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Abstract 
Correct specification of the model used for small area estimation is important in order to 
obtain valid predictors of the target quantities and of the prediction of the mean squared 
error. By using recursive residuals, we construct misspecification tests for the two linear 
mixed models in common use for small area estimation; the area-level model and the 
unit-level model. We propose simple formulas for the recursive residuals that do not 
require repeated estimation of the variance components, and use them to form tests with 
asymptotic t distribution. The proposed tests are most powerful against nonlinear effects 
of the covariates. Simulation results reveal that under appropriate sorting of the sample 
observations, the tests possess the correct size under the null hypothesis and good power 
in detecting misspecification of the linear predictors. 
 
KeyWords: Recursive residuals, model testing, area-level model, unit-level model, 
variance components 
 

1. Introduction 
Linear mixed models are commonly used for prediction of small area means (Rao, 2003; 
Jiang and Lahiri, 2006). The best linear unbiased prediction (BLUP) method is used to 
obtain estimates of the fixed effects and predictions of the unobserved random effects. 
Clearly, the working model needs to be adequately specified in order to obtain valid 
estimators of the true population means and of the prediction mean squared error. 
(PMSE). 
 
The two most popular linear mixed models in small area estimation are the area-level 
model (Fay and Herriot, 1979) and the unit-level model (Battese et al., 1988). Hereafter, 
we abbreviate the two models as ALM and ULM, respectively. In order to accommodate 
for the possibility of misspecified linear predictors under these models, Jiang et al. (2011) 
propose the use of what they call observed best predictors (OBP). Nevertheless, Jiang et 
al. (2011) note in numerical examples that the BLUP method can outperform the OBP 
method, in terms of the PMSE. The authors suggest that testing the working model can be 
useful in situations where the linear predictor is severely misspecified.  
 
Previously, Pan and Lin (2005) proposed the use of the cumulative sums of the estimated 
raw model residuals, and a simulation based two-sided test statistic. Other techniques are 
considered in Crainiceanu and Ruppert (2005) and Zhang and Lin (2003), which are 
based on likelihood ratio and score tests against a broad class of models specified under 
the alternative hypothesis. The latter class of models are of the semi-parametric type, 
where the parametric part represents the mean function of the null model, and the other 
part is a nonparametric function of the available covariates. This nonparametric function 
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is estimated using the smoothing (penalized) splines, but the power of the tests can be 
sensitive to the choice of the points that define the splines. 
 
Using recursive residuals, Brown et al. (1975) proposed a test that is easy to compute for 
detecting shifts in the model parameters over a specific time period. The authors showed 
that the recursive residuals are independent where each recursive residual represents a 
standardized one-step-ahead prediction error. Harvey and Collier (1977) used this class of 
independent residuals to test for polynomial covariate effects in linear regression models 
with homoscedastic error variance. McGilchrist and Sandland (1979) extended the 
derivation of the recursive residuals to the general linear model when the variance-
covariance matrix is known. See Kianifard and Swallow (1996) for a review of these (and 
other) uses of recursive residuals. Haslett and Haslett (2007) classified the recursive 
residuals as conditional residuals, and consider them to be more fundamental and useful 
in model diagnostics than the least squares residuals that have a marginal nature. 
 
Application of the tests that are based on the recursive residuals to the ALM and ULM 
presents some potential challenges. On the one hand, the assumption of homoscedastic 
variance under the multiple linear regression models no longer holds under the ALM. 
Further, the assumption of independent errors is violated under the ULM. On the other 
hand, while our models are special cases of the general linear model considered by 
McGilchrist and Sandland (1979), their approach requires known variance-covariance 
matrices, which is not the case in practice. Simply replacing the variance components by 
their estimates can be computationally intensive if the estimation is carried out repeatedly 
for each recursive residual. It is also unclear whether the test statistic, obtained from 
plugging in these estimates, is theoretically valid. 
 
We propose simple recursive residuals that are easy to compute. Under the ALM with 
independent area-level direct estimators, we propose to use the ordinary least squares 
(OLS) fit of the regression coefficients directly, just like in Brown et al. (1975). The OLS 
fit allows to establish the asymptotic N(0,1)-distribution of the resulting recursive 
residuals. Under the ULM, we consider a transformed model as in Fuller and Battese 
(1973); under which only a function of the unit-level errors remains in the model, thereby 
avoiding the need for estimating the variance of the random effects. Asymptotic t-tests 
can be constructed based on recursive residuals computed from the transformed model. 
 
The rest of the paper is organized as follows. In Section 2, the recursive residuals are 
presented under a class of linear mixed models assuming known variance components. 
The problems of recursive estimation of the unknown parameters under the ALM and the 
ULM are discussed in Section 3. The proposed formulas for the recursive residuals are 
given in Section 4 and the resulting test statistics are presented in Section 5. Simulation 
results evaluating the empirical size and power of the proposed tests are summarized in 
Section 6. We provide some concluding remarks and directions for further work in 
Section 7.  
 

2. Recursive residuals under a class of linear mixed models 
The derivation in McGilchrist and Sandland (1979) is followed in defining the recursive 
residuals under a class of linear mixed models, which defines a special form of the linear 
model with correlated errors within domains. The approach assumes known variance-
covariance matrix. 
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z  be the corresponding 1p  and 1q  vectors of covariates 
associated with the fixed effects and random effects, respectively. The linear mixed 
model takes the form 
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and ),(~ R0e N  where R  is not necessarily diagonal. It follows that the covariance 
matrix of Y  in [1] is RZGZY  T)var( . 
 
Representation of the recursive estimation of the model fixed effects requires the 
following additional notation. Let )(h

b  denote the thh  element of a vector b , )(h
b  denotes 

the first h  elements of the vector b , let )(h
B  denotes the first h  rows of a matrix B , and 

),( hh
B  denotes the first h  rows and columns of the matrix B . Further, let h

b̂  denote an 
estimated vector obtained as a function of the first h  observed data points. Then, model 
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Under [2], the recursive residuals are defined as 
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thh )1(   value of Y  and its predicted value using the previous h  observations where the 
linear, unbiased, and minimum mean squared error predictor of )1( hy  based on )(hY  is 

given by hh

T

h R21)( gY . Assuming known variance components, which represent the 

parameters included in G  and ),( hh
R , it follows that )1,0(~ NW

ind

h
, ph  . Note that in 

theory, the parameters of ),( hh
V  has to be known. However, in practice ),( hh

V  needs to be 

estimated accurately in order that hW  converges to the normal distribution. The problems 
of estimating ),( hh

V  under the ALM and the ULM are discussed next. 
 

3. Recursive residuals under small area models 

In the previous section, the definition of h
W  in [4] requires known covariance ),( hh

V . A 
plug-in expression using the estimated values would require recursive estimation based 
on the first h  observations according to an appropriate sorting. Discussion of the choice 
of data sorting is postponed to Section 5. In this section, the ALM and the ULM are 
represented as special cases of [1], and the problems of computing the recursive residuals 
are discussed. 
 
Consider first the ALM and denote by i

y~  the direct survey estimate of the thi  domain 
mean, by i

x  the associated 1p  vector of covariates measured at the domain level, and 
by i

e  the associated sampling error, where mi ,...,1  and pm  . The ALM is given by 
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where T

mm
yy )~,...,~(~

1)( Y , T

mm
),...,( 1)( xxX  , T
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known sampling variances. Note that in model [1] if 1
i

n , for mi ,...,1 , and 1q , 
then i
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AIG  , and ),( nn
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D . Thus, model [5] 

represents a special case of model [1] with Z  reduced to the identity matrix of order m . 
Let ),(),(),()( )~var(

mmmmmmm
A QDIY  . Under model [5], the recursive residuals extend 

the definition in Brown et al. (1975) and are given by 

[6] 
)ˆ~var(

ˆ~

)1()1(

)1()1(

h

T

hh

h

T

hhALM

h

y

y
W

βx

βx








 ,   mph ,...,1  

where 

[7] )(
1

),()(
1

)(
1

),()(
~)(ˆ

hhh

T

hhhh

T

hh
YQXXQXβ  , 

and 

[8] )1(
1

)(
1

),()()1(1)1()1( )()()ˆ~var(







hhhh

T

h

T

hhh

T

hh
DAy xXQXxβx . 

JSM2015 - Survey Research Methods Section

818



 
 

 
For a given domain, the ULM is given by 

[9] )()()()( iiii ninnn
u e1βXY  , 

where )( in
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2
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covariance matrix under [9] is given by 
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The ULM for all areas can be represented as 
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Substituting ),( nn
V  from [13] into [3], the recursive residuals can be defined as in [4]. We 

denote them by ULM

h
W . 

 
Under the definition of the recursive residuals in [6], h

β̂  is estimated using the first h  
observations and it depends on the unknown variance component A , which appears in 
the numerator and the denominator of ALM

h
W . There are two potential problems. The first 

one concerns the precision of the estimator of A  when h  is small, ph  , and the second 
one is the asymptotic independence between ALM

h
W  and ALM

h
W  , for all hh   and 

phh , . A third, related issue is the choice of the h  observations. As shown in Section 
5, this choice is typically based on the values of the covariates rather than the domains to 
which the observations belong. It can then happen that only few domains are covered 
when h  is small, which can have undesirable effects on the variance component 
estimates.  
 
In the next section, we propose formulas for recursive residuals that are easy to compute 
and establish their theoretical properties. Test statistics based on them are presented in 
Section 5. 
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4. Modified definitions of recursive residuals 
Below we propose recursive residuals under ALM and ULM that do not require recursive 
estimates of the variance components. 
 
Instead of [6], we define the thh  recursive residual as 

[14] 
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Q  by replacing A  with a consistent estimator Â  that is 

obtained using the direct estimates for all available domains. Note that ALM

h
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A  only in its denominator, which represents the exact variance of }ˆ~{ )1()1(
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Thus, replacing A  by Â  implies that asymptotically )1,0(~ NALM

h
 , and each ALM

h
 and 

ALM

h
  ( hh  , phh , ) are asymptotically independent as m . 
 
For the ULM, we first transform the model and then apply the formula of McGilchrist 
and Sandland (1979. The transformed model is given by 
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This is an oft-used transformation. For instance, Fuller and Battese (1973) used it for 
testing normality of the observations under the ULM. Note that by [10]

T

iieni i
KKYK 2

)( )var(  , which does not depend on 2
u

 . Also, note that )()( mnn 
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and hence 
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Deriving the recursive residuals under [17] is achieved by replacing, in Section 2, )(n
Y  by 

)(n
KY , )(n

X  by )(n
KX , )(n

e  by )(n
Ke , and )(n

V  by TKK . After performing these 

replacements, equation [4] can be recomputed for model [17] where we denote by TULM

h
  
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the value of 
h

W  under the transformed ULM. Then, ),0(~ 2
e

TULM

h N  . Note that the 
proposed computations of the recursive residuals under model [17] do not require the 
estimation of 2

u
 .  

 
5. Test statistics 

The purpose of the previous section was to compute recursive residuals that possess the 
desirable properties of being independent and normally distributed with constant 
variance. This was achieved only asymptotically under the ALM and is satisfied under 
the transformed ULM. Testing a nonlinear covariate effect under the two models is 
accomplished after sorting the observations by the values of the variable of interest. This 
is apparent under the ALM. For the ULM, we argue that testing the nonlinear 
specification of a covariate is also possible under the transformed ULM. This is because 
the nonlinearity effect of any given covariate continues to hold also under the 
transformed version of that covariate, which can be detected using the recursive residuals 

TULM

h  .  

If the correct functional form of a given covariate is not represented in the fitted model, 
then this misspecification causes the recursive residuals to become systematically 
positive or negative over a wide range of values of the misspecified covariate. This is 
clearly the case when the misspecified covariates are nonlinearly related to the covariates 
in the mean function of the working model. Examples of commonly exhibited nonlinear 
covariate effects in practice are given in Section 6. Thus, the sum of the recursive 
residuals tends to depart from zero and hence can be used to quantify this type of 
misspecification. The proposed test statistics for the ALM and ULM are given below. 
 
For the ALM, the test statistic is benefiting from the independence between the sample 
mean and the sample variance of the asymptotically independent recursive residuals 

ALM

h
  defined in [14]. The test statistic is given by 
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ALM
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ALM pm
1

1
* )(  . Under the null hypothesis that the ALM is correctly 

specified,  1~
 pmALM

tT  as m . When misspecification is present, the magnitude of 
ALM

*  increases in absolute value and the numerator of [22] increases leading to a bigger 
value of ALM

T . 
 
For the ULM, the test procedures begin by applying the transformation as given in 
Section 4. The number of observations under the transformed ULM is reduced to 

mnnn
m

i

i


1
* )1(  because the maximum number of linearly independent rows in  

)( in
L , which represents an orthogonal projection on the complement space spanned by the 
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unit vector )( in
1 , is 1

i
n  rows. Note that the transformation in [17] results in deleting the 

intercept term and hence the number of covariates under the transformed model reduces 
to p  where   equals one when the original model involves an intercept and equals 
zero otherwise. Moreover, when   equals one, the first column in )(n

KX will be the zero 

vector and should be removed from this matrix when the recursive residuals TULM

h
 , 

*),...,1( nph   , are computed.  
 
Sorting the data comes next. Note that each observation represents under the transformed 
model the original observation under the ULM minus its domain mean value. Thus, data 
sorting can be achieved by sorting the observations under [17] by the corresponding 
values of the original covariate under test. A better performance of this test can be 
expected when the latter sorting is performed regardless to which domain each 
observation belongs. The prescribed data sorting is reasonable in this case because the 
objective of the test is to detect a nonlinear misspecification in the functional relationship 
between response and the explanatory variables. 
 
The proposed test statistic is given by 

[23] 
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where 









n

ph

TULM

h

TULM pn
1

1
* )(



 . Under the null hypothesis that the ULM is 

correctly specified (hence the transformed ULM),  TTULM ~ tn*-p+l-1 as n* ®¥. 
 

6. Simulation studies 

The performance of the proposed test statistics ALMT  and TULMT  has been evaluated by 
running separate simulation studies to assess the size and power of each test. In order to 
evaluate the size of the tests, the sample data were generated under the correct model and 
the recursive parameter estimates and residuals were computed under the same model. 
Then, each test statistic was computed under the corresponding correct model. The 
process was repeated 2000r  times. The size of the test was calculated by computing 
the proportion of times that it rejects the null hypothesis that the fitted model is correctly 
specified. The test rejects the null hypothesis when the value of the test statistic exceeds 
the chosen critical value that is determined by the t-distribution, as indicated under [22] 
and [23]. 
 
6.1 Area-level model 

We generated the direct estimates under the ALM as  

[24] iiiiiii euxxxxy  443322110
~   
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where 110,...,1i , 10   , 11  , 32  , 13  , 14  , )9,1(~1 Ux , 

)3,1.0(~2 Ux , )2.0.2(~3 Nx , and )2.0.2(~4 Nx . The random effects were 

generated as ),0(~ ANui , 1A  and the sampling errors as ),0(~ ii DNe  where 

]5.1,5.0[iD . Thus, the left-hand side of [24] is generated by adding iu  and ie  to the 
mean function of the model. This process was replicated 2000r  times. 
 
In order to assess the power of the test, we generate the data from four models given by 

[25] iiiiiii euxxxxy  443322110 ln~  , 

[26] iiiiiiii euxxxxxy  443322
2
1110 15.0~  , 

[27] iiiiiiii euxxxxxy  443322
2
1110 ln15.0~  , 

[28] iiiiiiii euxxxxxy  5443322110 2~  , 

where )1,(ln~ 25 xNx . We proceeded by fitting model [24]. 

 
The four models [25-28] are examples of model misspecification where a nonlinear effect 
of one (or more) of the covariates is not accounted for under the fitted model [24]. This 
kind of misspecification is frequently recognized in practice, as commented in Pan and 
Lin (2005). To ensure a reasonable power of the test, the observations are sorted in 
advance by the values of the covariate that is being tested for misspecification. Extension 
of this paradigm is obtained by assuming that more than one covariate is misspecified 
under the assumed model. In this case, we propose sorting the observations by the fitted 
values before computing the test statistic. The empirical size and power of the test are 
summarized in Table 1. 
 

Table 1. Proportions of rejection of the null model [24]  

Nominal Level 
Misspecified Model 

Correct 
Model Model [25] Model [26] Model [27] Model [28] 

5% 4.98 100 97.1 100 (73.6) 96.4 

2.5% 2.51 99.9 94.5 99.8 (58.7) 89.4 

 
The nominal levels in Table 1 refer to the probability that the proposed test statistic 
exceeds the 95 and 97.5 percentiles of the t-distribution with 1041 pm  degrees of 
freedom, where 5p . The results in the table indicate that the test possesses the correct 
size when the fitted model is the correct model. Results on the power of the test are 
summarized in the remaining columns of the table. When 2ln x  is the correct form of the 
second covariate in [24], sorting the observations by the values of this variable before 
computing ALMT  yields extremely high powers whereby the test rejects the null 
hypothesis in 100% of the times at the 5% nominal level and 99.9% of the times at the 
2.5% nominal level. 
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Fitting model [24] when [26] is the correct model, i.e. ignoring 2

1x , yields a power of 
97.1% and 94.5% at the 5% and 2.5% nominal levels, respectively, where in this case the 
observations are sorted by the values of 1x . When model [27] was used for generating the 
data, we ran the test after sorting the observations by the values of 2x . The power of the 
test when sorting the observations by the fitted values is also given in Table 1 between 
the brackets. Fitting model [24] instead of [27] yields good powers under the two sorting 
methods. However, soring by the values of a single misspecified variable produces a 
significantly higher power than sorting by the values of the linear combinations of all the 
variables (i.e. the fitted values). 
 
Unlike the previous examples of model misspecification, when 5x  is an important 
variable in model [28] but is absent in model [24], sorting the observations by the values 
of 2x  (that is nonlinearly related to 5x ) is necessary to obtain a high power of the test. 
This indicates that rejecting the null hypothesis may not be because of incorrectly 
specifying 2x  but rather omitting 5x , which is an important covariate in the true model 
and nonlinearly related to 2x . Under this scenario, the test captures the incorrect 
specification 96.4% and 89.4% of the times at the corresponding 5% and 2.5% nominal 
levels. Although the test is capable of detecting this example of model misspecification, it 
would be challenging to improve the mean function of the model if 5x  is unknown. 
 
6.2 Unit-level model 

In this part, the performance of the proposed test statistic in [23] is assessed with respect 
to the transformed version of the ULM using the transformation matrix in [20]. Under the 
null hypothesis that the fitted model is correctly specified, TULMT  is compared to the 
critical values of the t-distribution with pmn   degrees of freedom to obtain the size 
of the test. We generated data from the following ULM 

[29] ijiijijijijij euxxxxy  443322110  , 

where 20,...,1i , 7,...,1j , for all i , 10  , 11  , 32  , 13  , 14  , 

)9,1(~1 Ux , )3,1.0(~2 Ux , )2.0,2(~3 Nx , )2.0,2(~4 Nx , ),0(~ 2
ui Nu  , 

),0(~ 2
eij Ne  , 12 u , and 12 e .  

 
The test statistic was computed under the transformed ULM that can be represented as 

[30] **
44

*
33

*
22

*
11

*
ijijijijijij exxxxy   , 

where 



7

1

* 7/
j

ijijij yyy , 



7

1

* 7/
j

hijhijhij xxx , 4,...,1h , and 



7

1

* 7/
j

ijijij eee . 

Note that only 61in  observations per domain will be used under [30] in order to 

compute TULMT  and thus the number of observations becomes
12020140*  mnn . Corresponding to the 5% and 2.5% nominal levels, the 
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size of the test is obtained by finding the proportion of times (out of 2000r  replicates) 
that 116,2/ || tTTULM   where   denotes the nominal level. 
 
In order to assess the power of the test, we generate the unit-level data from the 
following models 

[31] ijiijijijijij euxxxxy  443322110 ln  , 

[32] ijiijijijijijij euxxxxxy  443322
2
1110 15.0  , 

[33] ijiijijijijijij euxxxxxy  443322
2
1110 ln15.0  , 

[34] ijiijijijijijij euxxxxxy  5443322110 2 , 

where )1,(ln~ 25 xNx , but fitted model [30] to compute the test statistic.  In doing 
so, we emphasize the need to sort the observations by the values of the covariate 
under test, regardless of the domain membership of these observations. When 
more than one covariate is suspected of being misspecified under the ULM, we 
sort the observations by the fitted values obtained under [29]. The empirical 
power of the test under the above four scenarios is summarized in Table 2. The 
results when the observations are sorted by the fitted values are recorded between 
the brackets therein. 
 

Table 2. Proportions of rejection of the null model [30]  

Nominal Level 
Misspecified Model 

Correct 
Model Model [31] Model [32] Model [33] Model [34] 

5% 5.00 98.8 98.5 97.0 (96.9) 99.9 

2.5% 2.50 97.6 96.3 93.0 (93.2) 99.2 

 
 
By Table 2, the empirical size of the test when the model is correctly specified 
equals to the corresponding nominal level. In addition, the test performs well in 
terms of its power under the four misspecified functional forms in [31-34] (i.e., 
missing 2ln x , 2

1x , 2
2
1 ln& xx , and 5x ) as shown in Table 2. The power of the test 

when both the covariates 1x  and 2x  are misspecified (model [33]) was obtained 
after sorting the observations by the values of 2x .  
 
A result that worth further mentioning is that sorting the observations by the fitted 
values under model [29] yields similar powers to the case of sorting the 
observations by the values of 2x . This may be due to the dominance of 2x  with 

32   on the fitted values such that both ways of sorting yield similar powers of 
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the test. Further study is needed to find sorting methods that would maintain 
higher powers. 
 

7. Conclusion and further work 
This paper develops new goodness of fit test statistics that utilize the concept of 
recursive residuals, with application to two models in common use for small area 
estimation. We propose simple formulas of the recursive residuals, establish their 
theoretical properties and demonstrate their usefulness via simulation studies. 
 
Some words of caution seem warranted. Under the ALM, the independence of the 
recursive residuals depends on there being a sufficiently large number of domains 
and the normality of the random effects. Failure to satisfy one of these two 
conditions may influence the convergence of the test statistic ALMT  to the t-
distribution. In such cases, one may consider the use of bootstrap samples for 
approximating the distribution of the test statistic.  
 
Under the ULM, a domain needs to have sample size greater than one in order to 
be included in the transformed model. A domain may also become ineffective 
when the observations within the domain are all the same. The effective sample 
size is reduced under the transformed model. For example, the sample size that is 
used to compute TULMT  is 2/* nn   when each domain contains two distinct 
observations. Extension of the transformation approach to models with more 
complicated covariance structures seems possible. However, one needs to be 
careful about the choice of the transformation matrix and the method of 
estimating the covariance matrix of the residual errors. An exact linear 
dependence between the columns of X  and Z  can, for example, affect the 
covariate to be tested when the ULM is transformed as shown in [17]. 
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