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Abstract
The Annual Survey of Public Employment & Payroll (ASPEP) is conducted by the U.S. Census
Bureau to collect data on federal, state, and local government civilian employees. Estimates of local
government totals are calculated for domains created by crossing state and government function,
where functions range from air transportation to water supply. To calculate estimates at such a
detailed level, the Census Bureau uses small area methods that borrow strength from other domains
through auxiliary information from the most recent Census of Governments. In this paper, we study
the properties of the composite estimator used during ASPEP’s 2009 sample design and explore
a new hierarchical Bayesian approach to small area estimation. We consider various models and
investigate model diagnostics.

Key Words: Small area estimation; Composite estimator; Hierarchical Bayes; Model validation;
Government units

1. Introduction

Every five years, in years ending in “2” and “7,” the U.S. Census Bureau conducts the
Census of Governments (CoG), which collects data on the organization, finances, and em-
ployment of the approximately 90,000 governments in the United States. The data collected
are important in measuring the public-sector component of the economy, developing pub-
lic policy, and understanding relationships among governments. During intercensal years,
annual sample surveys are conducted to collect similar information.

One such survey is the Annual Survey of Public Employment & Payroll (ASPEP),
which collects data on the number and pay of government civilian employees. ASPEP is
made up of three components: a census of select federal agencies, a census of the 50 state
governments, and a two-phase, stratified, probability-proportional-to-size sample of around
10,500 local governments (U.S. Census Bureau, 2014). About two years after each CoG,
a new sample of local governments is selected. For example, the 2009 sample design is
based on the 2007 CoG, and the current 2014 sample design is based on the 2012 CoG.

Estimates of local government totals are calculated for domains created by crossing
state and government function. To calculate estimates at such a detailed level, the Census
Bureau uses small area methods that borrow strength from similar domains through auxil-
iary information from the most recent CoG. The composite estimator used during ASPEP’s
2009 sample design is based on an implicit model and equals a weighted average of direct
and synthetic estimators (Tran and Cheng, 2011). In this paper, we study the design-based
properties of the composite estimator and explore explicit models that try to address poten-
tial areas for improvement. The hierarchical Bayesian approach to modeling, which is new
in application to ASPEP, offers a convenient setting in which to fit and evaluate models.

Disclaimer: This report is released to inform interested parties of research and to encourage discussion.
Any views expressed on statistical, methodological, technological, or operational issues are those of the authors
and not necessarily those of the U.S. Census Bureau.
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2. Composite Methodology

2.1 Domains

The domains of interest are created by crossing state f and function d. There are 49 states
(Hawaii and the District of Columbia are excluded because censuses of local governments
are conducted there), 29 functions, and a total of 1,421 (= 49 × 29) domains, although some
domains may represent structural zeroes. A complete list of functions and corresponding
codes can be found in Appendix A. The key study variables are the number of full-time
employees (ftemp), full-time pay (ftpay), the number of part-time employees (ptemp), part-
time pay (ptpay), and the number of part-time hours (pthours). For domain fd, the estimand
is the total of study variable y, which is denoted Yfd. To illustrate the structure of the data,
Table 1 provides an example for East Wenatchee municipal government in Washington.

Table 1: Data Example for East Wenatchee Municipal Government
Function ftemp07 ftpay07 ptemp07 ptpay07 pthours07

023 2 8,346 0 0 0

025 3 11,947 2 921 83

029 1 4,298 9 8,843 483

044 8 31,306 1 1,403 79

050 4 16,160 0 0 0

062 20 98,752 0 0 0

162 3 10,129 0 0 0
Note: For information on sampling and non sampling error or definitions, see

<www.census.gov/govs/apes/how data collected.html>
Source: U.S. Census Bureau, 2007 Census of Governments: Employment

2.2 Small Area Concepts

Small area estimation deals with calculating estimates and corresponding measures of vari-
ability for areas, or domains, whose sample sizes are too small for reliable direct estimation.
Small area methods effectively increase the sample size by “borrowing strength” from sim-
ilar domains through models and auxiliary data. Models can be implicit or explicit in how
they do this, but in either case the goal is an appreciable increase in estimation accuracy
over that of the direct estimator.

To achieve this goal, many estimators in the literature take the composite form of a
weighted average of direct and synthetic estimators. Direct estimators, such as the Horvitz-
Thompson estimator, typically have small bias and large variance, whereas synthetic es-
timators (Gonzalez, 1973) typically have large bias and small variance. The composite
form tries to balance the variability of the direct estimator against the bias of the synthetic
estimator. A comprehensive account of small area estimation is given in Rao (2003), and
recent developments are discussed in Pfeffermann (2013).

Small area methods are used for ASPEP because the element sample sizes by domain
cannot be controlled and may be too small for reliable direct estimation. This follows
mainly from the fact that the sample design is not a direct-element design. Rather, the
sampling units are governments, which are clusters of functions. The functions associated
with a government may change over time, and uncommon functions may be associated
with small governments, which have a small probability of selection.
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2.3 Estimation

The composite estimation methodology is described here in a step-by-step manner, and
various quantities and estimators are introduced along the way. Let k be an index used to
refer to elements in the population (U ) or sample (s). Variable y is measured in counts or
dollars depending on the study variable. Y is a population total, and Ŷ is an estimated total.
Two important quantities are the previous CoG total for domain fd,

Y CoG
fd =

∑
k∈UCoG

fd

yCoG
k ,

and the raw (unweighted) sum of the sample data,

Ŷ RAW
fd =

∑
k∈sfd

yk.

The direct estimator equals the weighted sum,

Ŷ DIR
fd =

∑
k∈sfd

wkyk,

where wk is the sample weight for element k. Because wk ≥ 1 and yk ≥ 0, the direct
estimator is always greater than or equal to the corresponding raw sum. The synthetic
estimator equals

Ŷ SYN
fd = Ŷ DB

f KCoG
fd ,

where Ŷ DB
f is the decision-based estimator of the state total (Shao et al., 2014), and KCoG

fd

is the proportion of the function within the state from the most recent CoG,

KCoG
fd =

∑
k∈UCoG

fd
yCoG
k∑

k∈UCoG
f

yCoG
k

.

Next comes the preliminary composite estimator. It takes the form of a weighted average
of the direct and synthetic estimators,

Ŷ COM1
fd = ϕ̂f Ŷ

DIR
fd +

(
1− ϕ̂f

)
Ŷ SYN
fd ,

where

ϕ̂f = 1−

∑
d V̂

(
Ŷ DIR
fd

)
∑

d

(
Ŷ DIR
fd − Ŷ SYN

fd

)2

is a state-level James-Stein composite weight intended to allow for accurate estimation for
the group of domains in state f as whole (Rao, 2003, p. 63). If ϕ̂f is initially estimated to
be negative, then it is set to 0.5.

Several adjustments are applied to Ŷ COM1
fd to ensure certain quality control checks are

met. The most important check is that the final estimate be greater than or equal to the raw
sum. If Ŷ COM1

fd violates this check, a less-than-raw adjustment sets the final estimate equal
to the direct estimate. As a simplification, the final composite estimator can be written as

Ŷ COM
fd =

{
Ŷ COM1
fd , Ŷ COM1

fd ≥ Ŷ RAW
fd

Ŷ DIR
fd , Ŷ COM1

fd < Ŷ RAW
fd .

JSM2015 - Government Statistics Section

767



3. Monte Carlo Simulation

3.1 Planning

A large Monte Carlo simulation is performed to study the design-based properties of the
quantities and estimators described in section 2. To take advantage of the external validation
offered by the CoG, we use public-use micro-data from the 2007 and 2012 CoG. All of the
following figures and tables use data from those sources. Data from the 2007 CoG serve as
the sampling frame, from which many independent samples are selected according to the
current sample design. The samples are merged with the 2012 CoG data and then used to
estimate the known 2012 totals, which are denoted Y 2012

fd . To mimic production as closely
as possible, governments in 2007 that are known to disincorporate later are not removed
from the sampling frame. The number of simulated samples, R, is set to 10,000 to obtain
accuracy up to two decimal places when estimating proportions.

3.2 Performance Measures

Table 2 lists the performance measures that are calculated for the various estimators. These
measures include absolute relative bias (ARB), coefficient of variation (CV ), relative root
mean squared error (RRMSE), and the proportion of less-than-raw occurrences (LTR).
Global performance measures such as average RRMSE, denoted RRMSE, are obtained
by averaging over domains. The notation est

(r)
fd stands for the estimate of Y 2012

fd for a
particular estimator based on the rth sample. On an added note, because public employment
and payroll totals tend to be stable, these results arguably apply to estimators used during
production in intercensal years.

Table 2: Performance Measures
Performance Measure Formula

Expectation Efd =
1

R

R∑
r=1

est
(r)
fd

Bias Bfd = Efd − Y 2012
fd

Absolute relative bias ARBfd =
|Bfd|
Y 2012
fd

Variance Vfd =
1

R− 1

R∑
r=1

(
est

(r)
fd − Efd

)2

Coefficient of variation CVfd =

√
Vfd

Y 2012
fd

Mean squared error MSEfd =
1

R

R∑
r=1

(
est

(r)
fd − Y 2012

fd

)2

Relative root mean squared
error

RRMSEfd =

√
MSEfd

Y 2012
fd

Proportion of less-than-raw
occurrences

LTRfd =
1

R

R∑
r=1

1
(
est

(r)
fd < Ŷ

RAW(r)
fd

)
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3.3 Alternative Composite Estimators

Two alternative composite estimators are created for study purposes and are motivated by
preliminary simulation results for the direct and synthetic estimators. The alternative pre-
liminary composite estimator is given by

Ŷ ALTCOM1
fd = ϕ̂ALT

fd Ŷ DIR
fd +

(
1− ϕ̂ALT

fd

)
Ŷ SYN
fd ,

where

ϕ̂ALT
fd =

MSESYN
fd

MSESYN
fd +MSEDIR

fd

is a near-optimal domain-specific weight based on the estimated mean squared errors of
the direct and synthetic estimators (Rao, 2003, p. 58). There are several adjustments
that are applied at the preliminary composite step, but as a simplification, we express the
alternative preliminary composite estimator as the following to reflect just the less-than-raw
adjustment,

Ŷ ALTCOM
fd =

{
Ŷ ALTCOM1
fd , Ŷ ALTCOM1

fd ≥ Ŷ RAW
fd

Ŷ DIR
fd , Ŷ ALTCOM1

fd < Ŷ RAW
fd .

Note that ϕ̂ALT
fd depends on the true totals Y 2012

fd through the estimated mean squared errors
MSEDIR and MSESYN. Consequently, Ŷ ALTCOM1

fd and Ŷ ALTCOM
fd are not real estimators

for 2012, but they do provide a baseline for how accurate a composite estimator can be and
further show the effect of the less-than-raw adjustment.

3.4 Simulation Results

Tables 3 and 4 display simulation results for ftemp and ptemp, which are representative
of the full-time and part-time variables. The bias-variance tradeoff among the direct, syn-
thetic, and preliminary composite estimators is reflected in the values of ARB and CV .
The direct estimator has small bias and large variance, whereas the synthetic estimator has
relatively large bias and small variance. As a weighted average, the preliminary composite
estimator balances the two.

Based on the values for RRMSE for all of the estimators, it appears easier to esti-
mate totals accurately for ftemp than for ptemp. This makes sense because the full-time
variables are more stable than the part-time variables. For ptemp, the value 45.52 percent
for RRMSE for the preliminary composite estimator is very large. In fact, it is larger
than the value 28.87 percent for RRMSE for the previous CoG total, which has no sam-
pling variability. The less-than-raw adjustment that is applied to the preliminary composite
estimator reduces LTR to 0 for both variables, but, in the case of ftemp, the adjustment
increases RRMSE from 12.61 percent to 13.91 percent.

As expected, the alternative composite estimators from section 3.3 perform the best
in terms of RRMSE. This should give confidence in the simulation and the resulting
estimates of variance and mean squared error. The increase in RRMSE caused by the
less-than-raw adjustment is more pronounced for the alternative composite estimators. In
the case of ftemp, RRMSE increases from 6.41 percent to 11.24 percent after the less-
than-raw adjustment is applied.
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Table 3: Monte Carlo Results for ftemp
Estimator ARB% CV% RRMSE% LTR%

Y CoG
fd 14.94 0.00 14.94 12.31

Ŷ RAW
fd 22.85 2.78 23.30 0.00

Ŷ DIR
fd 0.16 17.85 17.85 0.00

Ŷ SYN
fd 13.94 1.48 14.23 13.34

Ŷ COM1
fd 6.15 9.18 12.61 7.04

Ŷ COM
fd 5.85 10.68 13.91 0.00

Ŷ ALTCOM1
fd 4.12 4.26 6.41 1.60

Ŷ ALTCOM
fd 4.32 9.13 11.24 0.00

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Employment

Table 4: Monte Carlo Results for ptemp
Estimator ARB% CV% RRMSE% LTR%

Y CoG
fd 28.87 0.00 28.87 10.31

Ŷ RAW
fd 45.97 4.86 45.71 0.00

Ŷ DIR
fd 0.74 75.13 75.14 0.00

Ŷ SYN
fd 29.66 7.85 32.72 10.47

Ŷ COM1
fd 14.94 39.13 45.52 5.26

Ŷ COM
fd 16.07 37.76 45.36 0.00

Ŷ ALTCOM1
fd 13.33 11.63 19.02 2.09

Ŷ ALTCOM
fd 15.95 12.47 22.13 0.00

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Employment

It was mentioned in section 2.3 that the composite weight ϕ̂f can be estimated to be
negative initially. Figure 1 plots the proportion of occurrences of negative weights for ftemp
versus average sampling fraction. These proportions and averages are with respect to the
10,000 samples from the Monte Carlo simulation, and the sampling fraction refers to the
elements in the 2012 data. Each data point represents a single state, and of the 49 states,
40 have proportions very close to one. It is reasonable to think that the larger the sampling
fraction, the better the estimate of ϕ̂f and the smaller the proportion of negative composite
weights. However, the plot suggests no such relationship. Florida, Alaska, Delaware, and
Nevada, which have different sampling fractions, all have proportions exactly equal to 0.
The plot versus the actual sample size is similar.

If ϕ̂f is initially estimated to be negative, then it is set to 0.5. In the absence of infor-
mation regarding the direct and synthetic estimates, the value 0.5 is an intuitive choice as it
puts equal weight on the two. Another option is to set the weight to 0, as is done with the
positive-part James-Stein estimator (Lehmann and Casella, 1998, p. 275). For ASPEP, this
would mean letting the final estimate be the synthetic estimate, which is stable but has the
undesirable property of being less than the raw sum about ten percent of the time. All in
all, the composite methodology used during ASPEP’s 2009 sample design appears to lack
a smooth estimator of the composite weight.
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Figure 1: Plot of proportion of occurrences of negative ϕ̂f for ftemp versus average sam-
pling fraction. Each data point represents a single state. The proportions and averages are
with respect to the 10,000 samples from the Monte Carlo simulation, and the sampling
fraction refers to elements in the 2012 data. Data Source: U.S. Census Bureau, 2007 and
2012 Census of Governments: Employment

4. Hierarchical Bayesian Models

4.1 Motivation

The composite estimator used during ASPEP’s 2009 sample design is based on an implicit
area-level model. In area-level models (Rao, 2003, ch. 5), the direct survey estimates are
modeled, and any covariates are at the area level. One advantage of area-level models
is that they are valid for general sample designs and usually result in design-consistent
estimators. Area-level models for ASPEP have a lot of potential because there exist very
good covariates in the form of totals from the most recent CoG. As an illustration, Figure 2
plots the strong linear relationship between 2007 and 2012 CoG totals on the log scale for
ftemp in Illinois.

In a unit-level model, on the other hand, values of individual units are modeled, and
covariates can be at the unit or area level. A type of unit-level model called a nested-error
regression model has been used successfully during ASPEP’s 2014 sample design (Tran
and Dumbacher, 2014). In this approach, the model is fitted using sample data without the
sampling weights and then used to make predictions for the out-of-sample units. However,
if approximate design consistency of the resulting estimators is desired, then greater care
needs to be taken to account for the sample design.

The goal of this part of the research is to explore explicit area-level models that try
to capture the spirit of the composite methodology and address areas for improvement in
a unified and generalizable way. The hierarchical Bayesian method (Rao, 2003, ch. 10),
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Figure 2: Plot of 2012 CoG totals versus 2007 CoG totals on the log scale for ftemp in
Illinois. Each dot represents a function. The line of equality has been added for reference.
Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Employment

which is new in application to ASPEP, offers a convenient setting in which to fit and eval-
uate such models. The hierarchical Bayesian approach to inference is straightforward, can
be used to fit complicated models, and has important applications to small area estimation.
Hierarchical modeling explicitly accounts for area-to-area variation and takes advantage of
the multilevel structure in the data. This type of modeling involves modeling regression
coefficients to tie the various levels in the data together. Two good resources on the subject
are Gelman and Hill (2007) and Gelman et al. (2014).

4.2 Notation

This section introduces notation for the area-level models considered in this research. First
of all, to make modeling assumptions more justified and to reduce the scale of the data, we
work with log-transformed direct estimates and parameters. Let θ̂fd = ln(Ŷ DIR

fd ) and θfd =
ln(Yfd) be the log-transformed direct estimate and true total, respectively, for domain fd,
where f = 1, . . . , F and d = 1, . . . , Df . Denote by θ̂f = (θ̂f1, . . . , θ̂fDf

)T and θf =

(θf1, . . . , θfDf
)T the vectors of transformed direct survey estimates and parameters for

state f , respectively. Also, let θ̂ and θ denote similar quantities for all domains nationwide.
Denote by ψfd = V (θ̂fd) the design-based variance of θ̂fd and by Ψf = V (θ̂f ) the

design-based variance-covariance matrix of θ̂f . The parameters ψfd and Ψf are assumed
known but are actually estimated using the 10,000 direct estimates from the Monte Carlo
simulation in section 3.
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4.3 Fay-Herriot Model

The most well-known area-level model for continuous data is the Fay-Herriot (FH) model,
which was first used to estimate per capita income in 1970 for places having fewer than
1,000 people according to the 1970 Census of Population of Housing (Fay and Herriot,
1979). In the context of complex survey data, the FH model can be written in terms of
a sampling model with “sampling errors” and a linking model with “model errors.” The
errors are assumed to be independent and normally distributed.

The following FH model is fit separately for each state and serves as a building block
for more complicated models. For state f and functions d = 1, . . . , Df ,

θ̂fd|θfd
ind∼ N(θfd, ψfd)

θfd|βf , σ
2
f

ind∼ N(xT
fdβf , σ

2
f )

βf ∼ Nk(0, 100Ik)

σf ∼ U(0, 100),

where βf is a k × 1 vector of regression coefficients, σ2f is the hierarchical variance,
xfd = (1, ln(Y CoG

fd ))T is the vector of covariates that includes the transformed value of
the previous CoG total, and Ik is the k × k identity matrix. Weakly informative prior dis-
tributions are used because flat, improper priors cannot be specified using the model fitting
software and are reasonable choices to represent a lack of information relative to the data
input. Also, in hierarchical models, Gelman (2006) recommends a uniform prior for σf
over the commonly used inverse-Gamma distribution.

4.4 Fay-Herriot Model with Correlated Sampling Errors

As pointed out by Xie, Raghunathan, and Lepkowski (2007), one limitation of the standard
FH model is that it assumes independent sampling errors among the domains. Because
the sample design for ASPEP is complicated and the fact that the domains cut across clus-
ters of elements, the sampling errors in the first-level model are probably correlated. To
accommodate this, a multivariate extension of the FH model is considered that includes a
general variance-covariance matrix for the transformed direct survey estimates. This is the
same model considered by Datta and Lahiri (1995). Formally, the model is given by the
following. For state f and functions d = 1, . . . , Df ,

θ̂f |θf ∼ NDf
(θf ,Ψf )

θfd|βf , σ
2
f

ind∼ N(xT
fdβf , σ

2
f )

βf ∼ Nk(0, 100Ik)

σf ∼ U(0, 100),

where Ψf is an estimate of the designed-based variance-covariance matrix V (θ̂f ). The
covariance estimates come from the Monte Carlo simulation, and the formula is similar to
the variance formula given in Table 2. For state f and functions d and d′, the covariance of
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θ̂fd and θ̂fd′ is estimated by

Cov
(
θ̂fd, θ̂fd′

)
=

1

R− 1

R∑
r=1

(
θ̂
(r)
fd − θ̂

(·)
fd

)(
θ̂
(r)
fd′ − θ̂

(·)
fd′

)
,

where

θ̂
(·)
fd =

1

R

R∑
r=1

θ̂
(r)
fd and θ̂

(·)
fd′ =

1

R

R∑
r=1

θ̂
(r)
fd′ .

4.5 Multilevel Fay-Herriot Models

The previous models are fit separately for each state. It may be advantageous to borrow
strength across states and jointly model the transformed direct survey estimates nation-
wide. To this end, multilevel models are considered that tie the state-level models to-
gether through modeling of the βf . The formulation below allows for a general variance-
covariance matrix Ψf , but this multilevel model can be fit to either the case of indepen-
dent errors or that of correlated sampling errors. For state f = 1, . . . , F and functions
d = 1, . . . , Df ,

θ̂f |θf
ind∼ NDf

(θf ,Ψf )

θfd|βf , σ
2
f

ind∼ N(xT
fdβf , σ

2
f )

βf |µ,Σ
iid∼ Nk(µ,Σ)

µ ∼ Nk(0, 100Ik)

Σ ∼ Inv-Wishart(k + 1, Ik)

σf
iid∼ U(0, 100).

4.6 Summary of Models

Table 5 summarizes the four models considered in this research.

Table 5: Summary of Models
Acronym Description

FH Fay-Herriot

FHcor Fay-Herriot with correlated sampling errors

MFH Multilevel Fay-Herriot

MFHcor Multilevel Fay-Herriot with correlated sampling errors

5. Model Fitting and Evaluation

5.1 Model Fitting

The models are fit in R (R Core Team, 2012) using the package rjags. JAGS (Plummer,
2012) stands for Just Another Gibbs Sampler and is the Unix equivalent of the popular

JSM2015 - Government Statistics Section

774



WinBUGS software (Lunn et al., 2000), which allows one to construct Bayesian models
and simulate draws from posterior distributions using Markov chain Monte Carlo (MCMC)
methods (Gilks, Richardson, and Spiegelhalter, 1996). The model syntax of JAGS is very
similar to that of WinBUGS. The R packages coda and R2WinBUGS are used to assess
convergence of the Markov chains and to analyze the posterior output.

For the FH and FHcor models, we use five chains, dispersed initial values, a burn-in
of 50,000 iterations followed by 100,000, and a thinning rate of ten. This results in a pos-
terior sample size of 50,000 for each quantity of interest. For the MFH and MFHcor
models, we reduce the number of iterations by a factor of five to deal with computer mem-
ory issues. Standard MCMC diagnostics indicate good mixing of the chains, low autocor-
relation, and potential scale reduction factors close to one.

5.2 Model Evaluation

The models are evaluated in terms of how well replicated data agree with the observed
data and how well the model estimates agree with the true 2012 totals. Under squared error
loss, the Bayes estimate of a quantity of interest is the posterior mean. We denote the Bayes
estimate of the true 2012 total Y 2012

fd = exp(θfd) by Ŷ BAYES
fd .

One way to evaluate and diagnose model fit in the Bayesian framework is through
posterior predictive checks, which are described in Gelman et al. (2014). A popular dis-
crepancy measure used in such checks is the omnibus χ2 measure (Gelman, Meng, and
Stern, 1996). This measure is given by

χ2(θ̂,θ) =

F∑
f=1

Df∑
d=1

[
θ̂fd − E(θ̂fd|θ)

]2
V (θ̂fd|θ)

=

F∑
f=1

Df∑
d=1

(
θ̂fd − θfd

)2

ψfd
,

where the expectation E and variance V are with respect to the model. Variations of this
discrepancy measure are considered by limiting the set of functions over which the inner
summation is taken. This can give insight into what functions are difficult to estimate.
For example, we restrict attention to the elementary and secondary education functions
(012 and 112), which make up a large proportion of public employment and payroll, and
the public utility functions (091, 092, and 093), which, historically, have been difficult to
estimate accurately. The posterior predictive p-value (ppp) is given by

ppp = P
(
χ2(θ̂rep,θ) > χ2(θ̂,θ)

∣∣∣ θ̂) ,
where the probability is with respect to the joint posterior distribution of replicated data
and the parameters, π(θ̂rep,θ|θ̂). In general, values of ppp close to 0 and 1 indicate lack of
fit, while values close to 0.5 indicate good fit.

To evaluate estimation accuracy, the square root of the average squared distance be-
tween the model estimates and true totals Y 2012

fd is calculated. This distance is denoted ∆
and is given by

∆ =

√√√√√ 1

M

F∑
f=1

Df∑
d=1

(
Ŷ BAYES
fd − Y 2012

fd

)2
,

where

M =

F∑
f=1

Df
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is the number of domains to which the model under consideration can be applied. As with
the posterior predictive checks, we can restrict attention to the elementary and secondary
education and public utility functions.

CVs are also useful for comparisons. The average CV, which is denoted CV , and the
maximum CV, which is denoted CVmax, are also calculated. The average and maximum
are taken over all M domains.

6. Modeling Results

6.1 Results

Tables 6 and 7 display modeling results for ftemp and ptemp after applying the four models
to a single sample. Results for the composite estimator Ŷ COM

fd are added for comparison.
The subscripts ED and PU stand for elementary and secondary education and public util-
ities, respectively.

Table 6: Modeling Results and Comparisons for ftemp
Model χ2 χ2

ED χ2
PU ∆ ∆ED ∆PU CV% CVmax%

FH 0.16 0.54 0.39 621.97 1,712.95 742.38 5.97 55.08

FHcor 0.14 0.34 0.46 609.52 1,673.44 734.40 5.76 54.92

MFH 0.15 0.53 0.38 623.77 1,726.38 733.77 5.91 51.39

MFHcor 0.12 0.37 0.44 611.27 1,688.81 724.29 5.70 52.42

Ŷ COM
fd – – – 768.58 2,298.02 552.58 5.48 91.38

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Employment

Table 7: Modeling Results and Comparisons for ptemp
Model χ2 χ2

ED χ2
PU ∆ ∆ED ∆PU CV% CVmax%

FH 0.03 0.51 0.15 1,285.18 1,538.92 70.27 21.09 172.04

FHcor 0.03 0.52 0.13 1,263.40 1,445.19 65.88 20.17 167.00

MFH 0.03 0.51 0.14 1,280.02 1,499.13 62.91 20.43 171.66

MFHcor 0.02 0.54 0.13 1,259.03 1,409.02 58.89 19.58 156.12

Ŷ COM
fd – – – 1,330.69 1,821.82 154.86 31.74 496.11

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Employment

6.2 Discussion

For ftemp, the ppp values for the χ2 measures do not indicate severe model misfit. Con-
sidering the ∆ and CV measures, the models with correlated sampling errors, FHcor and
MFHcor, perform the best, but the simpler FHcor has an edge in terms of estimation
accuracy. The composite estimator does perform well in estimating the totals for the public
utility functions, and its value for CV is smaller than that of any of the models. However,
its values of 768.58 for ∆ and 91.38 percent for CVmax are large.

For ptemp, which is the more volatile of the two study variables considered here, the
ppp values for the omnibus χ2 measure are closer to 0. However, the benefit of the mod-
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eling approach over composite estimation is reflected in the other measures. The most
complicated model, MFHcor, which has both correlated sampling errors and multilevel
structure, performs the best according to all ∆ and CV measures. FHcor performs well
too, just like for ftemp, but multilevel modeling for ptemp seems to result in an appreciable
improvement in estimation accuracy. Composite estimation performs worse than the other
models for ptemp.

7. Future Research

The models considered here show promise, but they can serve as building blocks for more
complicated models. One interesting extension assumes either the sampling errors or model
errors follow a t-distribution, the heavy-tailed nature of which provides robustness against
outliers. Working in a Bayesian framework, Bell and Huang (2006) applied these robust
models to data from the Small Area Income and Poverty Estimates program and found that
assuming a t-distribution for the model (sampling) errors pushes the final estimate closer
to the direct (synthetic) estimate. This has interesting implications for ASPEP because the
direct estimate is always greater than the corresponding raw sum.

Future research could also involve investigating other discrepancy measures. The pos-
terior predictive p-values from the omnibus χ2 measures do not indicate severe model misfit
for ftemp, so it would be useful to find measures that check for other practical features of
the data. One criticism of posterior predictive checks is that they make double use of the
data. The data are used to train the prior into a posterior and again when being compared
against replicated data from the fitted model. Cross-validated posterior predictive checks
are an alternative (Larsen and Lu, 2007), and entire states in the multilevel models seem
like natural cross-validation “folds.”

Lastly, although the prior distributions currently assumed should be uninformative rel-
ative to the data input, it is good practice to examine the sensitivity of the results to the
choice of prior. For example, we could consider different upper limits for the uniform prior
on σf .
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Appendix A: Functions

Code Function

001 Air transportation
005 Corrections
012 Elementary and secondary education – Instructional
112 Elementary and secondary education – Other
016 Higher education – Other
018 Higher education – Instructional
023 Financial administration
024 Fire protection – Firefighters
124 Fire protection – Other
025 Judicial and legal
029 Other government administration
032 Health
040 Hospitals
044 Highways
050 Housing and community development
052 Libraries
059 Natural resources
061 Parks and recreation
062 Police protection – Persons with power of arrest
162 Police protection – Other
079 Public welfare
080 Sewerage
081 Solid waste management
087 Water transport and terminals
089 All other and unallocable
091 Water supply
092 Electric power
093 Gas supply
094 Transit

Source: U.S. Census Bureau

Additional information about the classification of government employment activities can
be found in U.S. Census Bureau (2006).
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