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 Abstract 
 Immune correlates of protection are immunological assays which have been shown to be 
associated with protection from disease, and more particularly threshold values of assays 
which differentiate individuals susceptible to disease from those protected. They are of 
considerable interest in vaccine research. Important advances in statistical methods have 
been made in the last 10 years: a framework for evaluating candidate assays has been 
postulated, causal inference methods proposed and implemented, consistent terminology 
suggested and methods for finding thresholds and quantifying protection investigated. 
Some earlier methods have been further developed. The presentation will attempt to 
summarize the work done, introduce some new work, and frame the questions which 
might need to be addressed for an immune correlate of protection to serve in a regulatory 
context as a surrogate endpoint for clinical disease in a vaccine efficacy trial. 
 
 Key Words: vaccine, immunological assay, immune correlate of protection, vaccine 
efficacy. 
  
1. Introduction 
 
Immune correlates of protection are immunological assays which have been shown to be 
associated with protection from disease, and more particularly threshold values of assays 
which differentiate individuals susceptible to disease from those protected. They are of 
considerable interest in vaccine research. From data on assay values and subsequent 
disease occurrence collected in a successful vaccine efficacy trial of a novel vaccine, an 
assay reliably predicting protection and a threshold indicative of protection may be 
found, which may then be used to assess the effects of co-administration with other 
vaccines, in the development of combination vaccines, for modelling the effectiveness of 
proposed vaccination programs, and potentially in the licensure of next-generation 
vaccines. When an efficacy trial is not successful, such data can help shed light on the 
mechanisms of action of the vaccine and the pathogen. 
 
Two questions have been the subject of statistical enquiry: What statistical properties of 
an immunological assay demonstrate that it reliably predicts protection? and How shall a 
threshold assay value differentiating susceptible from protected individuals or other 
quantification of protection be found? 
 
We here attempt to present in outline the statistical methods which have been developed 
to address each of these questions, terminology that has been proposed to describe assays 
having particular characteristics, and to identify some of the challenges remaining to be 
addressed. However, this outline is able to provide only the briefest introduction to the 
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topics covered, and the reader is strongly encouraged to consult the references given, the 
citations in those references, work citing those references and other research for a more 
detailed and complete elucidation of each topic. 
 
2. Which assay? 
 
The task of selecting an assay which reliably predicts protection has received extensive 
consideration in the context of the search for a preventative HIV vaccine. In this setting, 
the mechanisms of HIV-1 transmission are poorly understood and hence the intended 
mechanism of action of the vaccine cannot be known definitively in advance of an 
efficacy trial. Consider as a motivating example the RV144 trial, a randomized trial 
conducted in Thailand of a recombinant canarypox vector vaccine plus two booster 
injections of a recombinant glycoprotein 120 subunit vaccine; a short list of six antibody 
or cellular assays which met pre-specified criteria were chosen for primary analysis to 
determine the roles of T-cell, IgG antibody, and IgA antibody responses in the 
modulation of infection risk [1]:  the binding of plasma IgA antibodies to HIV-1 envelope proteins (Env)  the avidity of IgG antibodies for Env  antibody-dependent cellular cytotoxicity,  HIV-1 neutralizing antibodies,   the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of the gp120 

Env,   the level of Env-specific CD4+ T cells. 
Finding the assay best associated with protection could greatly assist assessment of 
alternative vaccines, and potentially guide the development of vaccines by shedding light 
on mechanisms of action. 
 
The Qin and Gilbert framework proposed the elements necessary for an assay to reliably 
predict protection from disease [2,3]. It posits first that a correlation must be shown 
between the rate of the clinical endpoint and pre-exposure assay values. Appropriately 
applied logistic regression could be used to demonstrate this, and the assay may then be 
termed a ‘correlate of risk’. To be a ‘surrogate of protection’, vaccination should both 
increase assay values and reduce the rate of disease among vaccinees, and at least one of 
two further conditions should be met. Either the probability of disease may be shown to 
meet the Prentice criterion, i.e. that for a given assay value the probability of disease is 
independent of the treatment group, or equivalently that the relationship between assay 
value and disease is the same for vaccinees and placebo recipients [4]. (A similar method, 
using a test statistic with the same numerator but a different denominator, is the 
Proportion of treatment effect explained [5]; both methods require variability in assay 
values of placebo recipients to yield meaningful results). Alternatively, a potential 
outcomes approach, based on the principal surrogate framework of causal inference [6] 
may be used to show that vaccine efficacy is low among those with low post-vaccination 
assay values and increases with increasing assay value; (lack of variability in the assay 
values of placebo recipients is not an impediment for this method). Surrogates of 
protection may be used to predict vaccine efficacy in settings and populations similar to 
those in which they were derived; in addition, if the conditions are shown to hold in a 
variety of populations and settings, the assay might be used to reliably predict vaccine 
efficacy more generally without the need for clinical endpoint trials. 
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Methods based on causal inference would appear to be particularly relevant to the 
question of Which assay? since subjects cannot be randomized to assay values, and hence 
standard methods inferring causality from randomization cannot be applied. A correlation 
between assay values and rate of disease may merely result from subjects’ more- and 
less-robust immune systems. 
 
A development of the causal inference approach is the vaccine efficacy curve method 
[7,8], showing how vaccine efficacy varies with post-vaccination assay values of 
vaccinees, and is illustrated for two hypothetical assays in Figure 1. 
 

 Figure 1. Illustration of two hypothetical vaccine efficacy curves. 
 
A steeper vaccine efficacy curve indicates a stronger association between assay and 
vaccine efficacy, suggesting the assay better reflects the effects of vaccination. 
  
A vaccine efficacy curve is constructed from the estimated probability of disease among 
vaccinees and the estimated probability of disease among placebo recipients, both as 
functions of post-vaccination assay value, as shown in Figure 2. 
 

 Figure 2. Illustration of two hypothetical vaccine efficacy curves, showing their 
components – the estimated probability of disease among vaccinees as a function of 
post-vaccination assay value, and the estimated probability of disease among placebo 
recipients as a function of post-vaccination assay value. 

 
A flatter VE curve reflects subjects’ more- and less-robust immune systems, those with 
more robust systems responding to vaccination with higher assay values and less disease, 
but also experiencing less disease when not vaccinated. 
 
The post-vaccination assay values of placebo recipients are not observable, and the assay 
values they would have had if they had been vaccinated must be imputed. Follmann 
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proposed two methods for doing this, close-out placebo vaccination and baseline 
irrelevant vaccination [9]. A variation of the latter is the baseline immunogenicity 
predictor method of Qin and Gilbert [10], which has been applied to find a correlate of 
protection for herpes zoster vaccine [11], though the question of whether the conclusion 
is unique or whether it depends on the predictor used has been raised [12]. Whereas 
Follmann and Qin and Gilbert used an estimated likelihood approach, multiple 
imputation has also been proposed [13]. 
 
A vaccine efficacy curve provides a useful direct measure of relationship between post-
vaccination assay value and vaccine efficacy, offering the potential of directly predicting 
vaccine efficacy from observation of the post-vaccination assay values of vaccinees. 
 
The question of Which assay? has received less attention in the setting of the licensure of 
novel and next-generation vaccines in the pharmaceutical industry. In such settings, the 
mechanism of action of the pathogen is often better understood, as is the intended 
mechanism of action of the vaccine. Before an efficacy trial is authorized, the US Food 
and Drug Administration requires demonstration via a ‘validated’ (i.e. sensitive, specific 
to the pathogen, reliable, gradable, having minimal inter-technician variation, etc.) assay 
that the new vaccine has some chance of protecting against disease, and often only a 
single assay is developed and validated. 
 
3. What assay value? 
 
While the search for an HIV vaccine may be some way from considering the question of 
what assay value should be used to differentiate susceptible from protected individuals, in 
the context of the licensure of a novel vaccine in the pharmaceutical industry the 
quantification of an assay value associated with protection greatly assists subsequent 
immunological assessment of co-administration with other vaccines, development of 
combination vaccines, and development and possibly licensure of next generation 
vaccines. Typically in a vaccine efficacy trial subjects’ samples are assayed by the 
regulator-approved assay, thus together with observations of subsequent disease 
occurrence providing data for quantifying protection as a function of assay value. (Note: 
case-cohort design can greatly reduce the number of samples assayed and facilitate 
testing additional assays [14,10].) 
 
A notable early application of statistical methods to finding a threshold assay value 
differentiating susceptible from protected individuals was the method used by Chang and 
Kohberger in the context of protection against invasive pneumococcal disease following 
vaccination with 7-valent pneumococcal conjugate vaccine [15,16]. The method finds the 
threshold at which the relative risk of being below the threshold equals the relative risk of 
disease; i.e. it is the solution to      vaccinatednot|diseaseP

vaccinated|diseaseP
vaccinatednot|P

vaccinated|P: 

p

p
p tt

ttt  
                    where          t = assay value 
                                      tp = threshold differentiating susceptible from protected. 
 
The method may be illustrated by Figure 3. It led to the adoption by the WHO of the 0.35 
µg/mL IgG threshold after pneumococcal conjugate vaccination [17], which has also 
been accepted by other regulators, and was used for the licensure of 13-valent 
pneumococcal conjugate vaccine [18]. The method has also been used to estimate a 
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threshold correlate of protection for meningococcal C conjugate vaccine in a sero-
epidemiological study [19]. It is a population-based method [20] and does not require 
individual data on assay value and disease; it is predictive of vaccine efficacy and may be 
thought of as a population average measure, not explicitly quantifying the level of 
protection at the threshold. Covariates are not readily introduced, and it assumes the same 
threshold for vaccinees and non-vaccinees, i.e. it assumes the Prentice (1989) criteria for 
a valid surrogate endpoint. 
 

Figure 3. Illustration of method of Chang and Kohberger. 
 
Other methods for finding thresholds include the a:b model, which assumes fixed rates of 
disease above and below the threshold and selects the threshold maximizing the profile 
likelihood [21]; the method of Li and Parnes, which finds the threshold that maximizes 
the correlation between disease status and susceptible/protected status based on assay 
threshold [22]; and receiver-operating-characteristic based methods [23,24]. 
 
Although single-valued thresholds are commonly used to differentiate protected from 
susceptible individuals, natural variability between individuals means that at any given 
assay value some individuals will be protected and some susceptible, and if protection 
does in fact increase with assay value then the level of protection will increase in a 
smooth continuous manner with assay value, in a ‘protection curve’, from which values 
corresponding to 50%, 80% or any other level of protection might be derived. Protection 
cannot however be measured directly; absence of disease may simply result from absence 
of exposure. A scaled logit model jointly estimating an exposure parameter and the 
parameters of a protection curve from assay value and subsequent disease occurrence has 
been proposed       

  






t

t

 exp1
11

 | protectedP1exposurePdiseaseP
 

from which a protection curve conditional on the estimated exposure parameter may be 
derived [25-27]. The method applied to the White/varicella [28] data is illustrated in 
Figure 4. 
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 Figure 4. Illustration of the scaled logit model fitted to the White/varicella data 
showing the fitted model in the left panel, and in the right the derived protection curve 
with 95% confidence interval for protection and assay values for 50% and 80% 
protection. 

 
In general, methods for finding thresholds or protection curves should be invariant to the 
overall rate (incidence) of disease (logistic regression would be a counter-example) and 
reliable estimates of precision should be available, to assess whether observed differences 
are due to chance or reflect true differences in the circumstances of each experiment. 
Consider for example Plotkin’s discussion of HAI correlates of protection against 
influenza, in which point-estimate protective titers of 40, 15, 30, 110, 32 and 64 are 
contrasted [29]; without estimates of precision it cannot be assessed whether the different 
titers reflect differences in each experiment or are simply due to chance. The proportion 
of subjects with assay values within and outside the confidence interval for a protective 
measure, such as a threshold or the assay value for 50% protection, provides a scale-free 
evaluation of the precision of the measure, and a gauge of its utility – a measure with a 
confidence interval spanning most subjects’ assay values being of little utility. 
 
4. Terminology 
 
Terminology has evolved in recent years; most recently Plotkin and Gilbert proposed the 
following [30]: 
 

Correlate of Protection: An immune marker statistically correlated with vaccine 
efficacy (equivalently predictive of vaccine efficacy) that may or may not be a 
mechanistic causal agent of protection 

A correlate of protection can be used to accurately predict the level of vaccine 
efficacy conferred to vaccine recipients (individuals or subgroups defined by the 
immune marker level). 

 
Mechanistic Correlate of Protection (aka. Causal agent of protection): A Correlate of 
Protection that is mechanistically and causally responsible for protection 
 
Non-mechanistic Correlate of protection: A Correlate of Protection that is not a 
mechanistic causal agent of protection 

 
5. Challenges 
 
The goal for a correlate of protection might be: 
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An immunological assay reliably associated with protection, and a protective 
measure (a threshold, or the assay value for 50%, 80%, etc. protection) estimated 
with sufficient precision that 85%* of subjects are confidently classified as 
susceptible or protected †. 

* or some other high proportion; 
† i.e. whose assay values fall outside the 95% confidence interval for the measure. 

 
In addition, other, non-statistical properties are required: o The assay must be standardized, i.e. use a standardized assay protocol and 

ingredients, so that different laboratories return the same results on the same 
samples [31,32]; o The protective measure is defined for a certain population, source of protection 
(natural infection, vaccination), strain of pathogen, source of challenge (natural 
infection, experimental) and case definition; o Ideally, the protective measure should be shown to be consistent across 
populations, sources of protection, strains of pathogen, sources of challenge and 
case definitions (as described in the Qin and Gilbert framework above). 

 
5.1 Challenges – quantifying methods 
 
Publications on statistical methodology for quantifying thresholds for protection or assay 
values for specific levels of protection have so far generally confined themselves to a 
single population, i.e. no distinction has been made between vaccinees and placebo 
recipients; (exceptions are the method of Chang and Kohberger, which relies on the 
differences between vaccinees and placebo recipients to estimate the threshold, and two 
applications of the scaled logit model [27,33]). Typically, the Prentice criterion is 
evaluated and not found to be not met at some level of significance, and so data are 
pooled across treatment groups. A limitation of this approach is that the resulting 
estimated model is not predictive of vaccine efficacy; small differences between 
treatment groups in the relationship between assay value and disease result in the 
predicted efficacy differing from the observed efficacy. This might be problematic from a 
regulatory perspective, if approval of a vaccine were to be based on a correlate of 
protection which did not predict efficacy observed. On the other hand, it would appear 
that for a model to be predictive of efficacy at least one parameter would have to be 
estimated separately for vaccinees and placebo recipients; so for example there would be 
one threshold for vaccinees and another for placebo recipients – a not altogether 
satisfactory conclusion. Further research in this area would be advantageous. 
 
Different thresholds found by different methods can give rise to confusion among non-
statisticians. Numerical comparison of the thresholds found by different methods and 
elucidation of the different interpretations of thresholds would be desirable. 
 
It would seem that not all quantifying methods are equally applicable to all 
circumstances. For example, when vaccine efficacy is high and assay values of vaccinees 
and placebo recipients are well separated (difference in log-means >3 standard 
deviations?) there would seem to be no reason not to use the Chang-Kohberger method. 
The Qin and Gilbert framework notes that in the context of a correlate of vaccine efficacy 
vaccination must at a minimum affect assay values and rate of disease; possibly a 
quantification of these effects could provide a map for when different methods might be 
appropriate, perhaps as Figure 5. Research in this area would be advantageous. 
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 Figure 5. Possible schema for selection of statistical methods quantifying 
correlates of protection. 

 
5.2 Challenges – assay selection methods 
 
The question of reconciling the Prentice criterion with the prediction of efficacy is 
alluded to above. Berger has also questioned whether the criterion ensures that the 
observation of a significant treatment effect on the surrogate endpoint can be used to infer 
a treatment effect on the true clinical endpoint [34]. 
 
The vaccine efficacy curve method requires that the assay values placebo recipients 
would have had if they had been vaccinated (the ‘counterfactuals’) be imputed/estimated 
in order to model how their rate of disease varies with post-vaccination assay value. A 
question of interest is how to select a predictor and model to consistently estimate the 
assay values placebo recipients would have had if they had been vaccinated in such a way 
that the conclusion does not depend on the choice of the predictor/model. Possible criteria 
being studied are: o the predictor does not affect disease after accounting for assay value [9,35], o the predictor is an instrumental variable for disease through assay value [35], o assay value does not affect disease after accounting for the predictor [35], o criteria suggested by Long & Hudgens [35,36]. 
Also of interest would be consideration of whether, if multiple assays were to be imputed, 
the same predictor/model could be used for all assays. Alternatively, could instead the 
probability of disease among vaccinees if they had not been vaccinated be 
imputed/estimated, thus estimating a single counterfactual and allowing standard model-
building methods and criteria to be used. 
 
Alternatives to causality might be investigated. It is often said that correlation does not 
imply causation, and the example given of the cockerel crowing before the sun rises, but 
not causing the sun to rise. However, for centuries farmers have risen when the cock 
crows in order to be in the field when the sun rises, not because the cock caused the sun 
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to rise but because it reliably predicted it would do so. In other words, reliable association 
may be an alternative to demonstration of causality. 
 
5.3 Challenges – terminology 
 
Although the terminology used may be familiar to those working in the field, it may lead 
to confusion among those less familiar with the topic. For example, the definition of a 
correlate of protection as an immune marker statistically correlated with vaccine efficacy 
suggests that protection and efficacy are synonymous, and does not allow for protection 
engendered by means other than vaccination. The neophyte notes: o If the marker is correlated with efficacy, why not call it a correlate of efficacy? o Natural infection can lead to lifelong immunity, such as is the case with measles, 

but protection engendered by natural infection would not seem to fall within this 
definition. 

Some well-regarded studies have explored the relationship between antibody and 
prevention of disease without conditioning on the source of antibody, e.g. 
Couch/neuraminidase/influenza [37]; clearly such studies should be included in the 
subject matter of correlates of protection. 
 
Recognition that vaccine efficacy and protection are not synonymous and a better 
understanding of the distinction between them would improve understanding of the topic. 
Noting that a popular dictionary defines ‘protect’ as ‘to cover or shield from exposure, 
injury, damage, or destruction’ [38], a more readily understood definition in the context 
of disease occurrence might be: Protection is a property such that if exposed to the 
pathogen disease does not occur. Vaccine efficacy would then be given by   vaccinatednot protectedP1

vaccinated protectedP11VE |
|


 . 

 
The term ‘validated’ is used in two senses. In a regulatory context a validated assay is 
one that has been approved by a regulatory agency for use in later phase clinical trials; in 
other settings it is used to signify meeting some criterion or test, such as the Prentice 
criterion. Further, use in the latter sense can lead to confusion by suggesting that assays 
either are or are not validated, whereas in actuality statistical results are only 
demonstrated up to a certain level of statistical significance. Similarly, ‘finding a 
correlate of protection’ is sometimes heard spoken of, which is no more a proper 
description of a scientific result than recent popular news reports suggesting that a Higgs 
boson had been ‘found’; CERN reported that the probability of seeing the result observed 
if a Higgs boson did not exist was 1.7×109 [39]. 
 
6. Summary 
 
The impact of vaccines on global health is second only to that of clean drinking water 
[40], and vaccines have been found for many prevalent and morbid diseases. However, 
principally those discoveries have been where the mechanism of action has been more 
readily understood and future vaccines will likely target diseases less well understood, 
such as HIV, less prevalent, and emerging pandemics. Such targets may be less amenable 
to demonstration of vaccine efficacy by clinical endpoint efficacy trials, and may rely 
more on immunological assays for demonstration of effectiveness. Statistical methods for 
identifying and quantifying such assays have advanced in recent years, but more remains 
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to be done if the goal of demonstrating by statistical means assays reliably associated 
with protection and with adequately precise measures of protection is to be achieved. 
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