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A multivariate state space model for IBNR reserve prediction

Daiane R. dos Santos * Cristiano Fernandes Joel C. daRosa ¥

Abstract

In this article we propose a multivariate extension of Atherino’s model (2010), in which insurance
claims are organized as “time series” by stacking the columns of the runoff triangle in which the
IBNR (incurred but not reported) claims are grouped. Such “time series” will display periodic
movements which can be duly captured by a “seasonal” component. In order to do so the structural
time series model of Harvey (1989) is used. Our multivariate extension uses a SUTSE (seemingly
unrelated time series equations) structure, in which each IBNR series has its own “seasonal” but the
shocks are correlated. This approach provides a more parsimonious description of correlated IBNR
reserves. We apply this model to a bivariate claim series of the Brazilian car insurance market. Our
results show that the proposed model presents better results than its univariate counterpart.
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1. Introduction

IBNR is a type of provision that a insurance company has to make for claims that have
already happened but haven’t yet been reported, given that, in practice, there is a delay be-
tween the time that a claim occurred and when the claim is reported. The accurate predici-
ton of these values is extremely important for the finance organization of a company.

Since the work published in Bornhuetter Fergunson (1972), a group of strategies for
predicting IBNR has been proposed based on data organized in a special type of triangle
known as the runoff triangle, as shown in Table 1. In this triangle the rows represent
accident years or years of origin and the columns are the development years. Here we will
consider the incremental form of this triangle and its cells are denoted by Cyg, 1 < w < J
and0 <d<J-—1.

Among the methods that take advantage of the runoff triangle framework, the chain-
ladder (Mack, 1993) has been the most frequently used in the insurance industry. The
successful application of this method is consequence of its simplicity and the fact that it
is distribution-free, enhancing its flexibility. Because of its importance, we will use it as
benchmark for comparisons.

Differently from the chain-ladder, here we follow the approach adopted by Atherino
et al. (2010), in which the original double index of the runoff triangle is replaced by a
single index which runs from top to bottom of the triangle, across its rows, as shown in
Table 2. This we will refer as the row wise ordering of the run off triangle. As a result
of this operation, the entries of the triangle are transformed into a time series with missing
values. It is well known that the state space approach for time series deals very naturally
with missing values, replacing the non observable values by estimates using a smoothing
algorithm constructed via the Kalman filter (Durbin & Koopman, 2001). It is therefore
a natural framework to estimate IBNR reserves when considering the row wise form of
the runoff triangle. Atherino et al.(2010) apply a univariate state space model to estimate
the IBNR reserve, which in this setup is obtained by the sum of estimated missing values
(Equation 1).
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In this article we present a multivariate extension of Atherinos’s model, namely, a state
space model to jointly estimate the IBNR reserves associated with several run off triangles
transformed into row wise time series of IBNR claims. Such framework may be useful
when estimating IBNR reserves of a company which operates in several sectors which are
expected to share common risk factors.
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When we model IBNR provisions series individually we discard possible association
between IBNR provisions. In fact, when analyzing real row wise IBNR series obtained
from different runoff triangles, we observe significant correlation coefficients between
these series, indicating the plausibility of a multivariate model which will be dealt with
in the next section. A different multivariate state space model for IBNR reserve has been
recently proposed by De Jong (2011).

2. A multivariate state space model for IBNR estimation

2.1 SUTSE formulation with trends and seasonal

The row wise ordering of the run off triangle will result in a time series displaying at the
start of any accident year, large claims, which will then be followed by decreasing values
with the advance of the development years. This pattern will repeat itself across the result-
ing time series and can be duly captured by a model with a level and a periodic component.
Our multivariate state space model will be specified using the SUTSE (seemingly unrelated
time series equations) structure, as developed by Harvey (1989, pp. 463-464) and later used
by Fernandez and Harvey (1990) and Jalles (2009), among others.The SUTSE structure is
one in which each time series y; ¢, j=1,2 has its own level p;; , j=1,2 and periodic com-
ponent 7;, j=1,2, with each of these components evolving stochastically, as long as the
variance of their shocks,n;’s and w;’s, respectively, are non zero. Formally the SUTSE
model is given defined by the following set of equations:
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As it can be seen the shocks impacting both the level and periodic components, 7;’s and
wy’s, respectively, are correlated.

2.2 State space form and the Kalman filtering

The bivariate SUTSE model previously presented can be cast into the state space form,
and once this is done, estimation of the unobserved components, (¢ and v;;, j=1,2, is
accomplished by use of the Kalman filtering and related algorithms, such as smoothing and
prediction error decomposition of the likelihood function. A Gaussian linear state space
form consists of two equations. The first is the observations equation, which describes the
evolution of a p-variate time series y;, t = 1,2,... in terms of the components that are
encapsulated in the vector a;. The second is the state equation specifying the way each of
the components contained in o evolves stochastically. More specifically:
observation equation:

yt:ZtOét+dt+5t t:1,2,...n (8)

state equation:
a1 =Ty ap + ¢ + Rymy 9)

where
Et 0 Ht 0

~ NID , 10
Elejon] = Elny, a1] = 0,Vt (11)
a1 ~ N(ai,p1) (12)

The system matrices, Z;, d;, ¢;, 1; and Ry, are deterministic, and the errors are consid-
ered independent of each other and independent of the initial state. The fixed unknown
elements contained in some of the system matrices are estimated together with the state
vector. This is accomplished by use of the Kalman Filter, a set of recursive equations
which gives estimated values for the mean and covariance matrices of the state vector at
any time period. Full details on the Kalman filtering deduction and related algorithms can
be found in Durbin & Koopman (2001).

3. Application

We carried out an application that fitted the described SUTSE bivariate model to time series
containing IBNR claims from the Brazilian car insurance market. In this market, the poli-
cies are of three types, according to risk coverage: Casco (full insurance), RCFV (personal
injury) and APP (private passenger auto).

The Casco insurance type covers general car damages, including thefts. The RCFV
coverage, also known as third parties protection, is intended to cover injuries in individuals
who are not associated with the insured vehicle. The APP coverage - Personal Accident
Passenger - compensates damages arising from passengers personal accidents.
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Our time series data was obtained after reshaping two runoff triangles that report pay-
ments from Casco and RCFV IBNR claims. This data was observed in the period between
the first quarter of 2009 and the second quarter of 2013 in a total of 324 observations for
each type of insurance coverage.

The Kalman Filter implementation to estimate the SUTSE model combined the exact
likelihood and the EM algorithm and also uses the blocks method presented in Atherino
et al. (2010). This approach enables the straightforward computation of the covariance
between observations, including the missing observations, conditional to the whole set of
observations Y . As a consequence, it results in an elegant and succinct expression for
estimating the mean squared error for the IBNR provision.

Model estimation through maximum likelihood (via BFGS algorithm) resulted in nu-
merical values for the fixed and unknown variances and covariances as given in equations
(5), (6) and (7). Results are depicted in Table 3.

Given that all the variances estimates are negligible, one can conclude that both the
level and periodic components driving each of the IBNR series are deterministic.

Figure 1 shows the smoothed series for each coverage.

As shown on the figure 1, the smoothed series fits to real data in both case.

Following the trend in the IBNR literature, in this article we will also compare our re-
sults to those obtained by fitting the chain-ladder method to our data set. For completeness
we will also include the results of data fitting by Atherino’s univariate model. For out of
sample validation, we decided to leave out the the 17 observations of the last diagonal of
the runoff triangle. Goodness of fit between the actual and predicted (through filtering)
values was measured using MSE (mean squared error), MAPE (mean absolute percentage
error) and R>.

As it can be seen from the results on Tables 4 and 5, the best fit was produced by our
multivariate SUTSE model. On Table 6 we present some diagnostics for our model (based
on the modelss innovations) namely, Box-Ljung autocorrelation test, Jarque-Bera normality
test, and ARCH effect through Box-Ljung applied to squared innovations. Only normality
is rejected, but this is not a serious drawback for our predictions, since we can guarantee
the best linear estimate for the expected values of the level and periodic components.

The Tables 7 and 8 shows the IBNR reserves estimated by the three methods: chain
ladder, Atherino’s univariate state space model and our proposed multivariate state space
model (SUTSE).

As we can see, for both coverages, the total IBNR reserves estimated by the proposed
model are slightly larger than those estimated by Atherino’s model. However, there was a
significant decrease in the estimated coefficient of variation of our model as compared to
Atherino’s, for the majority of the quarters.

4. Conclusion

In this article we developed a bivariate version of Atherino’s model for IBNR estimation.
In order to do so we use the SUTSE framework for multivariate state space models, which
is applied to a IBNR bivariate time series obtained from two related runoff triangles. The
results were satisfactory when compared to both the chain ladder and Atherino’s univariate
model. Our results show that the periodicity of the two IBNR series are deterministic and
both have a very smooth level. We have left out 17 observations from each series for
model validation. According to the goodness of fit measures used for these observations
(MSE, MAPE and R2) our proposed model produced, overall, the best fit. The in sample
residuals are uncorrelated, homoscedastic, but non normal. Our estimated INBR reserves
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were slightly larger than those estimated by Atherino’s univariate model. However, most
of the coefficients of variation obtained from our model were lower .
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Table 1: Runoff triangle.
Accident Development year
Year y 0 1 2 e n-1

1 Y1 Yo Y3 e Yo
2 Yoni1 Yoo e Yopo1 Yo
3 Yon41 Yon42 e Y3
Yan_1
n Y(n—l)n+1 Y'(n—l)n+2 T Yn2—1 Yn2

Table 2: Row wise of runoff triangle.

Parameters | Values estimated
o, 8.48E-02
o2, 6.60E-02
Ocres 2.25E-02
o2 1.94E-04
O—%Q 1.06E-04
T 1.49E-04
o2 1.33E-19
o2, 2.04E-19
Owws -1.04E-19

Table 3: Estimated parameters - Proposed model.
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Figure 1: Logarithm of the series and the logarithm of the smoothed series.
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Chain-ladder  Atherino uni. Proposed model
MSE(+10"%) 20.41 5.30 1.59
Pseudo R? (%) 99.44 99.61 99.75
MAPE (%) 35.03 34.75 33.64

Table 4: Casco - Model comparison statistics (out of sample).

[ Chain-ladder

Atherino uni. Proposed model

MSE (+10™) 11.54 1.37 1.08
Pseudo R? (%) 98.63 99.39 99.69
MAPE (%) 31.49 23.30 19.76

Table 5: RCFV - Model comparison statistics (out of sample).

Testing and diagnostics

Proposed model - p-values

Casco RCFV

Heteroscedasticity 0.999 0.998
Box-Pierce 0.798 0.987
Jarque-Bera 0.003 0.000

Table 6: Testing and diagnostics applied to standardized innovations.

Quarter Chain Ladder Atherino Univ. Proposed model
Provisions CV (%) | Provisions CV (%) | Provisions CV (%)
2 80 36.0 88 433 90 433
3 111 27.3 122 334 128 335
4 203 21.0 212 24.1 218 24.2
5 341 20.7 334 19.6 340 19.6
6 570 17.4 557 17.6 562 17.6
7 795 26.1 735 15.7 752 15.6
8 1,141 229 988 14.5 1,029 14.5
9 1,490 20.0 1,262 13.6 1,321 13.6
10 2,093 17.4 1,828 13.9 1,927 13.8
11 2,930 17.4 2,492 13.5 2,615 134
12 3,851 14.2 3,344 13.4 3,458 13.3
13 5,260 11.4 4,761 13.8 4,844 13.7
14 7,983 13.8 7,219 14.6 7,323 144
15 12,342 11.4 11,231 15.3 11,355 15.1
16 19,892 188.1 18,682 16.4 18,951 16.3
17 46,563 133.0 45,107 20.4 45,877 204
18 248,937 329 222,766 26.2 230,240 26.3
Total 354,580 321,726 331,028

Table 7: IBNR provisions in thousands of Brazilian Reais for Casco coverage.
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Quarter Chain Ladder Atherino Univ. Proposed model
Provisions CV (%) | Provisions CV (%) | Provisions CV (%)
2 455 77.2 441 34.7 443 36.1
3 1,700 26.0 1,653 22.8 1,635 234
4 2,825 22.0 2,567 18.0 2,541 18.2
5 4,221 22.0 3,748 153 3,752 15.2
6 5,906 17.8 5,147 13.7 5,128 134
7 7,835 15.0 6,870 12.6 6,862 12.2
8 10,674 14.2 8,900 11.8 8,668 11.2
9 12,170 12.8 11,370 11.2 10,728 10.6
10 16,997 11.8 13,929 10.8 13,099 10.1
11 20,108 10.1 16,900 10.6 16,158 9.8
12 24,147 9.3 20,605 10.5 19,889 9.7
13 28,410 8.9 24,548 10.5 24,032 9.5
14 35,984 8.6 29,212 10.5 29,006 9.4
15 43,138 7.9 34,832 10.7 34,738 9.4
16 52,973 30.2 43,090 11.2 43,177 9.7
17 69,285 332 61,211 12.6 61,435 11.2
18 177,752 21.5 122,517 16.6 126,641 154
Total 514,581 407,543 407,932

Table 8: IBNR provisions in thousands of Brazilian Reais for RCFV coverage.
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