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Abstract 

The knowledge of the underlying parameters, or the existence of a sufficiently large 
reference sample from which they can be estimated, is required for implementing most 
control charts. Estimation of parameters is known to degrade charts performance. This 
paper studies the effects of estimation of parameters on the performance of the 
nonparametric multivariate sign EWMA (MSEWMA) chart by Zou and Tsung (2011).  
First, the effects of using their known parameter control limits are studied in case when 
the parameters are estimated from a relatively small Phase I (reference) sample.  It is seen 
that in this case the chart performance is highly degraded, in that, many more false alarms 
are observed than what is nominally expected.  Next, using simulations, correct control 
limits are obtained that achieve a desired in control ARL when parameters are estimated 
from a given size reference sample. The out-of-control performance of the MSEWMA 
chart with the corrected control limits is also briefly studied.  The use of the proposed 
corrected control limits is recommended when the reference sample is not too large.      

Keywords: MSEWMA chart; average run length; multivariate control chart; Statistical 
process control; Moving Average (MA) chart; Nonparametric procedure.     

1. Introduction

Control charts are graphical tools that have become popular in process monitoring in 
many applications. When a change has occurred in the process which might affect 
product quality, the goal is to detect that quickly (see e.g. Lowry et al. 1992, Chakraborti 
et al. 2001, Qiu and Hawkins 2003, Dovoedo and Chakraborti 2012). Outlier (abnormal) 
points on the control chart signal these changes in the process. The literature on outlier 
detection is in itself quite vast (se e.g. Barnett and Lewis 1994, Filzmoser et al. 2008, 
Dovoedo 2011, Dovoedo and Chakraborti 2013, 2015). In many process monitoring 
applications, it is common to monitor several quality characteristics, which may be 
correlated, simultaneously. It is well known that when correlated variables are being 
monitored, multivariate control charts should be used. There are several such charts in the 
literature and the survey paper of Bersimis et al (2007) including references therein may 
be consulted for some details. Most of these multivariate control charts rely on the 
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assumption of multivariate normality, which may not always be justifiable in practice. 
Some examples of these are the following popular charts: the    chart of Hotelling 
(1947), the multivariate cumulative sum (MCUSUM) control chart of Crosier (1988), the 
multivariate exponentially weighted moving average (MEWMA) control chart of Lowry 
et al. (1992). Like in the univariate case, the performance of these charts can be 
significantly degraded in the presence of non-normality, especially while monitoring 
individual observations (Montgomery 2005). Thus, nonparametric and robust control 
charts are needed, as pointed out for example in Woodall and Montgomery (1999), and 
Chakraborti et al. (2015). The multivariate sign EWMA (MSEWMA) control chart of 
Zou and Tsung (2011) is one such chart that can be useful in practice.   

The MSEWMA chart is appealing for several reasons: It is nonparametric; it is affine-
invariant, and has a strictly distribution-free property over a larger class of population 
distributions, distributions with elliptical direction that includes the elliptically symmetric 
distributions (see Randles, 2000 for details about these families of distributions). The 
MSEWMA chart in-control (IC) average run length can be computed quickly via a one-
dimensional Markov chain model (for elliptical direction class of distributions); it is fast 
to implement and it is also quite efficient in detecting process shifts, especially small to 
moderate shifts when the process distribution is heavy tailed or skewed. 

As alluded to earlier, the construction and implementation of the MSEWMA chart, like 
most other control charts, requires either knowing the population (location and scale) 
parameters or estimates of them obtained from a Phase I sample (a reference sample) 
from an IC process. The effects of the estimation of parameters on the performance of 
control charts is of great interest both from a practical and a research point of view. In the 
univariate case, Jensen et al. (2006) and more recently Psarakis et al. (2014) gave an 
overview of the effects of parameter estimation on the performance of control charts.  In 
the multivariate case, for normal theory based charts, Champ et al. (2005) studied the 
performance of the Hotelling’s    chart when parameters are estimated. Also, Champ 
and Jones-Farmer (2007) studied the properties of the Hotelling’s    chart, the MEWMA 
chart, and several multivariate CUSUM charts with estimated parameters. In this paper, 
however, we consider nonparametric control charts and study the effects of the size of the 
reference sample on the performance the MSEWMA chart. This question was raised by 
Zou and Tsung (2011) for future work. In particular, we study the reference sample size 
requirements for bivariate and trivariate data, with a smoothing parameter       . 
These reference sample size requirements ensure that the performance of the MSEWMA 
chart is not unduly affected when parameters are estimated from the Phase I sample. 
Using simulations, we obtain the “corrected control limits” that should be used when 
parameters are estimated from relatively small reference samples, in order to maintain an 
in-control ARL close to the nominal value. We also briefly study the out-of-control 
performance (shift detection properties) of the MSEWMA chart when the corrected 
control limits are used.  
The rest of the paper is structured as follows. In Section 2, we review the MSEWMA 
chart. Section 3 studies the effect of small reference sample on the performance of the 
MSEWMA chart. Some “corrected control limits” are obtained in Section 4. In Section 5, 
we briefly study the out-of-control performance of the “corrected control limits” 
MSEWMA chart. Conclusions are provided in Section 6.      

2. Review of the Multivariate Sign EWMA (MSEWMA) chart

The MSEWMA chart incorporates into the EWMA scheme, the multivariate 
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nonparametric test proposed by Randles (2000). Here, we first review the Randles (2000) 
test, followed by the MSEWMA chart itself. 

 2.1 The Randles (2000) Test 

The test of hypotheses of interest is the one-sample problem. Let be i.i.d. 
from         , where  is a continuous  -dimensional distribution “centered” at 

 .   We want to test the hypotheses: 

where  is specified, or without any loss of generality,  , if we 
replace above by (centering). The Randles (2000) test was developed in 
analogy with the Hotelling’s  test which has the test statistic given by: 

where    and are the sample mean and the sample covariance respectively of the 
centered data.  

Now let  be any non singular matrix such that  . Then, denoting, 
 , we obtain immediately  . Note then that the 

sample variance-covariance matrix of the transformed observations is the identity 
matrix  and consequently the transformation  makes the transformed points follow a 
distribution with a covariance matrix  . Observe also that the test statistic  is 
times the squared length of the average of the transformed data points.  

The multivariate sign test of Randles (2000) is constructed taking advantage of the 
preceding observations. First, the original observations  are transformed 
(details are provided below) such that the transformed data points, denoted 

 , follow a distribution with the variance-covariance matrix  .  The Randles 
(2000) test statistic, denoted by  , is  times the squared length of the average of the 
transformed observations  . In other words: 

where the notation “ave” means an average taken over the observations        , and 
 . The transformed data points that satisfy the above condition are obtained as 
 , where   is the  -dimensional spatial sign function defined by: 

where  is the Euclidian norm and  is a data driven transformation proposed by 
Tyler (1987). A matrix  is obtained using the Tyler shape matrix  , which is the 
positive definite symmetric   x   matrix with  such that for any  which 
satisfies  . It is then easy to see that the sample 
variance-covariance matrix of the transformed sample is 

   as desired. The matrix is taken to be the upper triangular 
Cholesky factorization of   

   (since   
  ), and is called Tyler’s 

transformation matrix. Note, since      , that the Randles test statistic can 
be written as: 
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Randles (2000) showed that when the null hypothesis is true, under the directional 
symmetry assumption,  

The Randles test, which is implemented in the R package “MNM”, rejects  when 
 . 

The reader is referred to Randles (2000) for details about these classes of distributions. 
The directionally symmetric family of distributions contains distributions such as the 
multivariate normal and the multivariate   distributions, and certain skewed distributions. 

2.2 The MSEWMA Chart 

It is assumed that    independent and identically distributed (iid) reference sample 
(Phase I) observations are available before monitoring begins in Phase II, that Phase II 
observations are collected over time, and that the pre-change and post-change 
distributions differ possibly only in their location parameters,  and  respectively. To 
be more specific let  be the reference observations, where  is 
some integer. This change-point model is given by: 

where    is some unknown multivariate cdf,   is some unknown change point and 
 .   Note that in general, the location parameter   can be the mean, or the median 

or some other quantile, however, in the literature, it is common to use the median to 
formulate the location model and that’s what’s done hereafter. 

There are more than one ways to define a multivariate median.  In our case, following 
Hettmansperger and Randles (2002), the pre-change multivariate median    and the 
associated transformation matrix    are first defined as solutions to the following 
equations: 

In order to implement the test and the control chart, first, estimates of the multivariate 
median,     and the transformation matrix,     are obtained from the reference sample. 
Following equations (2) and (3), these are obtained as the solution           of  
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where   is a  ×  upper triangular positive-definite matrix with a one as the upper left-
hand element. Hettmansperger and Randles (2002) showed the existence and the 
uniqueness of           under the directional symmetry assumption. They provided an 
algorithm for computing        and    , which can be found in the supplemental file of Zou 
and Tsung (2011) as well.     

Once the estimates  are calculated from the Phase I reference sample, the Phase 
II observations are standardized and transformed to obtain unit vectors as follows: 

Then the EWMA may be defined as follows: 

where the initial vector     , and the smoothing parameter. Following Randles 
(2000) test, the charting statistic is given by: 

Zou and Tsung (2011) observed that  and hence proposed the 
final form of the charting statistic:    

The chart will trigger a signal when 

 , 

where   is an upper control limit chosen to achieve a specific (nominal) in-control ARL 
value. As previously pointed out, Zou and Tsung (2011) showed that the appropriate 
control limits for elliptical direction distributions are the same and can be obtained using 
a one-dimensional Markov chain method, following Runger and Prabhu (1996)  (see 
details in the appendix of Zou and Tsung, 2011). They also provided the control limits for 
various combinations of    , and nominal in-control ARL values, when         are 
assumed to be known. This is essentially equivalent to having sufficiently large Phase I 
data to obtain reliable estimates of    and   . This situation will be referred to as the 
known parameters case and these control limits will be referred to as the traditional 
control limits hereafter.  

3. Effects of Estimated Parameters on the In-Control Performance of the

MSEWMA Chart and Sample Size Requirements

In practice, when the location and scale parameters are unknown, they are estimated from 
a reference sample (in-control sample) consisting of   observations. When these 
estimated parameters are used in the monitoring statistic, the performance of control 
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charts in general, is degraded in that the number of false alarms increases significantly, 
especially when the Phase I sample size,   is very small. This translates into the attained 
in-control ARL being much lower than the desired nominal in-control ARL. See for 
example Champ et al. 2005 for the case of the    chart, Champ and Jones-Farmer (2007) 
for the cases of the MEWMA and MCUSUMs. In this section, we investigate the 
performance of the MSEWMA chart when the parameters are unknown and are 
estimated, using simulation. Note that this is a follow-up question raised by Zou and 
Tsung (2011). Specifically, we compute the attained in-control ARL when the estimated 
parameters are used in place of unknown true parameters, and the traditional (known 
parameter) control limits provided by Zou and Tsung (2011) are used.  Several situations 
are investigated: We considered bivariate and trivariate data  , and 
used the value  of the smoothing parameter of the MSEWMA chart. We further 
consider several values of the Phase I sample size  between      and       . 
We study the case where the nominal (desired) IC ARL is 200, as it is often the case in 
the multivariate literature (see e.g. Champ et al. 2005, Champ and Jones-Farmer 2007, 
Lowry et al. 1992).  

In our simulation, we consider distributions from the following families, which are 
among the families of distributions considered in Zou and Tsung (2011): 
(i) -dimensional standard multivariate normal distribution, denoted by  ; (ii)  -
dimensional standard multivariate   distribution with   degrees of freedom, denoted by 
    ; and (iii)  -dimensional multivariate distribution with independent marginal chi-
square distributions with degrees of freedom each, denoted      . We consider two 
values of  ,  for the distributions above mentioned. For distributions cases 

 and  , the covariance matrix used in our simulation is the identity matrix    . To 
estimate the in-control (IC) ARLs reported in Table 1, we simulate 10,000 runs, and 
average the run lengths.  

Here are the steps for obtaining the IC ARLs: 

Step 1: Generate reference observations from the multivariate IC distribution in 
question and estimate the location and scale parameters  and     described in section 
2.2. 

Step 2: Initially Generate a new observation from the IC distribution, then set   
and compute the first MSEWMA charting statistic using the procedure described in 
Section 2.2. 

Step 3: If no signal, increase  by 1 and generate a new IC observation then go to the 
next step. If a signal is observed, then go to step 5. 

Step 4: Compute the MSEWMA charting statistic corresponding to the new observation, 
then go to step 3.  

Step 5: Record the run length (in a vector). 

Step 6: Repeat steps 1-5, the desired number of times. 

Step 7: Average the run lengths recorded in the vector in step 5 after step 6 is completed.   

The results of the simulations are reported in Table 1. It is observed that using a limited 
number of Phase I observations (small  ) to estimate the location and scale parameters, 
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while using the traditional control limits by Zou and Tsung (2011), can seriously affect 
the in-control performance of the MSEWMA chart . For example, with   , in case 
of the bivariate normal distribution  , when   , the attained IC ARL is 107.4; that 
is a decrease of about 46.3% compared to the nominal value of 200. For   , and 
the trivariate distribution,  , when   , using the traditional control limit results 
in an attained IC ARL of 90.95; that is a decrease of about 54.5% compared to the 
nominal value of 200. These decreases in IC ARL are clearly not acceptable, thus, the 
need for “corrected control limits”. Using the results reported in Table 1, along with 
Figure 1, we recommend, for       , when using the traditional control limits, a 
reference sample size of at least        when     or  . Using these reference 
sample sizes for parameter estimation insures that the attained IC ARL will be within 5% 
of the desired ARL of 200, unless the distribution of data is extremely skewed, in which 
case more reference observations may be needed.     

4. Corrected Control Limits for the MSEWMA Chart when Parameters are

Estimated

In some applications today, data are plenty and obtaining a reference dataset as large as 
 may not be difficult. In other applications however, it may take a long period 

of time to obtain “good” reference data of that size. Waiting until the required sample 
size for the reference sample is achieved may not be a good or a viable option, since 
certain assignable changes in the process may go undetected during that period. Using the 
traditional control limits results in smaller than desired IC ARLs, which translates into a 
significant increase in the false alarm rate. So this is not a good option either. In 
situations where the reference sample size is small, corrected control limits should be 
used in place of the traditional control limits for the specific reference sample size. The 
idea is to slightly widen the upper control limit in such a way that the desired IC ARL is 
attained. These corrected control limits are obtained using a bisection search, the steps of 
which are given below. All ARLs are computed using the procedure described in Section 
3. Here, multivariate normal reference sample observations are used to compute  and 

.   This since the test is distribution-free for any elliptical direction distribution.

First, let’s denote  , the in-control average run length of the MSEWMA chart 
corresponding to a control limit   based on a large number of runs (10,000 runs).  Also 
let  be the desired nominal) IC ARL. 

Step 1. Obtain two numbers and    (  ) such that   and 
 . 

Step 2. Find    and compute . 

Step 3. If  then assign    . If  then assign 
 . 

Step 4. Repeat steps 2 and 3 until  is sufficiently close to  (within 0.5% of 
 ). 

Step 5. Use  as the desired control limit  .          

We considered trivariate data  , and the values    , and 0.05 of the 
smoothing parameter. Several values of the reference sample size between  and 
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    , are studied in the simulation. The steps above are performed for each 
combination of    , and  . The obtained corrected control limits for the MSEWMA 
chart are reported in Table 2. The last column of Table 2 shows the traditional control 
limits. The corrected control limits are of interest to practitioners, who may not have 
large enough reference sample. These results are displayed in Figure 2. It is seen that as 
the reference sample size increases, the corrected control limit decreases, in general.   

5. Out-of Control ARL Performance of the Estimated Parameter MSEWMA Chart

Here, we briefly compare the out-of-control performance of the estimated parameter 
MSEWMA chart (using the corrected control limits) with that of the known parameter 
MSEWMA chart (using the traditional control limits from Zou and Tsung (2011). We 
have previously shown that when the known parameter control  limits are used with the 
estimated parameter MSEWMA chart, the attained IC ARL can deviate significantly 
from the desired nominal value and can thus degrade the in-control performance of the 
MSEWMA chart. Using the corrected control limits however should make the attained IC 
ARL closer to the nominal value.  Thus in a simulation study, we compare the known 
parameter MSEWMA chart (using the traditional control limits) to the estimated 
parameter MSEWMA chart (using corrected control limits).     

In the study, we include underlying distributions from each category mentioned above. 
These are  , where the previous notation are used. We considered trivariate 
data (  ), and two values of the size of the reference sample        and 1000, in 
addition to the known parameter case (  ). The out-of-control scenario considered 
here is same as the one used in Zou and Tsung (2011), a shift of size   occurs in the first 
component and we study the cases where  takes values: 
and    , where  corresponds to the “no change” situation. The results for the 
smoothing parameter  are reported in Table 3. These results are displayed in 
Figure 3. 

We observe from Table 3 and Figure 3 that, in general, when the location shift is small, 
the known parameter MSEWMA chart performs better than the estimated parameter 
MSEWMA chart, when the Phase I sample size is small. The difference in performance 
between the two charts lessens as the size of the Phase I sample increases. However, for 
moderate to large location shifts, the two charts have very similar out-of-control 
performance. For example (from Table 3), for a shift of size in the first 
component of the distribution     , the out of control ARLs for reference samples of 
size      ,       , and  (known parameter case) are 93.54, 69.45, and 
66.47 respectively. However for the same situation as just described with a shift size of 

 , the out of control ARL are 10.14, 9.17, 9.02 for reference samples of size 
   ,       , and     respectively. 

Note that while the known parameter MSEWMA chart out-of-control performance seems 
attractive, it requires much more Phase I data to maintain the nominal in-control ARL. 
This makes the proposed estimated parameter MSEWMA chart a good option for the 
practitioner when a large reference sample is not available. 

6. Conclusion

The MSEWMA chart proposed by Zou and Tsung (2011) is an appealing multivariate 
nonparametric chart.  Here is a summary of our findings:  
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(1) It is observed that using the traditional (known parameter) control limits provided by
Zou and Tsung (2011), when parameters are estimated from a small reference sample,
results in an increased number of false alarms.

(2) We provided the practitioner with some guidance as to how many reference
observations are needed to construct the MSEWMA chart with the traditional control
limits, for bivariate and trivariate data (    and    ) when using a smoothing
parameter of       .

(3) We provided tables of corrected control limits that produce an in-control ARL of 200,
for use when the necessary Phase I sample size is not available for the application of
traditional control limits with trivariate data (   ), for smoothing parameter
and 0.05.

(4) We found that the estimated parameter MSEWMA chart (with the corrected control
limits) has good shift detection properties

This work is ongoing and further results will be reported elsewhere. 
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TABLES AND FIGURES 

Table 1: IC ARL of the MSEWMA chart when the traditional UCLs given 
by Zou and Tsung (2011) are used with   Phase I  -variate observations 
from various distributions.  The nominal IC ARL=200 and λ=0.05 

Distribution 50 100 150 200 300 500 

2 

107.8 132.3 148.6 154.2 164.4 175.9 
106.9 131.1 144.5 157.1 166.9 177.5 
105.0 130.5 143.2 156.0 166.0 176.3 
104.6 133.0 147.3 154.6 164.7 178.1 
107.6 132.6 144.1 153.6 164.5 177.6 

3 

91.73 120.0 131.5 146.0 155.6 171.4 
90.20 119.1 135.7 143.1 154.8 171.3 
89.81 118.7 133.0 148.9 159.6 171.9 
90.95 119.7 133.8 144.4 157.3 170.3 
91.33 118.2 136.0 145.0 158.0 172.7 

Distribution 750 1000 1500 2000 2500 3000 

2 

186.9 187.4 195.3 194.9 194.7 195.7 
186.1 185.0 189.2 194.1 194.3 193.8 
185.3 186.9 190.9 195.1 196.6 193.3 
185.7 187.6 187.6 193.6 194.7 195.1 
184.9 183.7 191.4 196.5 194.8 197.6 

3 

179.7 181.4 192.4 190.0 193.0 194.1 
180.8 186.0 187.9 192.8 191.7 195.4 
180.5 182.4 186.8 192.8 191.4 193.3 
179.5 181.5 188.7 191.9 192.2 198.0 
180.3 180.5 191.0 191.7 194.0 193.2 

Table 2: The corrected upper control limit values for a nominal IC ARL 
= 200, when   Phase I trivariate (   )  observations from elliptical 
direction distributions are used to estimate the parameters, for two values 
of the smoothing parameter λ of the MSEWMA chart.  
corresponds to the known parameters case.  

Λ 50 100 150 200 300 500 
0.025 11.441 9.964 9.383 8.984 8.586 8.237 
0.05 11.973 10.852 10.379 10.113 9.781 9.582 

Λ 750 1000 1500 2000 ∞ 
0.025 8.121 8.005 7.889 7.922 7.689 
0.05 9.449 9.383 9.31 9.279 9.176 
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Table 3: Out of control ARL of MSEWMA chart for various distributions when a 
location shift of size   occurs in the first component of three-dimensional data. The 
corrected control limits are used for       and        .  
corresponds to the known parameters case. The smoothing parameter is  λ=0.05.   

100 1000 ∞ 100 1000 ∞ 100 1000 ∞ 

0 201.6 199.9 198.2 204.3 196.6 203.0 199.7 196.3 192.6 
0.1 180.8 164.2 161.5 152.9 126.9 122.2 169.4 155.1 149.8 
0.25 110.5 83.44 81.96 62.61 47.75 46.57 93.54 69.45 66.47 
0.5 44.01 35.07 33.93 23.86 20.71 20.26 33.63 26.47 25.78 
1 17.66 15.65 15.33 12.51 11.36 11.13 13.45 11.86 11.66 

1.5 12.16 10.95 10.80 10.01 9.133 9.006 10.14 9.172 9.02 
2 10.04 9.153 9.018 9.036 8.299 8.132 9.046 8.27 8.152 

2.5 9.052 8.286 8.181 8.551 7.807 7.683 8.526 7.843 7.729 
UCL 10.852 9.383 9.176 10.852 9.383 9.176 10.852 9.383 9.176 

Figure 1: Attained IC ARL of the MSEWMA chart, as a function of  , the size of the 
reference sample, where the data are  -dimensional normal and the smoothing parameter 

  .  
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Figure 2: Estimated parameter MSEWMA chart corrected control limits as a function of 
the size of the reference sample m for trivariate (p = 3) data from elliptical direction 
distributions. The solid line corresponds to the traditional control limit. 
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Figure 3: Out-of control ARL comparison between the known parameters MSEWMA 
chart with the traditional control limits and the estimated parameter MSEWMA chart 
with the corrected control limits, when a shift of size b occurs in the first component of 
three-dimensional observations from     ,         , and            respectively, with 

   as the smoothing parameter, and   is the Phase I sample size used; 
corresponds to the known parameters case.  
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