as appropriate for high reliability 
components. The authors used the Maximum Likelihood (ML) method to estimate the 
parameters of CSPALT model and confidence intervals for the model parameters were 
constructed. Note that the CSPALT plan is used to minimize the Generalized Asymptotic 
Variance (GAV) of the ML estimators of the model parameters.   
 
Ismail (2013) derived the maximum likelihood estimators (MLEs) of the parameters of 
the GE distribution and the acceleration factor when the data are Type-II censored under 
constant-stress PALT model.  The likelihood ratio bounds (LRB) method was used to 
obtain confidence bounds of the model parameters when the sample size is small. It is 
also shown that the maximum likelihood estimators are consistent and their asymptotic 
variances decrease as the sample size increases. The numerical results reported in the 
paper support the theoretical findings and showed that the estimated approximate 
confidence intervals for the three parameters are smaller when the sample size is larger.  
The LRB method was used to obtain the confidence bounds of the model parameters 
when the sample size is small.  
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Abdel-Hamid (2009), considered a constant PALT model when the observed failure 
times come from Burr(c, k)  distribution under progressively Type-II right censoring.  
The MLEs of the parameters were obtained and their performance was studied through 
their mean squared errors and relative absolute biases.  The paper also showed how to 
constructed approximate and bootstrap CIs for the parameters. The bootstrap CIs give 
more accurate results than the approximate intervals for small sample sizes, the 
Student’s-t bootstrap CIs are better than the Percentile bootstrap CIs in the sense of 
having smaller widths.  However, the differences between the lengths of CIs for the two 
methods decrease with the increase in sample size. 
 
 
1.2 The Generalized Exponential Distribution 
 
The proposed PALT method is developed for the case where the underlying life 
distribution is Generalized Exponential (GE). The generalized exponential distribution 
has been introduced and studied quite extensively by Gupta and Kundu (1999, 2001a, 
2001b), and by Ragab and Ahsanullah (2001). The probability density function and the 
cumulative distribution function of the generalized exponential distribution function has 
the forms:  
𝑓(𝑥; 𝛼, 𝜆) = 𝛼𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)

𝛼−1
      𝑥 > 0,  𝛼 > 0,  𝜆 > 0         

 (1) 
𝐹(𝑥; 𝛼, 𝜆) = (1 − 𝑒−𝜆𝑥)

𝛼
 ,                              

 (2) 
where   is the shape parameter and   the scale parameter.  
 
The GE distribution has certain features which are distinct from the Gamma and Weibull 
distributions (see Gupta and Kundu (1999, 2001)). The GE model can be used as a 
possible alternative for analyzing skewed datasets. An interesting fact is that both 
Gamma and GE distributions have the likelihood ratio ordering property while Weibull 
does not. On the other hand, GE and Weibull distributions have the common feature of 
having closed form expressions for Cumulative Distribution Function (CDF) and the 
Hazard Function. One aspect that makes the GE distribution outperform the Weibull is 
the fact that the convergence of MLE’s of Weibull parameters can be very slow 
(Bain(1976)) whereas the asymptotic confidence intervals obtained under the GE 
assumption maintain nominal coverage even for small sample sizes (Gupta and Kundu 
(2001)). Gupta and Kundu (2001) also showed that the Hazard Function of the GE 
distribution has proprieties similar to those of the Gamma and Weibull distributions. 
These properties are summarized in Table 1.  
 
 

Table 1. Properties of the Hazard Function 

Parameters Gamma Weibull GE 
𝜶 = 𝟏 Constant Constant Constant 
𝜶 > 𝟏 Increasing from 0 to λ Increasing from 0 to ∞ Increasing from 0 to λ 
𝜶 < 𝟏 Decreasing from ∞ to λ Decreasing from ∞ to 0 Decreasing from ∞ to λ 
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2. The Proposed PALT Method and Bootstrap Intervals 
 
The following assumptions are made regarding the proposed PALT method.  
 
1. The total number of units under test is n . 
2. 𝜋  denotes the proportion of sample units allocated to accelerated condition 
3.  (1- )n  of these units are allocated to nominal (field) use conditions. 
4. n  units are allocated to the high stress condition (subject to acceleration) 
 
 
2.1 Likelihood Function under Type I Censoring and Asymptotic C.I.s 
 
Under Type I censoring, the censoring time, τ,  is fixed but the number of failures 
observed in the time τ is a random variable, say R. We assume that the number of items 
failing before time τ  follows binomial distribution with parameters (𝑛, 𝑝)   with  𝑝 =

𝐹𝑋(𝜏; 𝜃),  where θ is the vector of parameters of the GE  distribution. 

Notation 

𝑥𝑖: Observed lifetime of item i tested at the nominal (field) use condition. 

𝑦𝑗: Observed lifetime of item j tested at high stress condition. 

𝛿𝑢𝑖: Indicator function denoting the censoring state of ith observation under   nominal use 

condition, with 𝛿𝑢𝑖 = 1 if the observation is uncensored. 

𝛿𝑎𝑗: Indicator function denoting the censoring state of jth observation under high stress 

condition, with 𝛿𝑎𝑖 = 1 if the observation is uncensored. 

𝑛𝑢: Number of items that failed at nominal use condition.  

𝑛𝑎: Number of items that failed at high stress condition. 

τ:   The censoring time of the life test (for all units). 

𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛𝑢) ≤ 𝜏: Ordered failure times at nominal use condition. 

𝑦(1) ≤ ⋯ ≤ 𝑦(𝑛𝑎) ≤ 𝜏: Ordered failure times at high stress condition. 

𝛽: Denotes the acceleration factor (𝛽 > 1). 

Note that under Assumption 8 the life distribution for the units under high stress is given 

by    
1

10,  0,  0,  ; , 1       x xf x e e x 


 
     


 

    .  
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It can be shown that the total likelihood function, 𝐿 (𝑥, 𝑦|𝛽, 𝛼, 𝜆),  for the parameters, 
given the observed data, is proportional to the expression: 
 

                  (𝛼𝜆)nu(1 − (1 − 𝑒−𝜆𝜏)
𝛼
)
𝑛(1−𝜋)−nu

𝑒−𝜆∑ 𝑥𝑖
nu
𝑖=1 ∏ [(1 − 𝑒−𝜆𝑥𝑖)

𝛼−1
]

nu
𝑖=1    

                   (𝛼𝜆𝛽)na(1 − (1 − 𝑒−𝜆𝛽𝜏)
𝛼
)
𝑛𝜋−na

𝑒
−𝜆𝛽 ∑ 𝑦𝑗

na
𝑗=1 ∏ [(1 − 𝑒−𝜆𝛽𝑦𝑗)

𝛼−1
]

na
𝑗=1 .             

 
The MLE’s of the parameters can estimated numerically by minimizing the log likelihood 
function.  
 
The Asymptotic confidence intervals for the parameters ,  ,  and     can be obtained 
using the convergence in distribution result:  
 

n ((�̂� − 𝛼), (�̂� − 𝜆), (�̂� − 𝛽)) → 𝑁 (0,  𝐼−1(𝛼, 𝜆, 𝛽)) ,     
 

where the 𝐼(𝛼, 𝜆, 𝛽) is the fisher information  matrix given by  
 

𝐼(𝛼, 𝜆, 𝛽)=[

𝐼11(𝛼) 𝐼12(𝛼𝜆) 𝐼13(𝛼𝛽)

𝐼21(𝜆𝛼) 𝐼22(𝜆) 𝐼23(𝜆𝛽)

𝐼31(𝛽𝛼) 𝐼32(𝛽𝜆) 𝐼33(𝛽)
]=

[
 
 
 
 
 

𝜕2𝑙

𝜕𝛼2

𝜕2𝑙

𝜕𝛼𝜕𝜆

𝜕2𝑙

𝜕𝛼𝜕𝛽

𝜕2𝑙

𝜕𝜆𝜕𝛼

𝜕2𝑙

𝜕𝜆2

𝜕2𝑙

𝜕𝜆𝜕𝛽

𝜕2𝑙

𝜕𝛽𝜕𝛼

𝜕2𝑙

𝜕𝛽𝜕𝜆

𝜕2𝑙

𝜕𝛽2 ]
 
 
 
 
 

, 

 
and employing the standard z-based confidence interval formulations, 
 

�̂� ∓ 𝑍𝛾 2⁄ √𝐼11
−1(�̂�)  , �̂� ∓ 𝑍𝛾 2⁄ √𝐼22

−1(�̂�)  , �̂� ∓ 𝑍𝛾 2⁄ √𝐼33
−1(�̂�) . 

 
The asymptotic confidence interval for the mean life at nominal use condition is given by 
 

�̂� ∓ 𝑍𝛾 2⁄ √𝑉𝑎𝑟(�̂�) , 
 
where 𝑉𝑎𝑟(�̂�) is obtained using the standard delta method. 
 
2.2 The Proposed Bootstrap Method and the Monte-Carlo Procedure 
 
The Monte-Carlo procedure used for the simulation study is given below. The steps for 
the bootstrap method that can be utilized to obtain confidence bounds for the mean life is 
imbedded in this procedure and are given in italics.  
  
 

 Random samples were generated from the GE distribution by using the 
transformation 𝑥𝑖 = (

−1

𝜆
) ln [1 − 𝑢𝑖

(1 𝛼⁄ )
] ,  𝑖 = 1,2,… , 𝑛 where 𝑢𝑖

′𝑠  are random 
sample from a uniform (0, 1) distribution. Similarly, data for the high stress 
condition was also generated. 

JSM2015 - Quality and Productivity Section

877



 Distribution parameters were varied in the study but results for only one set: 
 (𝛼 = 2.5, 𝜆 = 2.4 , 𝛽 = 1.5, 2.0)   and 𝜇 = 1/𝜆 [𝜓(𝛼 + 1) − 𝜓(1)] = 0.7002  
where 𝜓(. ) Digamma function is presented here. The censoring time was set at 
𝜏=0.6 , 0.8, and 1.0. 

 The 𝑛  test items were divided into equal sample proportions by setting  𝜋 = 0.5 , 
such that 1/2 the items are allocated at accelerated condition and the remaining 
1/2 are allocated to the nominal use condition. 

 Maximum likelihood method was used to estimate the parameters with the same 
censoring time τ used for both samples. 

 The nonlinear equations of the maximum likelihood estimates were solved 
iteratively using Newton Raphson method.  

 The resulting estimates of the parameters and acceleration factor were used to 
construct asymptotic confidence limits with confidence level at 𝛾 = 0.95 and 
also the asymptotic variance and covariance matrix of the estimators (for use in 
the delta method based intervals). 

 Used the estimated parameters  �̂�, �̂� to generate data from the estimated nominal 
use GE distribution using the transformation   𝑥𝑖=(-1/�̂�)  ln[1-𝑢𝑖

(1 �̂�⁄ ) ]. 
 This was repeated for 1,000 bootstrap samples. 
 The GE parameters were estimated using each bootstrap sample and the 

estimated parameters were used to obtain a bootstrap estimate *
̂  of .   

  
 Using the empirical distribution of the mean *

̂ obtained from bootstrap 
estimates, confidence interval for mean is constructed using quantile at 
(
1−𝛾

2
)100% and  1 − (

1−𝛾

2
)100%. 

 Coverage probabilities were computed based on 1,000 simulation runs. 
 

3. Results and Discussion 
 
Only select results from the simulation experiments are reported below for brevity. All 
simulations results reported here are for α =2.5 and  λ =2.4,   but the acceleration factor   
is set at 1.5 and 2.0. The censoring parameter   was set at values 0.6, 0.8 and 1.0.  
Additional results are available upon request. Note that under the parameter combinations 
given above, the mean life at nominal use condition is 0.7002 units. 
 
Tables 2a and 2b give the results for the parameter combination α =2.5,    λ =2.4,    β 
=1.5,    π=.5,    and τ=.6, with the former giving MLEs and the asymptotic bounds and the 
coverages for the asymptotic intervals and the latter table giving results for the bootstrap 
intervals. Tables 3a and 3b provide results for the parameter combination α =2.5,     
λ =2.4,    β =1.5,    π=.5,   and τ=.8. Tables 4a and 4b provide results for the parameter 
combination α =2.5,   λ =2.4,    β =1.5,    π=.5, and   τ=1.0. Tables 5a and 5b gives the 
results for the parameter combination α =2.5,    λ =2.4,    β =2.0,    π=.5,  and  τ=.8. 
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Table 2a. Simulations Results for Asymptotic C.I.s and MLEs 
α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=.6 

Parameter n MLE MSE 
Asymp. 
Lower 

Bound 95% 

Asymp. 
Upper 

Bound 95% 

Asymp. 
C.I. 

Coverage 

𝝁 

50 0.718224 0.031466  0.571449 0.834240  0.921000 

75 0.715944 0.023177 0.595597 0.811668 0.944000 

100 0.710524 0.012728  0.608993  0.795522  0.935000 

 
Table 2b. Simulations Results for Bootstrap C.I.s  

α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=.6 

Parameter n 
Bootstrap 

Lower 
Bound 95% 

Bootstrap 
Upper 

Bound 95% 

Bootstrap 
C.I. 

Coverage 

𝛍 

50 0.405068 1.367601 0.936700 

75 0.453311 1.176897 0.939500 

100 0.483147 1.051275 0.943900 

 
 

Table 3a. Simulations Results for Asymptotic C.I.s and MLEs 
α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=.8 

Parameter n MLE MSE 
Asymp. 
Lower 

Bound 95% 

Asymp. 
Upper 

Bound 95% 

Asymp. 
C.I. 

Coverage 

𝝁 

50 0.711110 0.021889 0.571449 0.834240 0.921000 

75 0.702451 0.014470 0.595050 0.810705 0.933000 

100 0.709317 0.009428  0.605980  0.791605 0.936000 

 
Table 3b. Simulations Results for Bootstrap C.I.s  

α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=.8 

Parameter n 
Bootstrap 

Lower 
Bound 95% 

Bootstrap 
Upper 

Bound 95% 

Bootstrap 
C.I. 

Coverage 

𝛍 

50 0.404121    1.264267 0.938800 

75 0.457659    1.106968 0.949800 

100 0.500748 1.053099 0.954430 
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Table 4a. Simulations Results for Asymptotic C.I.s and MLEs 
α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=1.0 

Parameter n MLE MSE 
Asymp. 
Lower 

Bound 95% 

Asymp. 
Upper 

Bound 95% 

Asymp. 
C.I. 

Coverage 

𝝁 

50   0.708061   0.016594  0.567329  0.829897  0.931000 

75   0 .687499   0 .010054  0.591657  0.807097  0.942000 

100   0 .708817   0.008913  0 .606182  0 .792432  0.946000 

 
Table 4b. Simulations Results for Bootstrap C.I.s  

α =2.5,    λ =2.4,    β =1.5,    π=.5,    τ=1.0 

Parameter n 
Bootstrap 

Lower 
Bound 95% 

Bootstrap 
Upper 

Bound 95% 

Bootstrap 
Coverage 

𝛍 

50 0.407540    1.163585 0.945500 

75 0.445111    0.995156 0.956800 

100  0.486591  1.016866 0.968900 

 
 

Table 5a. Simulations Results for Asymptotic C.I.s and MLEs 
α =2.5,    λ =2.4,    β =2.0,    π=.5,    τ=0.8 

Parameter n MLE MSE 
Asymp. 
Lower 

Bound 95% 

Asymp. 
Upper 

Bound 95% 

Asymp. 
C.I. 

Coverage 

𝝁 

50 0.706543 0.020173 0.565926 0.826414 0.931000 

75 0.688825 0.012045 0.591563 0.806085 0.929000 

100  0.709002 0.009291 0.605980 0.791605 0.936000 

 
Table 5b. Simulations Results for Bootstrap C.I.s  

α =2.5,    λ =2.4,    β =2.0,    π=.5,    τ=0.8 

Parameter n 
Bootstrap 

Lower 
Bound 95% 

Bootstrap 
Upper 

Bound 95% 

Bootstrap 
C.I. 

Coverage 

𝛍 

50 0.399118 1.189022 0.939500 

75 0.436927    1.041010 0.948500 

100 0.500594 1.052936 0.954430 
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The results show that the MLE of the mean is close to the true value at all sample sizes 
and parameter combinations. Simulation results not reported here also show that the 
maximum likelihood estimates of the other parameters are very good. Results also show 
that the parametric bootstrap-based intervals provide coverages closer to the nominal 
value than the large sample intervals based on the asymptotic variance covariance matrix. 
Both intervals did better for moderate to large sample sizes when compared to results for 
the case when sample size under acceleration and nominal used was kept at 25 
components each. The smaller censoring time also seems to reduce the coverage 
probability slightly. Overall, the bootstrap method did very well under most situations. 
Results for additional parameter combinations not reported herein also show similar 
results. Preliminary results, not reported in here, also show reasonable coverage for 
bootstrap-based confidence intervals constructed for other model parameters. 
 
The parameter combinations we have considered so far, however, do not look at results 
for censoring parameter values less than 0.6 and acceleration levels below 1.5 and above 
2.0. These combinations may yield unsatisfactory results. Work on these additional 

 combinations are currently under way.
 

4.0 Conclusions and Future Work 

A parametric bootstrap-based method for constructing confidence intervals for the mean 
life of a component based on data from a partially accelerated life test under the 
assumption of a generalized exponential life distribution is introduced. The generalized 
exponential distribution combines several of the useful features of Gamma and Weibull 
Distributions and thus is a valuable tool in modeling lifespans of products. The results of 
a Monte-Carlo simulation study show that the proposed intervals provide coverage close 
to the nominal level, especially for moderate to large sample sizes. Preliminary results, 
not reported in here, also show reasonable coverage for bootstrap-based confidence 
intervals constructed for model parameters. Future extensions include the use of the non-
parametric rather than the parametric bootstrap and extending the procedure to other 
types of life distributions under Type I censoring. 
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